1
|
Glicerina V, Siroli L, Betoret E, Canali G, Dalla Rosa M, Lanciotti R, Romani S. Characterization and evaluation of the influence of an alginate, cocoa and a bilayer alginate-cocoa coating on the quality of fresh-cut oranges during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4454-4461. [PMID: 35092615 DOI: 10.1002/jsfa.11799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fresh-cut products are ready-to-use goods which retain the fresh characteristics of raw produce. However, numerous factors restrict the quality and shelf-life of fresh-cut products. One of the most promising, convenient and safe technologies to preserve the quality and to prolong the shelf-life of fresh fruits and vegetables is the application of edible coatings. RESULTS The aim of this study was to investigate the effects of different coatings (alginate-based, cocoa-based and a combination of them) on physicochemical, microbiological and sensory characteristics of fresh-cut oranges during storage. Preliminary rheological analyses were performed on coatings in order to characterize them. The three different coated orange samples were packaged in polyethylene terephthalate trays under atmospheric conditions and stored for 9 days at 6 °C. During storage, all samples were analysed for water activity, moisture, colour, texture, microbiological analyses and sensory quality. Orange samples coated with sodium alginate maintained the highest quality characteristics in terms of texture and microbiological properties, but not from a sensory point of view. Samples coated only with cocoa presented very high sensory attributes, but the lowest microbiological and textural quality. Samples covered in both alginate and cocoa demonstrated the best quality parameters throughout the whole storage period, including high sensory characteristics and the lowest microbiological cell loads (yeast and mesophilic aerobic bacteria under the threshold limit of 6.0 log cfu g-1 ). CONCLUSION The bilayer coating represented the best solution in order to develop new ready to-eat-fresh oranges with both high textural and sensory attributes and prolonged shelf-life. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Virginia Glicerina
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| | - Ester Betoret
- Instituto de Agroquimica y Tecnologia de Alimentos (IATA) Calle catedratico Agustìn Escardino, Paterna, Spain
| | - Giada Canali
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| | - Marco Dalla Rosa
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| | - Rosalba Lanciotti
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| | - Santina Romani
- Interdepartmental Centre for Agri-Food Industrial Research, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Cesena, Forli-Cesena, Italy
| |
Collapse
|
2
|
Wang M, Yan W, Zhou Y, Fan L, Liu Y, Li J. Progress in the application of lecithins in water-in-oil emulsions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Premjit Y, Mitra J. Optimization of Electrospray-Assisted Microencapsulation of Probiotics (Leuconostoc lactis) in Soy Protein Isolate-Oil Particles Using Box-Behnken Experimental Design. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02670-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Dhiman A, Suhag R, Singh A, Prabhakar PK. Mechanistic understanding and potential application of electrospraying in food processing: a review. Crit Rev Food Sci Nutr 2021; 62:8288-8306. [PMID: 34039180 DOI: 10.1080/10408398.2021.1926907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electrospraying (ESPR) is a cost effective, flexible, and facile method that has been used in the pharmaceutical industry, and thanks to its wide variety of uses such as bioactive compound encapsulation, micronization, and food product coating, which have received a great attention in the food market. It uses a jet of polymer solution for processing food and food-derived products. Droplet size can be extremely small up to nanometers and can be regulated by altering applied voltage and flow rate. Compared to conventional techniques, it is simple, cost effective, uses less solvent and products are obtained in one step with a very high encapsulation efficiency (EE). Encapsulation provided using it protects bioactives from moisture, thermal, oxidative, and mechanical stresses, and thus provides them a good storage stability which will help in increasing the application of these ingredients in food formulation. This technique has an enormous potential for increasing the shelf life of fruit and vegetables through coating and improvement of eating quality. This study is aimed at overviewing the operating principles of ESPR, working parameters, applications, and advantages in the food sector. The article also covers new ESPR techniques like supercritical assisted ESPR and ESPR assisted by pressurized gas (EAPG) which have high yield as compared to conventional ESPR. This article is enriched with good information for research and development in ESPR techniques for development of novel foods.
