1
|
Tian Y, Qiu M, Shen Y, Zheng Y, Yang X, Zhang W, Jiang Y. Interfacial properties of whey protein hydrolysates monitored by quartz crystal microbalance with dissipation. Int J Biol Macromol 2025; 301:140368. [PMID: 39884608 DOI: 10.1016/j.ijbiomac.2025.140368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Whey protein hydrolysate (WPH) can be used to develop hypoallergenic foods. However, the stabilization mechanism of WPH-stabilized emulsion is not fully understood. Here, a real-time quartz crystal microbalance with dissipation monitoring (QCM-D) was used in conjunction with a rheometer to investigate the interfacial properties of WPH. Initially, the properties of WPH with different (6 %, 8 %, 10 %, 12 % and 14 %) degree of hydrolysis (DH) were investigated. 8 %-WPH demonstrated superior emulsifying (11.49 m2/g, 81.34 min) and foaming properties (14.00 %, 7.78 %). Subsequently, the stability of different WPH-stabilized emulsions were examined. 8 %-WPH emulsion exhibited the lowest centrifugal precipitation rate (4.50 %) and Turbiscan stability index (2.24). Additionally, the 8 %-WPH promoted the adsorption and retention of molecules at the interface, which effectively reduced the interfacial tension. QCM-D measurement further proved that the 8 %-WPH possessed excellent adsorption mass and viscoelasticity. Finally, we characterized the interface-adsorbed WPH. The 8 %-WPH exhibited the highest surface hydrophobicity (1072.60) and flexibility (0.22). Notably, the 8 %-WPH showed the highest β-sheet (41.11 %). This led to stronger interactions between neighboring interfacial WPH molecules, which protected the emulsion droplets from destabilizing factors. Nevertheless, excessive hydrolysis (10 %-14 %) caused WPH molecules aggregation, which consequently diminished the viscoelasticity of the interfacial film and the emulsion stability.
Collapse
Affiliation(s)
- Yueling Tian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Manyan Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China.
| |
Collapse
|
2
|
Peng Q, Wen F, Tang X, Lu S, Li H, Wang C, Chen Z, Zhou Z, Tan S, Qin H, Bi Y, Wang Z, Kong F. Carboxymethyl chitosan-gelatin based films filled with whey protein-stabilized nanoscale essential oil for skin wound healing: In vivo and in vitro studies. Int J Biol Macromol 2025; 305:141119. [PMID: 39961562 DOI: 10.1016/j.ijbiomac.2025.141119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Wound healing and antibiotic resistance present significant clinical challenges, underscoring the need for innovative bioactive wound dressings. This study prepared green-sustainable bioactive films by incorporating Litsea cubeba essential oil nanoemulsion (LCEO-NE) into a carboxymethyl chitosan-gelatin composite matrix, with essential oil in the films stabilized by whey protein for the first time. Fourier-transform infrared spectroscopy (FTIR) confirmed the interaction between the nanoemulsion and the matrix, resulting in altered absorption peaks. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) revealed that the addition of LCEO-NE increased the surface roughness, crystallinity, and thermal stability of the films. Furthermore, incorporating LCEO-NE significantly enhanced the physical properties and bioactivity of the films, with CGL-3 exhibiting optimal performance: tensile strength of 2.31 MPa, elongation at break of 72.31 %, strong antibacterial and antioxidant effects, excellent water absorption, biocompatibility, prolonged essential oil release (66 h), a water vapor permeability of 40.73 g/m2/h, and a contact angle of 82.23°. In vivo testing in a mouse model showed a 99 % wound healing rate by day 15 following treatment with the CGL-3 film, along with enhanced collagen deposition, accelerated epithelialization, and reduced inflammation. Overall, the CGL-3 film holds great promise for advanced wound care applications.
Collapse
Affiliation(s)
- Qiang Peng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Famin Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinrui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shengjie Lu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huilin Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuanju Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zidan Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Shaofan Tan
- Guangdong Dongshenglin Pharmaceutical Co., Ltd, Yunfu 527300, China
| | - Huaicheng Qin
- Yunfu Traditional Chinese Medicine Hospital, Yunfu 527300, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Dongshenglin Pharmaceutical Co., Ltd, Yunfu 527300, China; Yunfu Traditional Chinese Medicine Hospital, Yunfu 527300, China.
| | - Zhong Wang
- Yunfu Traditional Chinese Medicine Hospital, Yunfu 527300, China
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
3
|
Wang X, Cao Z, Su J, Ge X, Zhou Z. Oral barriers to food-derived active peptides and nano-delivery strategies. J Food Sci 2025; 90:e17672. [PMID: 39828408 DOI: 10.1111/1750-3841.17672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/04/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Food-derived bioactive peptides are a class of peptides from natural protein. It may have biological effects on the human body and play a significant role in protecting human physiological health and regulating physiological metabolism, such as lowering blood pressure, lowering cholesterol, antioxidant, antibacterial, regulating immune activity, and so on. However, most of the natural food-derived functional peptides need to overcome a variety of barriers in the body to enter the blood circulation system and target to specific tissues to generate physiological activity. During this process, the bioavailability of the functional peptides will be reduced. The nano-delivery system can offer the feasibility to overcome these obstacles and improve the stability and bioavailability of food-derived active peptides by nanoencapsulation. This work summarizes the application of food-derived bioactive peptides and the obstacles during the delivery pathway in vivo. Moreover, the different nano-delivery systems used for bioactive peptides and their application were summarized, which could provide ideas for oral delivery of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhiyong Zhou
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, P. R. China
| |
Collapse
|
4
|
Han X, Niu X, Xu M, Feng R, Han Q, Liu B, Cheng Y, Yun S, Cheng F, Feng C, Cao J. Flammulina velutipes protein-Flammulina velutipes soluble polysaccharide-tea polyphenols particles stabilized Pickering emulsions for the delivery of β-carotene. Int J Biol Macromol 2024; 285:138299. [PMID: 39631594 DOI: 10.1016/j.ijbiomac.2024.138299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The delivery vehicles based on protein-polysaccharide-polyphenol are promising methods to encapsulate bioactive components with the aim of improving their solubility and bioavailability. In this study, we used Flammulina velutipes protein (FVP) and Flammulina velutipes soluble polysaccharides (FVSP) as raw materials and prepared FVP-FVSP and FVP-FVSP-TP composite particles loaded with tea polyphenols (TP), the high internal phase Pickering emulsions stabilized by FVP-FVSP and FVP-FVSP-TP for the delivery of β-carotene (BC) were created. FVP-FVSP-TP has more promise as Pickering emulsion stabilizer than FVP-FVSP because of the smaller particle size, proper contact angle, and lower surface tension. The optimal preparation conditions of the emulsion were 4 % particle concentration and 80 % oil phase volume fraction. The emulsions stabilized by FVP-FVSP and FVP-FVSP-TP were o/w emulsions. Compared to the emulsion stabilized by FVP-FVSP, the FVP-FVSP-TP stabilized emulsion had higher G', G″ values and viscosity and showed better thermal, centrifugal, storage and oil oxidation stability. Moreover, FVP-FVSP-TP stabilized emulsions could further enhance the retention rate and bioaccessibility of TP and β-carotene. This study provides a theoretical basis for the application of FVP and FVSP in Pickering emulsions, and a reference for the fabrication of delivery vehicles to improve the stability and bioaccessibility of bioactive substances.
