1
|
Cardero Y, Aguirre-Calvo TR, Valenzuela LM, Matiacevich S, Santagapita PR. Design of an antioxidant powder additive based on carvacrol encapsulated into a multilayer chitosan-alginate-maltodextrin emulsion. Int J Biol Macromol 2024; 274:133039. [PMID: 38866285 DOI: 10.1016/j.ijbiomac.2024.133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Carvacrol has demonstrated antioxidant activity; however, its high volatility and low water solubility limit its direct application in food matrices. Then, an effective encapsulation system is required to protect it. This study aimed to design and characterize a carvacrol-based additive encapsulated in a spray-dried multilayer emulsion based on chitosan/sodium alginate/maltodextrin. Spray-drying temperature of 120 °C and 3 %(w/w) maltodextrin content maximized both encapsulation efficiency (~97 %) and loading capacity (~53 %). The powder's antioxidant properties were evaluated in two food simulant media: water (SiW) and water-ethanol (SiD). The highest antioxidant activity was observed in SiW for both ABTS•+ (8.2 ± 0.3mgEAG/g) and FRAP (4.1 ± 0.2mgEAG/g) methods because of the reduced release of carvacrol in SiD vs. SiW, as supported by micro- and macrostructural observations by SAXS and microscopy, respectively. An increase from 143 to 157 °C attributable to carvacrol protection and Tg = 44.4 °C (> ambient) were obtained by TGA and DSC, respectively. FT-IR confirmed intermolecular interactions (e.g. -COO- and -NH3+) as well as H-bonding formation. High water solubility (81 ± 3 %), low hygroscopicity (8.8 ± 0.2 %(w/w), poor flowability (CI:45 ± 4), and high cohesiveness (HR:1.8 ± 0.1) between particles were achieved, leading to a powdered antioxidant additive with high potential for applications which required avoiding/reducing oxidation on hydrophilic and hydrophobic food products.
Collapse
Affiliation(s)
- Yaniel Cardero
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tatiana Rocio Aguirre-Calvo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Loreto M Valenzuela
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvia Matiacevich
- Food Properties Research Group, Food Science and Technology Department, Facultad Tecnológica, Universidad de Santiago de Chile, Chile.
| | - Patricio Román Santagapita
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Pérez-Pérez V, Jiménez-Martínez C, González-Escobar JL, Corzo-Ríos LJ. Exploring the impact of encapsulation on the stability and bioactivity of peptides extracted from botanical sources: trends and opportunities. Front Chem 2024; 12:1423500. [PMID: 39050374 PMCID: PMC11266027 DOI: 10.3389/fchem.2024.1423500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Bioactive peptides derived from plant sources have gained significant attention for their potential use in preventing and treating chronic degenerative diseases. However, the efficacy of these peptides depends on their bioaccessibility, bioavailability, and stability. Encapsulation is a promising strategy for improving the therapeutic use of these compounds. It enhances their stability, prolongs their shelf life, protects them from degradation during digestion, and enables better release control by improving their bioaccessibility and bioavailability. This review aims to analyze the impact of various factors related to peptide encapsulation on their stability and release to enhance their biological activity. To achieve this, it is necessary to determine the composition and physicochemical properties of the capsule, which are influenced by the wall materials, encapsulation technique, and operating conditions. Furthermore, for peptide encapsulation, their charge, size, and hydrophobicity must be considered. Recent research has focused on the advancement of novel encapsulation methodologies that permit the formation of uniform capsules in terms of size and shape. In addition, it explores novel wall materials, including polysaccharides derived from unconventional sources, that allow the precise regulation of the rate at which peptides are released into the intestine.