Collapse
Affiliation(s)
- Atul Dhiman
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Rajat Suhag
- Department of Food Science Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| | - Arashdeep Singh
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Pramod K Prabhakar
- Department of Food Science Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| |
Collapse
|
5
|
Rostamabadi H, Falsafi SR, Rostamabadi MM, Assadpour E, Jafari SM. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci 2021; 290:102384. [PMID: 33706198 DOI: 10.1016/j.cis.2021.102384] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Hydrophobicity and low aqueous-solubility of different drugs/nutraceuticals remain a persistent challenge for their development and clinical/food applications. A range of nanotechnology strategies have been implemented to address this issue, and amongst which a particular emphasis has been made on those that afford an improved biological performance and tunable release kinetic of bioactives through a one-step process. More recently, the technique of electrospraying (or electrohydrodynamic atomization) has attained notable impulse in virtue of its potential to tune attributes of nano/micro-structured particles (e.g., porosity, particle size, etc.), rendering a near zero-order release kinetics, diminished burst release manner, as well as its simplicity, reproducibility, and applicability to a broad spectrum of hydrophobic and poorly water-soluble bioactives. Controlled morphology or monodispersity of designed particles could be properly obtained via electrospraying, with a high encapsulation efficiency and without unfavorable denaturation of thermosensitive bioactives upon encapsulation. This paper overviews the recent technological advances in electrospraying for the encapsulation of low queues-soluble bioactive agents. State-of-the-art, advantages, applications, and challenges for its implementation in pharmaceutical/food researches are also discussed.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
6
|
Micronization in food processing: A comprehensive review of mechanistic approach, physicochemical, functional properties and self-stability of micronized food materials. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110248] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Köse MD, Başpınar Y, Bayraktar O. Electroencapsulation (Electrospraying & Electrospinning) of Active Compounds for Food Applications. Curr Pharm Des 2019; 25:1881-1888. [DOI: 10.2174/1381612825666190717125538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/28/2019] [Indexed: 01/20/2023]
Abstract
With new consumption trends and mindset of a healthier way of life, there is an increasing demand for
functional foods. To provide stable and functional products to consumers, the stability of the active compounds
must be preserved during the processing of food. For this purpose, encapsulation techniques have been used in
various industries in order to overcome problems such as stability, low solubility, and degradation under process
conditions for food applications. Electrospinning and electrospraying are two highly versatile and scalable electrohydrodynamic
methods, which have gained increasing attention in the various encapsulation applications. This
review will give readers an overview of the latest electroencapsulation (electrospraying and electrospinning) of
natural bioactive compounds for functional foods applications.
Collapse
Affiliation(s)
- Merve D. Köse
- Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Yücel Başpınar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Oguz Bayraktar
- Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
8
|
Effect of deacetylation degree on properties of Chitosan films using electrostatic spraying technique. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Influence of two different cocoa-based coatings on quality characteristics of fresh-cut fruits during storage. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Cakmak H, Kumcuoglu S, Tavman S. Production of edible coatings with twin-nozzle electrospraying equipment and the effects on shelf-life stability of fresh-cut apple slices. J FOOD PROCESS ENG 2017. [DOI: 10.1111/jfpe.12627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hulya Cakmak
- Department of Food Engineering, Graduate School of Natural and Applied Sciences; Ege University; Izmir 35100 Turkey
- Department of Food Engineering, Faculty of Engineering; Hitit University; Corum 19030 Turkey
| | - Seher Kumcuoglu
- Department of Food Engineering, Faculty of Engineering; Ege University; Izmir 35100 Turkey
| | - Sebnem Tavman
- Department of Food Engineering, Faculty of Engineering; Ege University; Izmir 35100 Turkey
| |
Collapse
|
11
|
Alehosseini A, Ghorani B, Sarabi-Jamab M, Tucker N. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Crit Rev Food Sci Nutr 2017; 58:2346-2363. [DOI: 10.1080/10408398.2017.1323723] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali Alehosseini
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Mahboobe Sarabi-Jamab
- Department of Food Biotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Nick Tucker
- School of Engineering, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| |
Collapse
|
12
|
Electrospraying: a Novel Technique for Efficient Coating of Foods. FOOD ENGINEERING REVIEWS 2016. [DOI: 10.1007/s12393-016-9150-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Patel MK. Technological improvements in electrostatic spraying and its impact to agriculture during the last decade and future research perspectives – A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.eaef.2015.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Tapia-Hernández JA, Torres-Chávez PI, Ramírez-Wong B, Rascón-Chu A, Plascencia-Jatomea M, Barreras-Urbina CG, Rangel-Vázquez NA, Rodríguez-Félix F. Micro- and nanoparticles by electrospray: advances and applications in foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4699-707. [PMID: 25938374 DOI: 10.1021/acs.jafc.5b01403] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Micro- and nanotechnology are tools being used strongly in the area of food technology. The electrospray technique is booming because of its importance in developing micro- and nanoparticles containing an active ingredient as bioactive compounds, enhancing molecules of flavors, odors, and packaging coatings, and developing polymers that are obtained from food (proteins, carbohydrates), as chitosan, alginate, gelatin, agar, starch, or gluten. The electrospray technique compared to conventional techniques such as nanoprecipitation, emulsion-diffusion, double-emulsification, and layer by layer provides greater advantages to develop micro- and nanoparticles because it is simple, low cost, uses a low amount of solvents, and products are obtained in one step. This technique could also be applied in the agrifood sector for the preparation of controlled and/or prolonged release systems of fertilizer or agrochemicals, for which more research must be conducted.