Collapse
Affiliation(s)
- Xiaoyue Han
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Xukai Niu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Mengyan Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Rui Feng
- Shanxi Aquatic Technology Promotion Service Center, Taiyuan, Shanxi 030006, China
| | - Qianxi Han
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Bo Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China.
| |
Collapse
|
5
|
Peng Q, Huang Z, Liang G, Bi Y, Kong F, Wang Z, Tan S, Zhang J. Preparation of protein-stabilized Litsea cubeba essential oil nano-emulsion by ultrasonication: Bioactivity, stability, in vitro digestion, and safety evaluation. ULTRASONICS SONOCHEMISTRY 2024; 107:106892. [PMID: 38761772 PMCID: PMC11127171 DOI: 10.1016/j.ultsonch.2024.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/20/2024]
Abstract
Litsea cubeba essential oil (LCEO) has garnered widespread attention due to its robust biological activity. However, challenges such as high volatility, limited water solubility, and low bioavailability impede its application. Nano-emulsion encapsulation technology offers an effective solution to these issues. In this study, we prepared litsea cubeba essential oil nano-emulsion (LCEO-NE) for the first time using whey protein (WP) as the emulsifier through an ultrasonic-assisted method, achieving high efficiency with minimal energy consumption. Transmission electron microscopy and dynamic light scattering analyses revealed that the nanoparticles were uniformly spherical, with a particle size of 183.5 ± 1.19 nm and a zeta potential of -35.5 ± 0.95 mV. Stability studies revealed that LCEO-NE exhibited excellent thermal and salt stability, maintaining its integrity for up to four weeks when stored at 4 °C and 25 °C. In vitro digestion assays confirmed the digestibility of LCEO-NE. Furthermore, evaluation of the DPPH, ABTS, and antimicrobial activities revealed that LCEO-NE displayed superior bacteriostatic and antioxidant properties compared to LCEO. Scanning electron microscopy elucidated that its bacteriostatic effect involved the disruption of bacterial microstructure. Hemocompatibility and cytotoxicity assays demonstrated the safety of LCEO-NE within the effective concentration range. This research supports the utilization of nanoparticles for encapsulating LCEO, thereby enhancing its stability and bioactivity, and consequently expanding its applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Qiang Peng
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Zhiwu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Guixin Liang
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, China; Guangdong Dongshenglin Pharmaceutical Co., Ltd, China; Yunfu Traditional Chinese Medicine Hospital, China.
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Zhong Wang
- Yunfu Traditional Chinese Medicine Hospital, China
| | - Shaofan Tan
- Guangdong Dongshenglin Pharmaceutical Co., Ltd, China
| | - Junyong Zhang
- Guangzhou Aobo Industrial Innovation Service Co., Ltd, Guangzhou 510670, China
| |
Collapse
|
6
|
Zhou Y, Wang P, Wan F, Zhu L, Wang Z, Fan G, Wang P, Luo H, Liao S, Yang Y, Chen S, Zhang J. Further Improvement Based on Traditional Nanocapsule Preparation Methods: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3125. [PMID: 38133022 PMCID: PMC10745493 DOI: 10.3390/nano13243125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Nanocapsule preparation technology, as an emerging technology with great development prospects, has uniqueness and superiority in various industries. In this paper, the preparation technology of nanocapsules was systematically divided into three categories: physical methods, chemical methods, and physicochemical methods. The technological innovation of different methods in recent years was reviewed, and the mechanisms of nanocapsules prepared via emulsion polymerization, interface polymerization, layer-by-layer self-assembly technology, nanoprecipitation, supercritical fluid, and nano spray drying was summarized in detail. Different from previous reviews, the renewal iteration of core-shell structural materials was highlighted, and relevant illustrations of their representative and latest research results were reviewed. With the continuous progress of nanocapsule technology, especially the continuous development of new wall materials and catalysts, new preparation technology, and new production equipment, nanocapsule technology will be used more widely in medicine, food, cosmetics, pesticides, petroleum products, and many other fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shangxing Chen
- National Forestry and Grassland Bureau Woody Spice (East China) Engineering Technology Research Center, The Institute of Plant Natural Products and Forest Products Chemical Engineering, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (P.W.); (F.W.); (L.Z.); (Z.W.); (G.F.); (P.W.); (H.L.); (S.L.); (Y.Y.)
| | - Ji Zhang
- National Forestry and Grassland Bureau Woody Spice (East China) Engineering Technology Research Center, The Institute of Plant Natural Products and Forest Products Chemical Engineering, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (P.W.); (F.W.); (L.Z.); (Z.W.); (G.F.); (P.W.); (H.L.); (S.L.); (Y.Y.)
| |
Collapse
|
7
|
Fuciños C, Rodríguez-Sanz A, García-Caamaño E, Gerbino E, Torrado A, Gómez-Zavaglia A, Rúa ML. Microfluidics potential for developing food-grade microstructures through emulsification processes and their application. Food Res Int 2023; 172:113086. [PMID: 37689862 DOI: 10.1016/j.foodres.2023.113086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 09/11/2023]
Abstract
The food sector continues to face challenges in developing techniques to increase the bioavailability of bioactive chemicals. Utilising microstructures capable of encapsulating diverse compounds has been proposed as a technological solution for their transport both in food and into the gastrointestinal tract. The present review discusses the primary elements that influence the emulsification process in microfluidic systems to form different microstructures for food applications. In microfluidic systems, reactions occur within small reaction channels (1-1000 μm), using small amounts of samples and reactants, ca. 102-103 times less than conventional assays. This geometry provides several advantages for emulsion and encapsulating structure production, like less waste generation, lower cost and gentle assays. Also, from a food application perspective, it allows the decrease in particle dispersion, resulting in a highly repeatable and efficient synthesis method that also improves the palatability of the food products into which the encapsulates are incorporated. However, it also entails some particular requirements. It is important to obtain a low Reynolds number (Re < approx. 250) for greater precision in droplet formation. Also, microfluidics requires fluid viscosity typically between 0.3 and 1400 mPa s at 20 °C. So, it is a challenge to find food-grade fluids that can operate at the micro-scale of these systems. Microfluidic systems can be used to synthesise different food-grade microstructures: microemulsions, solid lipid microparticles, microgels, or self-assembled structures like liposomes, niosomes, or polymersomes. Besides, microfluidics is particularly useful for accurately encapsulating bacterial cells to control their delivery and release on the action site. However, despite the significant advancement in these systems' development over the past several years, developing and implementing these systems on an industrial scale remains challenging for the food industry.