Collapse
Affiliation(s)
- Viridiana Pérez-Pérez
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (IPN), México City, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Jorge Luis González-Escobar
- Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de México, Ciudad Valles, San Luis Potosí, Mexico
| | - Luis Jorge Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (IPN), México City, Mexico
| |
Collapse
|
3
|
Albayrak GE, Bozdogan N, Tavman S, Kumcuoglu S. Evaluation of the quality features of electrospray-coated pineapple slices with pomegranate and grape seed oil-enriched emulsions. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:3067-3081. [PMID: 37790924 PMCID: PMC10542432 DOI: 10.1007/s13197-023-05839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/18/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
The quality characteristics of pineapple slices coated with emulsions enriched with pomegranate seed oil (PSO) and grape seed oil (GSO) by electrospray coating (ESC) and dip-coating (DC) methods were investigated. The ESC method was evaluated as an alternative to conventional DC. Pineapple slices were stored in clear polystyrene cups for seven days at 5 °C and 80% RH. The weight loss (%), pH, titratable acidity, color, firmness, total antioxidant activity (TAA), total phenolic content (TPC), microbiological, and sensory qualities of fresh-cut pineapple slices were evaluated. Coated samples had significantly lower weight loss values than the non-coated samples after 7 days of storage. The usage of GSO-enriched emulsion with the ESC method was found to be more successful in preserving the titratable acidity. Although all the samples exhibited a significant decrease in yellowness (b*), the electrospray-coated pineapple slices had the highest. Incorporating GSO into the emulsions helped protect the tissue of the fresh-cut pineapples, regardless of the coating method used. The TPC and TAA values of the samples coated by the ESC method with emulsions enriched with PSO showed a lower decrease compared to other treatments. It was determined that the ESC method was more successful in preserving the sensory qualities of fresh-cut pineapples. These findings suggested that using ESC as a coating method with EO-enriched emulsions has positive effects on the quality features of fresh-cut pineapples. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05839-4.
Collapse
Affiliation(s)
- Gozde Ela Albayrak
- Department of Food Engineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 Bornova İzmir, Türkiye
| | - Neslihan Bozdogan
- Department of Food Engineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 Bornova İzmir, Türkiye
| | - Sebnem Tavman
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100 Bornova İzmir, Türkiye
| | - Seher Kumcuoglu
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100 Bornova İzmir, Türkiye
| |
Collapse
|
4
|
Zhao D, Li Z, Xia J, Kang Y, Sun P, Xiao Z, Niu Y. Research progress of starch as microencapsulated wall material. Carbohydr Polym 2023; 318:121118. [PMID: 37479436 DOI: 10.1016/j.carbpol.2023.121118] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Starch is non-toxic, low cost, and possesses good biocompatibility and biodegradability. As a natural polymer material, starch is an ideal choice for microcapsule wall materials. Starch-based microcapsules have a wide range of applications and application prospects in fields such as food, pharmaceuticals, cosmetics, and others. This paper firstly reviews the commonly used wall materials and preparation methods of starch-based microcapsules. Then the effect of starch wall materials on microcapsule properties is introduced in detail. It is expected to provide researchers with design inspiration and ideas for the development of starch-based microcapsules. Next the applications of starch-based microcapsules in various fields are presented. Finally, the future trends of starch-based microcapsules are discussed. Molecular simulation, green chemistry, and solutions to the main problems faced by resistant starch microcapsules may be the future research trends of starch-based microcapsules.
Collapse
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Zhibin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Jiayi Xia
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
5
|
Pineda-Álvarez RA, Flores-Avila C, Medina-Torres L, Gracia-Mora J, Escobar-Chávez JJ, Leyva-Gómez G, Shahbazi MA, Bernad-Bernad MJ. Laponite Composites: In Situ Films Forming as a Possible Healing Agent. Pharmaceutics 2023; 15:1634. [PMID: 37376082 DOI: 10.3390/pharmaceutics15061634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
A healing material must have desirable characteristics such as maintaining a physiological environment, protective barrier-forming abilities, exudate absorption, easy handling, and non-toxicity. Laponite is a synthetic clay with properties such as swelling, physical crosslinking, rheological stability, and drug entrapment, making it an interesting alternative for developing new dressings. This study evaluated its performance in lecithin/gelatin composites (LGL) as well as with the addition of maltodextrin/sodium ascorbate mixture (LGL MAS). These materials were applied as nanoparticles, dispersed, and prepared by using the gelatin desolvation method-eventually being turned into films via the solvent-casting method. Both types of composites were also studied as dispersions and films. Dynamic Light Scattering (DLS) and rheological techniques were used to characterize the dispersions, while the films' mechanical properties and drug release were determined. Laponite in an amount of 8.8 mg developed the optimal composites, reducing the particulate size and avoiding the agglomeration by its physical crosslinker and amphoteric properties. On the films, it enhanced the swelling and provided stability below 50 °C. Moreover, the study of drug release in maltodextrin and sodium ascorbate from LGL MAS was fitted to first-order and Korsmeyer-Peppas models, respectively. The aforementioned systems represent an interesting, innovative, and promising alternative in the field of healing materials.