Collapse
Affiliation(s)
- José A Tapia-Hernández
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| | - Patricia I Torres-Chávez
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| | - Benjamín Ramírez-Wong
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| | - Agustín Rascón-Chu
- ‡Laboratory of Biopolymers, Research Center for Food and Development, CIAD, A. C., 83000 Hermosillo, Sonora, Mexico
| | - Maribel Plascencia-Jatomea
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| | - Carlos G Barreras-Urbina
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| | - Norma A Rangel-Vázquez
- §Department of Metalmechanical, Aguascalientes Institute of Technological, Aguascalientes, Aguascalientes, Mexico
| | - Francisco Rodríguez-Félix
- †Department of Food Research and Graduate Program (DIPA), University of Sonora, Hermosillo, Sonora, Mexico
| |
Collapse
|
15
|
Tian L, Prabhakaran MP, Ramakrishna S. Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen Biomater 2015; 2:31-45. [PMID: 26813399 PMCID: PMC4669026 DOI: 10.1093/rb/rbu017] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/29/2014] [Accepted: 09/14/2014] [Indexed: 12/12/2022] Open
Abstract
Nerve diseases including acute injury such as peripheral nerve injury (PNI), spinal cord injury (SCI) and traumatic brain injury (TBI), and chronic disease like neurodegeneration disease can cause various function disorders of nervous system, such as those relating to memory and voluntary movement. These nerve diseases produce great burden for individual families and the society, for which a lot of efforts have been made. Axonal pathways represent a unidirectional and aligned architecture allowing systematic axonal development within the tissue. Following a traumatic injury, the intricate architecture suffers disruption leading to inhibition of growth and loss of guidance. Due to limited capacity of the body to regenerate axonal pathways, it is desirable to have biomimetic approach that has the capacity to graft a bridge across the lesion while providing optimal mechanical and biochemical cues for tissue regeneration. And for central nervous system injury, one more extra precondition is compulsory: creating a less inhibitory surrounding for axonal growth. Electrospinning is a cost-effective and straightforward technique to fabricate extracellular matrix (ECM)-like nanofibrous structures, with various fibrous forms such as random fibers, aligned fibers, 3D fibrous scaffold and core-shell fibers from a variety of polymers. The diversity and versatility of electrospinning technique, together with functionalizing cues such as neurotrophins, ECM-based proteins and conductive polymers, have gained considerable success for the nerve tissue applications. We are convinced that in the future the stem cell therapy with the support of functionalized electrospun nerve scaffolds could be a promising therapy to cure nerve diseases.
Collapse
Affiliation(s)
- Lingling Tian
- Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 and Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576
| | - Molamma P Prabhakaran
- Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 and Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576
| | - Seeram Ramakrishna
- Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 and Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576
| |
Collapse
|
16
|
Khan MKI, Cakmak H, Tavman Ş, Schutyser M, Schroёn K. Anti-browning and barrier properties of edible coatings prepared with electrospraying. INNOV FOOD SCI EMERG 2014. [DOI: 10.1016/j.ifset.2013.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Anu Bhushani J, Anandharamakrishnan C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.03.004] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|