Collapse
Affiliation(s)
- Clara Fuciños
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain.
| | - Andrea Rodríguez-Sanz
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esther García-Caamaño
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Esteban Gerbino
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina
| | - Ana Torrado
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CCT-CONICET La Plata) RA-1900, Argentina.
| | - María L Rúa
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| |
Collapse
|
8
|
Nie C, Zou Y, Liao S, Gao Q, Li Q. Peptides as carriers of active ingredients: A review. Curr Res Food Sci 2023; 7:100592. [PMID: 37766891 PMCID: PMC10519830 DOI: 10.1016/j.crfs.2023.100592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Bioactive compounds are highly valuable in the fields of food and medicine, but their application is limited due to easy deterioration after oral or skin administration. In recent years, the use of peptides as delivery systems for bioactive compounds has been intensively researched because of their special physicochemical characteristics. Peptides can be assembled using various preparation methods and can form several composite materials such as hydrogels, micelles, emulsions and particles. The composite material properties are determined by peptides, bioactive compounds and the construction methods employed. Herein, this paper provides a comprehensive review of the peptides used for active ingredients delivery, fabrication methods for creating delivery systems, structures, targeting characteristics, functional activities and mechanism of delivery systems, as well as their absorption and metabolism, which provided theoretical basis and reference for further research and development of functional composites.
Collapse
Affiliation(s)
- Congyi Nie
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Qunyu Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| |
Collapse
|
9
|
Lee S, Jo K, Jeong SKC, Choi YS, Jung S. Strategies for modulating the lipid digestion of emulsions in the gastrointestinal tract. Crit Rev Food Sci Nutr 2023; 64:9740-9755. [PMID: 37267158 DOI: 10.1080/10408398.2023.2215873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structural changes in emulsion products can be used to control the bioavailability of fatty acids and lipophilic compounds. After ingestion, lipid droplets undergo breakdown and structural changes as they pass through the gastrointestinal tract. The oil-water interface plays a critical role in modulating the digestive behavior of lipid droplets because changes in the interfacial layer control the adsorption of lipase and bile salts and determine the overall rate and extent of lipid digestion. Therefore, lipid digestibility can be tuned by selecting the appropriate types and levels of stabilizers. The stabilizer can change the lipase accessibility and exposure of lipid substrates, resulting in variable digestion rates. However, emulsified lipids are not only added to food matrixes but are also co-ingested from other dietary components. Therefore, overall consumption behaviors can affect the digestion rate and digestibility of emulsified lipids. Although designing an emulsion structure is challenging, controlling lipid digestion can improve the health benefits of products. Therefore, a thorough understanding of the process of emulsified lipid digestion is required to develop food products that enable specific physiological responses. The targeted or delayed release of lipophilic molecules and fatty acids through emulsion systems has significant applications in healthcare and pharmaceuticals.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
10
|
Zhang H, Yang X, Zhong R, Huo Y, Zhu Y, Liang P. Antioxidative properties of fish roe peptides combined with polyphenol on the fish oil oleogel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1714-1726. [PMID: 36377186 DOI: 10.1002/jsfa.12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND This study aimed to investigate the effects of large yellow croaker (Larimichthys crocea) roe protein hydrolysate (LYCPH)-polyphenol (catechin (CA), gallic acid (GA), and tannic acid (TA)) conjugates on the oxidative stability of fish oil in an oleogel system. RESULTS Scanning electron microscopy and Fourier transform infrared spectroscopy suggested that the LYCPH-polyphenol conjugates were nearly spherical and non-covalent and that covalent effects could coexist between LYCPH and polyphenols. LYCPH-TA exhibited the highest ABTS scavenging, reducing capacities, and emulsifying stability. Raman spectra and chemometrics revealed that LYCPH-TA loaded with oleogels had the best oxidative stability. Additionally, 32 volatile compounds were identified in fish oil by headspace gas chromatography-ion mobility spectrometry. CONCLUSION Overall, this study demonstrated that fish oil oleogels loaded with LYCPH-polyphenol conjugates could inhibit fish oil oxidation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huadan Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing and Nutrition, Fuzhou, Fujian, China
| | - Xinyi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing and Nutrition, Fuzhou, Fujian, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing and Nutrition, Fuzhou, Fujian, China
| | - Yuming Huo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing and Nutrition, Fuzhou, Fujian, China
| | - Yujie Zhu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing and Nutrition, Fuzhou, Fujian, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing and Nutrition, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Armetha V, Hariyadi P, Sitanggang AB, Yuliani S. Evaluation of physical stability of whey protein-stabilized red palm oil emulsion by monitoring the changes of droplets characteristics. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2173223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Vallerina Armetha
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Bogor, Indonesia
| | - Purwiyatno Hariyadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Bogor, Indonesia
| | - Azis Boing Sitanggang
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Sri Yuliani
- Research Center for Agroindustry, National Research and Innovation Agency, Tangerang Selatan, Indonesia
| |
Collapse
|
12
|
Targeted hydrolysis of native potato protein: A novel workflow for obtaining hydrolysates with improved interfacial properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Jayari A, Donsì F, Ferrari G, Maaroufi A. Nanoencapsulation of Thyme Essential Oils: Formulation, Characterization, Storage Stability, and Biological Activity. Foods 2022; 11:foods11131858. [PMID: 35804672 PMCID: PMC9265609 DOI: 10.3390/foods11131858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to improve the effectiveness of Thymus capitatus and Thymus algeriensis essential oils (EOs), as food preservatives, through their encapsulation in different delivery systems (DSs), namely nanoemulsions and biopolymeric nanoparticles. DSs’ preparation is tailored to enhance not only physical stability but also resulting Eos’ antioxidant and antibacterial activities through different fabrication methods (high-pressure homogenization emulsification or antisolvent precipitation) and using different emulsifiers and stabilizers. DSs are characterized in terms of droplet size distribution, ζ-potential, and stability over time, as well as antioxidant and antibacterial activities of encapsulated EOs. The antioxidant activity was studied by the FRAP assay; the antibacterial activity was evaluated by the well diffusion method. EOs of different compositions were tested, namely two EOs extracted from Thymus capitatus, harvested from Tunisia during different periods of the year (TC1 and TC2), and one EO extracted from Thymus algeriensis (TA). The composition of TC1 was significantly richer in carvacrol than TC2 and TA. The most stable formulation was the zein-based nanoparticles prepared with TC1 and stabilized with maltodextrins, which exhibit droplet size, polydispersity index, ζ-potential, and encapsulation efficiency of 74.7 nm, 0.14, 38.7 mV, and 99.66%, respectively. This formulation led also to an improvement in the resulting antioxidant (60.69 µg/mg vs. 57.67 µg/mg for non-encapsulated TC1) and antibacterial (inhibition diameters varying between 12 and 33 mm vs. a range between 12 and 28 mm for non-encapsulated TC1) activities of EO. This formulation offers a promising option for the effective use of natural antibacterial bioactive molecules in the food industry against pathogenic and spoilage bacteria.