Collapse
Affiliation(s)
- Ramón Andrés Pineda-Álvarez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| | - Carolina Flores-Avila
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| | - Luis Medina-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| | - Jesús Gracia-Mora
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| | - José Juan Escobar-Chávez
- Facultad de Estudios Superiores Cuautitlán, Unidad de Investigación Multidisciplinaria-L12 (Sistemas Transdérmicos), Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Gerardo Leyva-Gómez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - María Josefa Bernad-Bernad
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cto. Exterior S/N, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
6
|
Tatasciore S, Santarelli V, Neri L, González Ortega R, Faieta M, Di Mattia CD, Di Michele A, Pittia P. Freeze-Drying Microencapsulation of Hop Extract: Effect of Carrier Composition on Physical, Techno-Functional, and Stability Properties. Antioxidants (Basel) 2023; 12:antiox12020442. [PMID: 36830001 PMCID: PMC9951912 DOI: 10.3390/antiox12020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, freeze-drying microencapsulation was proposed as a technology for the production of powdered hop extracts with high stability intended as additives/ingredients in innovative formulated food products. The effects of different carriers (maltodextrin, Arabic gum, and their mixture in 1:1 w/w ratio) on the physical and techno-functional properties, bitter acids content, yield and polyphenols encapsulation efficiency of the powders were assessed. Additionally, the powders' stability was evaluated for 35 days at different temperatures and compared with that of non-encapsulated extract. Coating materials influenced the moisture content, water activity, colour, flowability, microstructure, and water sorption behaviour of the microencapsulates, but not their solubility. Among the different carriers, maltodextrin showed the lowest polyphenol load yield and bitter acid content after processing but the highest encapsulation efficiency and protection of hop extracts' antioxidant compounds during storage. Irrespective of the encapsulating agent, microencapsulation did not hinder the loss of bitter acids during storage. The results of this study demonstrate the feasibility of freeze-drying encapsulation in the development of functional ingredients, offering new perspectives for hop applications in the food and non-food sectors.
Collapse
Affiliation(s)
- Simona Tatasciore
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Veronica Santarelli
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Lilia Neri
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
- Correspondence:
| | - Rodrigo González Ortega
- Faculty of Science and Technology, University of Bolzano, Piazza Università, 39100 Bolzano, Italy
| | - Marco Faieta
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Carla Daniela Di Mattia
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Paola Pittia
- Department of Bioscience and Technologies for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
7
|
Halahlah A, Piironen V, Mikkonen KS, Ho TM. Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Crit Rev Food Sci Nutr 2022; 63:6983-7015. [PMID: 35213281 DOI: 10.1080/10408398.2022.2038080] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural bioactive compounds (BCs) are types of chemicals found in plants and certain foods that promote good health, however they are sensitive to processing and environmental conditions. Microencapsulation by spray drying is a widely used and cost-effective approach to create a coating layer to surround and protect BCs and control their release, enabling the production of high functional products/ingredients with extended shelf life. In this process, wall materials determine protection efficiency, and physical properties, bioavailability, and storage stability of microencapsulated products. Therefore, an understanding of physicochemical properties of wall materials is essential for the successful and effective spray-dried microencapsulation process. Typically, polysaccharide-based wall materials are generated from more sustainable sources and have a wider range of physicochemical properties and applications compared to their protein-based counterparts. In this review, we highlight the essential physicochemical properties of polysaccharide-based wall materials for spray-dried microencapsulation of BCs including solubility, thermal stability, and emulsifying properties, rheological and film forming properties. We provide further insight into possibilities for the chemical structure modification of native wall materials and their controlled release behaviors. Finally, we summarize the most recent studies involving polysaccharide biopolymers as wall materials and/or emulsifiers in spray-dried microencapsulation of BCs.