Collapse
Affiliation(s)
- Asma Jayari
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- Correspondence: ; Tel.: +39-089-964-135
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| |
Collapse
|
14
|
Whey Protein Peptides Have Dual Functions: Bioactivity and Emulsifiers in Oil-In-Water Nanoemulsion. Foods 2022; 11:foods11121812. [PMID: 35742010 PMCID: PMC9222674 DOI: 10.3390/foods11121812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Whey protein isolate (WPI)-derived bioactive peptide fractions (1−3, 3−5, 5−10, 1−10, and >10 kDa) were for the first time used as emulsifiers in nanoemulsions. The formation and storage stability of WPI bioactive peptide-stabilized nanoemulsions depended on the peptide size, enzyme type, peptide concentration, and storage temperature. The highly bioactive <10 kDa fractions were either poorly surface-active or weak stabilizers in nanoemulsions. The moderately bioactive >10 kDa fractions formed stable nanoemulsions (diameter = 174−196 nm); however, their performance was dependent on the peptide concentration (1−4%) and enzyme type. Overall, nanoemulsions exhibited better storage stability (less droplet growth and creaming) when stored at lower (4 °C) than at higher (25 °C) temperatures. This study has shown that by optimizing peptide size using ultrafiltration, enzyme type and emulsification conditions (emulsifier concentration and storage conditions), stable nanoemulsions can be produced using WPI-derived bioactive peptides, demonstrating the dual-functionality of WPI peptides.
Collapse
|
15
|
Zaitoun BJ, Palmer N, Amamcharla JK. Characterization of a Commercial Whey Protein Hydrolysate and Its Use as a Binding Agent in the Whey Protein Isolate Agglomeration Process. Foods 2022; 11:1797. [PMID: 35741995 PMCID: PMC9222531 DOI: 10.3390/foods11121797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
The first objective of this study was to characterize the chemical properties of three lots of whey protein hydrolysate (WPH) obtained from a commercial manufacturer. The degree of hydrolysis (DH) of WPH was between 13.82 and 15.35%, and was not significantly (p > 0.05) different between the batches. From MALDI-TOF, 10 to 13 different peptides were observed in the range of 2.5−5 kDa and 5−8 kDa, respectively. The second objective of the study was to evaluate the effectiveness of WPH as a binder in whey protein isolate (WPI) wet agglomeration. For this purpose, a 3 × 3 × 2 factorial design was conducted with pre-wet mass (60, 100, and 140 g), WPH concentration (15, 20, and 25%), and flow rate (4.0 and 5.6 mL·min−1) as independent variables. WPI agglomeration was carried out in a top-spray fluid bed granulator (Midi-Glatt, Binzen, Germany). Agglomerated WPI samples were stored at 25 °C and analyzed for moisture content (MC), water activity, relative dissolution index (RDI), and emulsifying capacity. Pre-wet mass, flow rate, and the WPH concentration had a significant (p < 0.05) effect on the MC. Moreover, all interactions among the main effects had also a significant (p < 0.05) effect on MC. High MC and water activity were observed for the treatments with a higher pre-wet volume and higher flow rate, which also resulted in clumping of the powders. The treatment with the 60 g pre-wet mass, 20% WPH concentration, and 5.6 mL·min−1 flow rate combination had the highest RDI among all the samples. In conclusion, WPH can be used as a potential alternative to soy lecithin in WPI wet agglomeration.
Collapse
Affiliation(s)
- Baheeja J. Zaitoun
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA;
| | - Niels Palmer
- Glanbia Nutritionals, Twin Falls, ID 83301, USA;
| | - Jayendra K. Amamcharla
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
16
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|
17
|
Zhang R, Han Y, Xie W, Liu F, Chen S. Advances in Protein-Based Nanocarriers of Bioactive Compounds: From Microscopic Molecular Principles to Macroscopical Structural and Functional Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6354-6367. [PMID: 35603429 DOI: 10.1021/acs.jafc.2c01936] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many proteins can be used to fabricate nanocarriers for encapsulation, protection, and controlled release of nutraceuticals. This review examined the protein-based nanocarriers from microscopic molecular characteristics to the macroscopical structural and functional attributes. Structural, physical, and chemical properties of protein-based nanocarriers were introduced in detail. The spatial size, shape, water dispersibility, colloidal stability, etc. of protein-based nanocarriers were largely determined by the molecular physicochemical principles of protein. Different preparative techniques, including antisolvent precipitation, pH-driven, electrospray, and gelation methods, among others, can be used to fabricate different protein-based nanocarriers. Various modifications based on physical, chemical, and enzymatic approaches can be used to improve the functional performance of these nanocarriers. Protein is a natural resource with a wide range of sources, including plant, animal, and microbial, which are usually used to fabricate the nanocarriers. Protein-based nanocarriers have many advantages in aid of the application of bioactive ingredients to the medical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, People's Republic of China
| | - Yahong Han
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Weijie Xie
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shuai Chen
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, People's Republic of China
| |
Collapse
|
18
|
Wang Y, Jiang W, Jiang Y, Julian McClements D, Liu F, Liu X. Self-assembled nano-micelles of lactoferrin peptides: Structure, physicochemical properties, and application for encapsulating and delivering curcumin. Food Chem 2022; 387:132790. [PMID: 35421649 DOI: 10.1016/j.foodchem.2022.132790] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Food-derived protein hydrolysate exhibits good bioactivity, compatibility, and low toxicity, etc. However, the information on protein hydrolysate-based micelles and their application as carriers for hydrophobic bioactive compounds is limited. In this study, an enzymatic partially hydrolyzed lactoferrin hydrolysate nano-micelle with the size within 50 nm was constructed, and its formation mechanism and delivery characteristics for curcumin (Cur) were studied. The results demonstrated that Cur was loaded into the micelles through hydrophobic interaction, and the encapsulation rate of Cur by nano-micelles was (93.44 ± 0.01)%. In addition, the nano-micelle system demonstrated excellent thermal stability, dilution stability, and storage stability. The in vitro simulated digestion proved that self-assembled nano-micelles could improve the transformation rate and bioaccessibility of Cur. This study revealed that lactoferrin hydrolysate self-assembled nano-micelle is a promising delivery system for hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Yiyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wen Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuchu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
19
|
Skwarczynski M, Bashiri S, Yuan Y, Ziora ZM, Nabil O, Masuda K, Khongkow M, Rimsueb N, Cabral H, Ruktanonchai U, Blaskovich MAT, Toth I. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics (Basel) 2022; 11:412. [PMID: 35326875 PMCID: PMC8944422 DOI: 10.3390/antibiotics11030412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The development of effective treatments against infectious diseases is an extensive and ongoing process due to the rapid adaptation of bacteria to antibiotic-based therapies. However, appropriately designed activity enhancers, including antibiotic delivery systems, can increase the effectiveness of current antibiotics, overcoming antimicrobial resistance and decreasing the chance of contributing to further bacterial resistance. The activity/delivery enhancers improve drug absorption, allow targeted antibiotic delivery, improve their tissue and biofilm penetration and reduce side effects. This review provides insights into various antibiotic activity enhancers, including polymer, lipid, and silver-based systems, designed to reduce the adverse effects of antibiotics and improve formulation stability and efficacy against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ye Yuan
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zyta M Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Osama Nabil
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keita Masuda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Natchanon Rimsueb
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
20
|
Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Gruppi A, Dermiki M, Spigno G, FitzGerald RJ. Impact of Enzymatic Hydrolysis and Heat Inactivation on the Physicochemical Properties of Milk Protein Hydrolysates. Foods 2022; 11:foods11040516. [PMID: 35205992 PMCID: PMC8871203 DOI: 10.3390/foods11040516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
This study determined the physicochemical properties (apparent viscosity (ηapp), turbidity (A550nm), particle size and molecular mass distribution) of hydrolysates generated from whey protein concentrate (WPC), milk protein concentrate (MPC) and sodium caseinate (NaCN), following incubation with Debitrase HYW20™ and Prolyve™ at 50 °C, pH 7.0 for 1 and 4 h, before and after heat inactivation (80 °C for 10 min). The degree of hydrolysis (DH) increased with incubation time, giving values of 6.56%, 8.17% and 9.48%, following 1 h hydrolysis of WPC, MPC and NaCN with Debitrase HYW20™, and 12.04%, 15.74% and 17.78%, respectively, following 4 h incubation. These DHs were significantly higher compared to those obtained following 4 h incubation with Prolyve™. Hydrolysis with Debitrase HYW20™ gave >40% of peptides with molecular masses < 1 kDa for all substrates, which was higher than the value obtained following hydrolysis with Prolyve™. The effect of hydrolysis on the physicochemical properties was substrate dependent, since ηapp decreased in WPC and NaCN hydrolysates, particle size decreased for all the substrates, with aggregate formation for MPC, and turbidity decreased in WPC and MPC hydrolysates, while it increased in NaCN hydrolysates. The physical properties of the hydrolysates were influenced by the enzyme thermal inactivation step in a DH-dependent manner, with no significant effect on turbidity and viscosity for hydrolysates at higher DHs.
Collapse
Affiliation(s)
- Alice Gruppi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.D.); (R.J.F.)
| | - Maria Dermiki
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.D.); (R.J.F.)
- Faculty of Science, Institute of Technology Sligo, F91 YW50 Sligo, Ireland
| | - Giorgia Spigno
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
- Correspondence:
| | - Richard J. FitzGerald
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (M.D.); (R.J.F.)
| |
Collapse
|
22
|
Liu J, Gao T, Li F, Xie T. The addition of oxidized tea polyphenols enhances the physical and oxidative stability of rice bran protein hydrolysate-stabilized oil-in-water emulsions. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jingxue Liu
- College of Food Engineering, Jilin Agricultural Science and Technology College
| | - Tingting Gao
- College of Food Engineering, Jilin Agricultural Science and Technology College
| | - Fenglin Li
- College of Food Engineering, Jilin Agricultural Science and Technology College
| | - Tian Xie
- College of Food Engineering, Jilin Agricultural Science and Technology College
| |
Collapse
|
23
|
Ru Q, Geng S, Chen C, Liang G, Liu B. Preparation and characterization of β‐carotene nanoemulsions stabilized by complexes of tartary buckwheat bran protein and rutin. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Qianwen Ru
- School of Food Science Henan Institute of Science and Technology Xinxiang China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education Bioengineering CollegeChongqing University Chongqing China
| | - Sheng Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education Bioengineering CollegeChongqing University Chongqing China
| | - Chungang Chen
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education Bioengineering CollegeChongqing University Chongqing China
| | - Benguo Liu
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
24
|
Smułek W, Siejak P, Fathordoobady F, Masewicz Ł, Guo Y, Jarzębska M, Kitts DD, Kowalczewski PŁ, Baranowska HM, Stangierski J, Szwajca A, Pratap-Singh A, Jarzębski M. Whey Proteins as a Potential Co-Surfactant with Aesculus hippocastanum L. as a Stabilizer in Nanoemulsions Derived from Hempseed Oil. Molecules 2021; 26:molecules26195856. [PMID: 34641403 PMCID: PMC8510466 DOI: 10.3390/molecules26195856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022] Open
Abstract
The use of natural surfactants including plant extracts, plant hydrocolloids and proteins in nanoemulsion systems has received commercial interest due to demonstrated safety of use and potential health benefits of plant products. In this study, a whey protein isolate (WPI) from a byproduct of cheese production was used to stabilize a nanoemulsion formulation that contained hempseed oil and the Aesculus hippocastanum L. extract (AHE). A Box-Behnken experimental design was used to set the formulation criteria and the optimal nanoemulsion conditions, used subsequently in follow-up experiments that measured specifically emulsion droplet size distribution, stability tests and visual quality. Regression analysis showed that the concentration of HSO and the interaction between HSO and the WPI were the most significant factors affecting the emulsion polydispersity index and droplet size (nm) (p < 0.05). Rheological tests, Fourier transform infrared spectroscopy (FTIR) analysis and L*a*b* color parameters were also taken to characterize the physicochemical properties of the emulsions. Emulsion systems with a higher concentration of the AHE had a potential metabolic activity up to 84% in a microbiological assay. It can be concluded from our results that the nanoemulsion system described herein is a safe and stable formulation with potential biological activity and health benefits that complement its use in the food industry.
Collapse
Affiliation(s)
- Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznań, Poland;
| | - Przemysław Siejak
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland; (P.S.); (Ł.M.); (H.M.B.)
| | - Farahnaz Fathordoobady
- Food, Nutrition and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (F.F.); (Y.G.); (D.D.K.)
| | - Łukasz Masewicz
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland; (P.S.); (Ł.M.); (H.M.B.)
| | - Yigong Guo
- Food, Nutrition and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (F.F.); (Y.G.); (D.D.K.)
| | | | - David D. Kitts
- Food, Nutrition and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (F.F.); (Y.G.); (D.D.K.)
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland;
| | - Hanna Maria Baranowska
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland; (P.S.); (Ł.M.); (H.M.B.)
| | - Jerzy Stangierski
- Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31/33, 60-624 Poznań, Poland;
| | - Anna Szwajca
- Department of Synthesis and Structure of Organic Compounds, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (F.F.); (Y.G.); (D.D.K.)
- Correspondence: (A.P.-S.); (M.J.)
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland; (P.S.); (Ł.M.); (H.M.B.)
- Correspondence: (A.P.-S.); (M.J.)
| |
Collapse
|
25
|
Akhtar A, Aslam S, Khan S, McClements DJ, Khalid N, Maqsood S. Utilization of diverse protein sources for the development of protein-based nanostructures as bioactive carrier systems: A review of recent research findings (2010-2021). Crit Rev Food Sci Nutr 2021; 63:2719-2737. [PMID: 34565242 DOI: 10.1080/10408398.2021.1980370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Consumer awareness of the relationship between health and nutrition has caused a substantial increase in the demand for nutraceuticals and functional foods containing bioactive compounds (BACs) with potential health benefits. However, the direct incorporation of many BACs into commercial food and beverage products is challenging because of their poor matrix compatibility, chemical instability, low bioavailability, or adverse impact on food quality. Advanced encapsulation technologies are therefore being employed to overcome these problems. In this article, we focus on the utilization of plant and animal derived proteins to fabricate micro and nano-particles that can be used for the oral delivery of BACs such as omega-3 oils, vitamins and nutraceuticals. This review comprehensively discusses different methods being implemented for fabrications of protein-based delivery vehicles, types of proteins used, and their compatibility for the purpose. Finally, some of the challenges and limitations of different protein matrices for encapsulation of BACs are deliberated upon. Various approaches have been developed for the fabrication of protein-based microparticles and nanoparticles, including injection-gelation, controlled denaturation, and antisolvent precipitation methods. These methods can be used to construct particle-based delivery systems with different compositions, sizes, surface hydrophobicity, and electrical characteristics, thereby enabling them to be used in a wide range of applications.