Collapse
Affiliation(s)
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Finland
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| | - Thao M Ho
- Department of Food and Nutrition, University of Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Finland
| |
Collapse
|
8
|
Kak A, Parhi A, Rasco BA, Tang J, Sablani SS. Improving the oxygen barrier of microcapsules using cellulose nanofibres. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atisheel Kak
- Department of Biological Systems Engineering Washington State University 1935 E. Grimes Way Pullman WA 99164‐6120 USA
| | - Ashutos Parhi
- Department of Biological Systems Engineering Washington State University 1935 E. Grimes Way Pullman WA 99164‐6120 USA
| | - Barbara A. Rasco
- College of Agriculture and Natural Resources University of Wyoming 1000 E. University Laramie WY 82072 USA
| | - Juming Tang
- Department of Biological Systems Engineering Washington State University 1935 E. Grimes Way Pullman WA 99164‐6120 USA
| | - Shyam S. Sablani
- Department of Biological Systems Engineering Washington State University 1935 E. Grimes Way Pullman WA 99164‐6120 USA
| |
Collapse
|
9
|
Alvino Granados AE, Kawai K. Effect of cellulose powder content on the water sorption, glass transition, mechanical relaxation, and caking of freeze-dried carbohydrate blend and food powders. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Pattnaik M, Mishra HN. Amelioration of the stability of polyunsaturated fatty acids and bioactive enriched vegetable oil: blending, encapsulation, and its application. Crit Rev Food Sci Nutr 2021; 62:6253-6276. [PMID: 33724100 DOI: 10.1080/10408398.2021.1899127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lipid oxidation in vegetable oils is the primary concern for food technologists. Modification of oils like hydrogenation, fractionation, inter-esterification, and blending are followed to improve nutritional quality. Blending non-conventional/conventional vegetable oils to obtain a synergistic oil mixture is commonly practiced in the food industry to enhance the nutritional characteristics and stability of oil at an affordable price. Microencapsulation of these oils provides a functional barrier of core and coating material from the adverse environmental conditions, thereby enhancing the oxidative stability, thermo-stability, shelf-life, and biological activity of oils. Microencapsulation of oils has been conducted and commercialized by employing different conventional methods including emulsification, spray-drying, freeze-drying, coacervation, and melt-extrusion compared with new, improved methods like microwave drying, spray chilling, and co-extrusion. The microencapsulated oil emulsion can be either dried to easy-to-handle solids/microcapsules, converted into soft solids, or enclosed in a gel-like matrix, increasing the shelf-life of the liquid oil. The omega-rich microcapsules have a wide application in confectionery, dairy, ice-cream, and pharmaceutical industries. This review summarizes recent developments in blending and microencapsulation technologies in improving the stability and nutritional value of edible oils.
Collapse
Affiliation(s)
- Monalisha Pattnaik
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
11
|
Ribeiro MLFF, Roos YH, Ribeiro APB, Nicoletti VR. Effects of maltodextrin content in double-layer emulsion for production and storage of spray-dried carotenoid-rich microcapsules. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
González-Ortega R, Faieta M, Di Mattia CD, Valbonetti L, Pittia P. Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110089] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Whey protein and maltodextrin-stabilized oil-in-water emulsions: Effects of dextrose equivalent. Food Chem 2020; 339:128094. [PMID: 33152882 DOI: 10.1016/j.foodchem.2020.128094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022]
Abstract
The aim of this work is to evaluate the effect of dextrose equivalent (DE) of maltodextrins (MD) on the stability of whey protein and maltodextrin stabilized oil-in-water (o/w) emulsions. Emulsions with DE 15 maltodextrin (MD 15) exhibited better stability under light acidic (pH 6), neutral and alkaline (pH 8-9) conditions, as well as during temperature ramps (20-60 °C). After 15-days of storage, MD 15 emulsion showed increase in polydispersity and decrease in the average droplet size. The apparent viscosity of the emulsions decreased with increasing DE. The shear stresses of all emulsions fitted well with the power law model (R2 > 0.9), while MD 15 showed the most stable k and n indexes. The brightness and whiteness of emulsion decreased with increases in DE. In conclusion, emulsions with MD 15 exhibited better stability, which suggests their good potential for use in the preparation of energy drinks.
Collapse
|
14
|
Kinetic study of vitamin D2 degradation in mushroom powder to improve its applications in fortified foods. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Mujica-Álvarez J, Gil-Castell O, Barra PA, Ribes-Greus A, Bustos R, Faccini M, Matiacevich S. Encapsulation of Vitamins A and E as Spray-Dried Additives for the Feed Industry. Molecules 2020; 25:E1357. [PMID: 32192033 PMCID: PMC7144125 DOI: 10.3390/molecules25061357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022] Open
Abstract
Encapsulated fat-soluble powders containing vitamin A (VA) and E (VE) were prepared as a feasible additive for extruded feed products. The effect of the encapsulating agents (Capsul-CAP®, sodium caseinate-SC) in combination with Tween 80 (TW) as an emulsifier and maltodextrin (MD) as a wall material on the physicochemical properties of emulsions and powders was evaluated. First, nanoemulsions containing MD:CAP:TW:VA/VE and MD:SC:TW:VA/VE were prepared and characterized. Then, powders were obtained by means of spray-drying and analyzed in terms of the product yield, encapsulation efficiency, moisture content, porosity, surface morphology, chemical structure, and thermal properties and thermo-oxidative/thermal stability. Results showed that although nanoemulsions were obtained for all the compositions, homogeneous microcapsules were found after the drying process. High product yield and encapsulation efficiency were obtained, and the presence of the vitamins was corroborated. The characteristics of the powders were mainly influenced by the encapsulating agent used and also by the type of vitamin. In general, the microcapsules remained thermally stable up to 170 °C and, therefore, the proposed encapsulation systems for vitamins A and E were suitable for the preparation of additives for the feed manufacturing through the extrusion process.