Collapse
Affiliation(s)
- Aqsa Akhtar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sadia Aslam
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
26
|
Xue F, Li X, Qin L, Liu X, Li C, Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv Drug Deliv Rev 2021; 176:113886. [PMID: 34314783 DOI: 10.1016/j.addr.2021.113886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
Aging is spontaneous and inevitable process in all living beings. It is a complex natural phenomenon that manifests as a gradual decline of physiological functions and homeostasis. Aging inevitably leads to age-associated injuries, diseases, and eventually death. The research on aging-associated diseases aimed at delaying, preventing or even reversing the aging process are of great significance for healthy aging and also for scientific progress. Numerous plant-derived compounds have anti-aging effects, but their therapeutic potential is limited due to their short shelf-life and low bioavailability. As the novel delivery system, nanoemulsion can effectively improve this defect. Nanoemulsions enhance the delivery of drugs to the target site, maintain the plasma concentration for a longer period, and minimize adverse reaction and side effects. This review describes the importance of nanoemulsions for the delivery of phyto-derived compounds and highlights the importance of nanoemulsions in the treatment of aging-related diseases. It also covers the methods of preparation, fate and safety of nanoemulsions, which will provide valuable information for the development of new strategies in treatment of aging-related diseases.
Collapse
|
27
|
Silva-Avellaneda E, Bauer-Estrada K, Prieto-Correa RE, Quintanilla-Carvajal MX. The effect of composition, microfluidization and process parameters on formation of oleogels for ice cream applications. Sci Rep 2021; 11:7161. [PMID: 33785792 PMCID: PMC8010073 DOI: 10.1038/s41598-021-86233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
The use of oleogels is an innovative and economical option for the technological development of some food products, among them ice creams. The aim of this study was to establish the best processing conditions to obtain an emulsion which form oleogels with the lowest ζ-potential and average droplet size (ADS) for use as ice cream base. Using surface response methodology (SRM), the effects of three numerical factors (microfluidization pressure, oil and whey protein concentration, WP) and four categorical factors (oil type, temperature, surfactant, and type of WP) on formation of emulsions were assessed. The response variables were ζ, ADS, polydispersity index (PDI), viscosity (η), hardness, cohesiveness and springiness. Additionally, a numerical optimization was performed. Two ice creams containing milk cream and oleogel, respectively were compared under the optimization conditions. Results suggest oleogels obtained from the microfluidization of whey and high oleic palm oil are viable for the replacement of cream in the production of ice cream.
Collapse
Affiliation(s)
- E Silva-Avellaneda
- Facultad de Ingeniería, Universidad de La Sabana, Km 7 vía autopista Norte, Bogotá, Colombia
| | - K Bauer-Estrada
- Facultad de Ingeniería, Universidad de La Sabana, Km 7 vía autopista Norte, Bogotá, Colombia
| | - R E Prieto-Correa
- Facultad de Ingeniería, Universidad de La Sabana, Km 7 vía autopista Norte, Bogotá, Colombia
| | | |
Collapse
|
28
|
Bhimrao Muley A, Bhalchandra Pandit A, Satishchandra Singhal R, Govind Dalvi S. Production of biologically active peptides by hydrolysis of whey protein isolates using hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2021; 71:105385. [PMID: 33271422 PMCID: PMC7786611 DOI: 10.1016/j.ultsonch.2020.105385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/27/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Whey protein isolate (WPI) hydrolysates have higher solubility in aqueous phase and enhanced biological properties. Hydrolysis of WPI was optimized using operating pressure (ΔP, bar), number of passes (N), and WPI concentration (C, %) as deciding parameters in hydrodynamic cavitation treatment. The optimum conditions for generation of WPI hydrolysate with full factorial design were 8 bar, 28 passes, and 4.5% WPI concentration yielding 32.69 ± 1.22 mg/mL soluble proteins. WPI hydrolysate showed alterations in binding capacity over WPI. SDS-PAGE and particle size analysis confirmed the hydrolysis of WPI. Spectroscopic, thermal and crystallinity analyses showed typical properties of proteins with slight variations after hydrodynamic cavitation treatment. ABTS, DPPH and FRAP assays of WPI hydrolysate showed 7-66, 9-149, and 0.038-0.272 µmol/mL GAE at 1-10, 0.25-4, and 3-30 mg/mL concentration, respectively. Further, a considerable enhancement in fresh weight, chlorophyll, carotenoids, reducing sugars, total soluble sugars, soluble proteins content and total phenolics content was noticed during in vitro growth of sugarcane in WPI hydrolysate supplemented medium at 50-200 mg/L concentration over the control. The process cost (INR/kg) to hydrolyze WPI was also calculated.
Collapse
Affiliation(s)
- Abhijeet Bhimrao Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | | | | | - Sunil Govind Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Manjari (Bk.), Pune 412307, India
| |
Collapse
|
29
|
Szumała P, Pacyna-Kuchta A, Wasik A. Proteolysis of whey protein isolates in nanoemulsion systems: Impact of nanoemulsification and additional synthetic emulsifiers. Food Chem 2021; 351:129356. [PMID: 33647693 DOI: 10.1016/j.foodchem.2021.129356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/30/2023]
Abstract
Nanoemulsions are currently of interest in the functional food sector because their small droplet size (100-500 nm) provides a number of potential advantages over conventional emulsions. This study concerned the behavior of nanoemulsions stabilized with whey proteins and two synthetic emulsifiers (Tween 80 and Croduret), and exposed to conditions simulating the human upper gastrointestinal tract. In particular, the effect of synthetic emulsifiers (food additives) on the interfacial composition and digestion rate of milk proteins at the interface of nanoemulsions was determined. The results indicate that the protein was partially co-absorbed with only one synthetic emulsifier (Croduret) at the interface, which made protein more resistant to digestion in the nanoemulsion system. This suggests that the degree of protein digestion can be controlled by appropriate selection of synthetic emulsifiers and presenting the protein in nanoemulsion system.
Collapse
Affiliation(s)
- Patrycja Szumała
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Aneta Pacyna-Kuchta
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Andrzej Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
30
|
Cao W, Shi L, Hao G, Chen J, Weng W. Effect of molecular weight on the emulsion properties of microfluidized gelatin hydrolysates. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Stabilization of whey protein isolate-based emulsions via complexation with xanthan gum under acidic conditions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106365] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Zhu C, Jin H, Yin F, Cui W, Zhang Q, Zhao G. Emulsion‐forming properties of heat‐induced pork myofibrillar protein affected by NaCl. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chao‐Zhi Zhu
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou450002China
- College of Food Science and Technology Henan Agricultural University Zhengzhou450002China
| | - Hao‐Quan Jin
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou450002China
- College of Food Science and Technology Henan Agricultural University Zhengzhou450002China
| | - Feng Yin
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou450002China
- College of Food Science and Technology Henan Agricultural University Zhengzhou450002China
| | - Wen‐Ming Cui
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou450002China
- College of Food Science and Technology Henan Agricultural University Zhengzhou450002China
| | - Qiu‐Hui Zhang
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou450002China
- College of Food Science and Technology Henan Agricultural University Zhengzhou450002China
| | - Gai‐Ming Zhao
- Henan Key Lab of Meat Processing and Quality Safety Control Henan Agricultural University Zhengzhou450002China
- College of Food Science and Technology Henan Agricultural University Zhengzhou450002China
| |
Collapse
|
33
|
Ashaolu TJ. Nanoemulsions for health, food, and cosmetics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3381-3395. [PMID: 33746662 PMCID: PMC7956871 DOI: 10.1007/s10311-021-01216-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/03/2021] [Indexed: 05/03/2023]
Abstract
Nanoemulsions are gaining importance in healthcare and cosmetics sectors as a result of the unique properties of nanosized droplets, such as high surface area. Here we review nanotechnology and nanoemulsions with focus on emulsifiers and nanoemulsifiers, and applications for drugs and vaccines delivery, cancer therapy, inflammation treatment, cosmetics, perfumes, polymers, and food. We discuss nanoemulsion safety and properties, e.g., stability, emulsification, solubility, molecular number and arrangements, ionic strength, pH and temperature.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development, Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000 Vietnam
| |
Collapse
|
34
|
Wang J, Aalaei K, Skibsted LH, Ahrné LM. Lime Juice Enhances Calcium Bioaccessibility from Yogurt Snacks Formulated with Whey Minerals and Proteins. Foods 2020; 9:foods9121873. [PMID: 33339103 PMCID: PMC7765558 DOI: 10.3390/foods9121873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Yogurt-based snacks originally with a calcium content between 0.10 and 0.17 mmol/g dry matter were enriched with a whey mineral concentrate and whey protein isolate or hydrolysate. Whey mineral concentrate was added to increase the total amount of calcium by 0.030 mmol/g dry matter. Calcium bioaccessibility was determined following an in vitro protocol including oral, gastric, and intestinal digestion, with special focus on the effect of lime juice quantifying calcium concentration and activity. Calcium bioaccessibility, defined as soluble calcium divided by total calcium after intestinal digestion amounted to between 17 and 25% for snacks without lime juice. For snacks with lime juice, the bioaccessibility increased to between 24 and 40%, an effect attributed to the presence of citric acid. Citric acid increased the calcium solubility both from whey mineral concentrate and yogurt, and the citrate anion kept supersaturated calcium soluble in the chyme. The binding of calcium in the chyme from snacks with or without lime juice was compared electrochemically, showing that citrate increased the amount of bound calcium but with lower affinity. The results indicated that whey minerals, a waste from cheese production, may be utilized in snacks enhancing calcium bioaccessibility when combined with lime juice.
Collapse
|
35
|
Fadzilah MF, Zubairi SI, Zainal Abidin N, Mohd Kasim Z, Lazim A. Physico-chemical and sensory acceptance of Carica papaya leaves extract edible O/W emulsion as prospective natural remedies. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Singh H, Thakur S, Sahajpal NS, Singh H, Singh A, Sohal HS, Jain SK. Recent Advances in the Novel Formulation of Docosahexaenoic Acid for Effective Delivery, Associated Challenges and Its Clinical Importance. Curr Drug Deliv 2020; 17:483-504. [DOI: 10.2174/1567201817666200512103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/03/2020] [Accepted: 02/02/2020] [Indexed: 11/22/2022]
Abstract
Docosahexaenoic Acid (DHA) is an essential polyunsaturated omega-3 fatty acid, and a fundamental structural component of the phospholipid membranes, especially of neural and retinal cells. DHA is found to be critical for the normal development and functioning of neurons and synaptogenesis in the brain, and is required during pre- and post-natal stages of life. DHA has also been observed to exhibit neuroprotective, cardioprotective, and anti-inflammatory properties. However, geographical dietary variations and poor economic conditions lead to insufficient DHA levels resulting in various health deficits like improper brain development, cognitive disorders, and other clinical complications. Thus, to prevent its deficiency-induced derangements, several authorities recommend DHA as a supplement during pregnancy, infancy, and throughout adulthood. In past decades, the soft gelatin capsule was only feasible resolute of DHA, but due to their limitations and invention of new technologies; it led to the development of new dosage forms with improved physicochemical characteristics of DHA. This article will discuss in detail about the role of DHA in brain development, microalgae oil as an emerging source of DHA, clinical- and pharmacological-activities of DHA, issues related to DHA oil, current formulation of DHA along with their application, limitations, and strategies used for improvement and future prospectives.
Collapse
Affiliation(s)
- Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| | - Harminder Singh Sohal
- Department of Orthopaedics, Government Medical College, Amritsar 143001, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143105, Punjab, India
| |
Collapse
|
37
|
Effect of carrier oil on α-tocopherol encapsulation in ora-pro-nobis (Pereskia aculeata Miller) mucilage-whey protein isolate microparticles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Özyurt G, Durmuş M, Uçar Y, Özoğul Y. The potential use of recovered fish protein as wall material for microencapsulated anchovy oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Jeżowski P, Polcyn K, Tomkowiak A, Rybicka I, Radzikowska D. Technological and antioxidant properties of proteins obtained from waste potato juice. Open Life Sci 2020; 15:379-388. [PMID: 33817226 PMCID: PMC7874540 DOI: 10.1515/biol-2020-0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/30/2022] Open
Abstract
The article presents the technological and antioxidant properties of potato juice (PJ) protein concentrate obtained by the novel ultrafiltration method. Commercial products, obtained from waste PJ by the traditional method of acid coagulation of proteins, were studied for comparison. Functional properties such as water or oil absorption, foaming capacity, and foam stability (FS) as well as solubility at various pH were assessed. Moreover, the total phenolic compound content, antioxidant activity, and mineral composition were determined. The results showed that PJ protein concentrate obtained by ultrafiltration has good oil absorption properties (6.30 mL/g), which is more than two times higher than the commercial proteins used in the comparison (P2 = 2.33 mL/g and P3 = 2.67 mL/g). Moreover, the ability to create and stabilize foam was also higher (FS ranging from 20.0% at pH = 10 to 11.3% at pH = 2 after 60 min of testing). It had higher content of macro- and microelements and antioxidant activity compared to other samples. Therefore, it is possible to obtain interesting potato protein concentrate from the waste product of the starch production process, which may be an interesting raw material for enriching food.
Collapse
Affiliation(s)
- Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | - Karolina Polcyn
- Students’ Scientific Club of Food Technologists, Poznań University of Life Sciences, Poznań, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Iga Rybicka
- Department of Technology and Instrumental Analysis, Poznań University of Economics and Business, Poznań, Poland
| | | |
Collapse
|
40
|
Mohammed NK, Muhialdin BJ, Meor Hussin AS. Characterization of nanoemulsion of Nigella sativa oil and its application in ice cream. Food Sci Nutr 2020; 8:2608-2618. [PMID: 32566178 PMCID: PMC7300053 DOI: 10.1002/fsn3.1500] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to develop ice-cream product fortified with a Nigella sativa oil (NSO) nanoemulsion at four ratios (0% control, 3%, 5% and 10%). The NSO nanoemulsion stabilized by combinations of gum arabic, sodium caseinate, and Tween-20 at three ratios (5%, 10%, and 15%) of emulsifiers. The results showed that 10% nanoemulsion has the highest stability and zeta potential (-31.92), and lowest change of PDI (0.182). The 5% nanoemulsion showed the lowest particle size (175.83 µm). The result demonstrated that NSO nanoemulsion improved the ice-cream physical properties and consumer acceptability. Among the different samples, sensory evaluation revealed that ice-cream sample of 5% nanoemulsion received more acceptability from the panelist. This results demonstrated ice cream can be fortified with NSO nanoemulsion. This means it could be used as a functional ice cream with manifold NSO health benefits.
Collapse
Affiliation(s)
| | - Belal J. Muhialdin
- Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia
| | - Anis Shobirin Meor Hussin
- Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia
- Halal Products Research InstituteUniversiti Putra MalaysiaSerdangMalaysia
| |
Collapse
|
41
|
Nanostructured conjugates from tara gum and α-lactalbumin. Part 1. Structural characterization. Int J Biol Macromol 2020; 153:995-1004. [DOI: 10.1016/j.ijbiomac.2019.10.229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
|
42
|
Optimization of the Emulsifying Properties of Food Protein Hydrolysates for the Production of Fish Oil-in-Water Emulsions. Foods 2020; 9:foods9050636. [PMID: 32429164 PMCID: PMC7278789 DOI: 10.3390/foods9050636] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/15/2023] Open
Abstract
The incorporation of lipid ingredients into food matrices presents a main drawback-their susceptibility to oxidation-which is associated with the loss of nutritional properties and the generation of undesirable flavors and odors. Oil-in-water emulsions are able to stabilize and protect lipid compounds from oxidation. Driven by consumers' demand, the search for natural emulsifiers, such as proteins, is gaining much interest in food industries. This paper evaluates the in vitro emulsifying properties of protein hydrolysates from animal (whey protein concentrate) and vegetal origin (a soy protein isolate). By means of statistical modelling and bi-objective optimization, the experimental variables, namely, the protein source, enzyme (i.e., subtilisin, trypsin), degree of hydrolysis (2-14%) and emulsion pH (2-8), were optimized to obtain their maximal in vitro emulsifying properties. This procedure concluded that the emulsion prepared from the soy protein hydrolysate (degree of hydrolysis (DH) 6.5%, trypsin) at pH 8 presented an optimal combination of emulsifying properties (i.e., the emulsifying activity index and emulsifying stability index). For validation purposes, a fish oil-in-water emulsion was prepared under optimal conditions, evaluating its physical and oxidative stability for ten days of storage. This study confirmed that the use of soy protein hydrolysate as an emulsifier stabilized the droplet size distribution and retarded lipid oxidation within the storage period, compared to the use of a non-hydrolyzed soy protein isolate.
Collapse
|
43
|
Ling Z, Ai M, Zhou Q, Guo S, Zhou L, Fan H, Cao Y, Jiang A. Fabrication egg white gel hydrolysates-stabilized oil-in-water emulsion and characterization of its stability and digestibility. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105621] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Ability of casein hydrolysate-carboxymethyl chitosan conjugates to stabilize a nanoemulsion: Improved freeze-thaw and pH stability. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105452] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
García-Moreno PJ, Gregersen S, Nedamani ER, Olsen TH, Marcatili P, Overgaard MT, Andersen ML, Hansen EB, Jacobsen C. Identification of emulsifier potato peptides by bioinformatics: application to omega-3 delivery emulsions and release from potato industry side streams. Sci Rep 2020; 10:690. [PMID: 31959786 PMCID: PMC6971092 DOI: 10.1038/s41598-019-57229-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/20/2019] [Indexed: 11/08/2022] Open
Abstract
In this work, we developed a novel approach combining bioinformatics, testing of functionality and bottom-up proteomics to obtain peptide emulsifiers from potato side-streams. This is a significant advancement in the process to obtain emulsifier peptides and it is applicable to any type of protein. Our results indicated that structure at the interface is the major determining factor of the emulsifying activity of peptide emulsifiers. Fish oil-in-water emulsions with high physical stability were stabilized with peptides to be predicted to have facial amphiphilicity: (i) peptides with predominantly α-helix conformation at the interface and having 18-29 amino acids, and (ii) peptides with predominantly β-strand conformation at the interface and having 13-15 amino acids. In addition, high physically stable emulsions were obtained with peptides that were predicted to have axial hydrophobic/hydrophilic regions. Peptides containing the sequence FCLKVGV showed high in vitro antioxidant activity and led to emulsions with high oxidative stability. Peptide-level proteomics data and sequence analysis revealed the feasibility to obtain the potent emulsifier peptides found in this study (e.g. γ-1) by trypsin-based hydrolysis of different side streams in the potato industry.
Collapse
Affiliation(s)
- Pedro J García-Moreno
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark.
- Department of Chemical Engineering, University of Granada, Granada, Spain.
| | - Simon Gregersen
- Department of Chemistry and Bioscience, Aalborg University, Copenhagen, Denmark
| | - Elham R Nedamani
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Tobias H Olsen
- Department of Bio and Health Informatics, Technical University of Denmark, Copenhagen, Denmark
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Copenhagen, Denmark
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Copenhagen, Denmark
| | - Mogens L Andersen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Egon B Hansen
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
46
|
Chai X, Wu K, Chen C, Duan X, Yu H, Liu X. Physical and oxidative stability of chicken oil-in-water emulsion stabilized by chicken protein hydrolysates. Food Sci Nutr 2020; 8:371-378. [PMID: 31993163 PMCID: PMC6977471 DOI: 10.1002/fsn3.1316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 11/25/2022] Open
Abstract
The emulsifying and antioxidant properties of chicken protein hydrolysates for the physical and oxidative stabilization of chicken oil-in-water emulsion were investigated. The chicken protein pepsin hydrolysates obtained at reaction temperature of 33℃, 1.8% enzyme addition, liquid-solid ratio of 5:1, and reaction time of 4h, showed the DPPH radical scavenging rate of 92.12% and emulsion stability index of 0.07. The hydrolysate exerted significantly improved antioxidant activity and emulsion ability compared to the native chicken protein. The amino acid composition analysis indicated that the contents of hydrophobic amino acids including tyrosine, phenylalanine, and tryptophan were increased after hydrolysis, which contributed to the higher hydrophobicity and antioxidant activity of chicken hydrolysates. The results suggested that the chicken protein hydrolysates could be used as an alternative protein emulsifier for the production of oxidatively stable chicken oil-in-water emulsion.
Collapse
Affiliation(s)
- Xianghua Chai
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Kegang Wu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Chun Chen
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xuejuan Duan
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Hongpeng Yu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Xiaoli Liu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| |
Collapse
|
47
|
Comparative study of plant protein extracts as wall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Whey hydrolysate-based ingredient with dual functionality: From production to consumer's evaluation. Food Res Int 2019; 122:123-128. [DOI: 10.1016/j.foodres.2019.03.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 11/23/2022]
|
49
|
Preparation and characterization of zein-based phytosterol nanodispersions fabricated by ultrasonic assistant anti-solvent precipitation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Partition and digestive stability of α-tocopherol and resveratrol/naringenin in whey protein isolate emulsions. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|