Collapse
Affiliation(s)
- Javiera Mujica-Álvarez
- Departamento de Ciencia y Tecnología de Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central, 9170201 Santiago, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Estación Central, 9170002 Santiago, Chile;
| | - O. Gil-Castell
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (O.G.-C.); (A.R.-G.)
- Departament d’Enginyeria Química, Escola Tècnica Superior d’Enginyeria, Universitat de València, Av. de la Universitat, s/n, 46100 Burjassot, Spain
| | - Pabla A. Barra
- Centro de Excelencia en Nanotecnología (CEN), Leitat Chile, Calle Román Díaz 532, Providencia, Santiago 7500724, Chile; (P.A.B.); (M.F.)
| | - A. Ribes-Greus
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain; (O.G.-C.); (A.R.-G.)
| | - Rubén Bustos
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Libertador Bernardo O’Higgins 3363, Estación Central, 9170002 Santiago, Chile;
| | - Mirko Faccini
- Centro de Excelencia en Nanotecnología (CEN), Leitat Chile, Calle Román Díaz 532, Providencia, Santiago 7500724, Chile; (P.A.B.); (M.F.)
- Materials Chemistry Division, Leitat Technological Center, C/Pallars 179–185, 08005 Barcelona, Spain
| | - Silvia Matiacevich
- Departamento de Ciencia y Tecnología de Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central, 9170201 Santiago, Chile
| |
Collapse
|
16
|
Friedenthal M, Eha K, Kaleda A, Part N, Laos K. Instability of low-moisture carrageenans as affected by water vapor sorption at moderate storage temperatures. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Zhang R, Wang W, Zhang H, Dai Y, Dong H, Hou H. Effects of hydrophobic agents on the physicochemical properties of edible agar/maltodextrin films. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Nurhadi B, Sukri N, Sugandi WK, Widanti AP, Restiani R, Noflianrini Z, Rezaharsamto B, Herudiyanto M. Comparison of crystallized coconut sugar produced by traditional method and amorphous coconut sugar formed by two drying methods: vacuum drying and spray drying. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1517781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Bambang Nurhadi
- Faculty of Agric. Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Nandi Sukri
- Faculty of Agric. Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | | | - Annisa Puteri Widanti
- Faculty of Agric. Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Resi Restiani
- Faculty of Agric. Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ziske Noflianrini
- Faculty of Agric. Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Bayu Rezaharsamto
- Faculty of Agric. Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Marleen Herudiyanto
- Faculty of Agric. Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
19
|
Castro-Muñoz R, Nieves-Segura N. Sorption isotherms and isosteric heat estimation of purple cactus pear (Opuntia stricta
) juice embedded in gelatin-maltodextrin matrix. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Roberto Castro-Muñoz
- University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6; Czech Republic
| | - Nayelli Nieves-Segura
- Laboratorio de Biotecnología Alimentaria, Instituto Politécnico Nacional; Unidad Profesional Interdisciplinaria de Biotecnología; Ciudad de México Mexico
| |
Collapse
|
20
|
Gallo L, Bucalá V. A Review on Influence of Spray Drying Process Parameters on the Production of Medicinal Plant Powders. Curr Drug Discov Technol 2018; 16:340-354. [PMID: 30068280 DOI: 10.2174/1570163815666180801152918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/20/2017] [Accepted: 07/11/2018] [Indexed: 11/22/2022]
Abstract
Medicinal plants are used by 80% of the world population as primary health care and the phytomedicine market is growing exponentially. Currently, the production of phytopharmaceuticals with proper efficacy, safety and consistent quality constitutes a relevant challenge. The dried dosage forms of medicinal plants are preferred than liquid presentations because of their higher stability. The spray drying technology is the most employed process to produce dried extracts from medicinal plant liquid extracts. These powders need to meet certain physicochemical (e.g., moisture content, hygroscopicity, particle size, density, the concentration of active ingredients) and mechanical (e.g., flowability and compressibility) properties to be used in a solid pharmaceutical form. In addition, high process yields and good powder quality can be obtained by selecting suitable process parameters: spray drying operating conditions and type/concentration of carriers (drying coadjuvants). The optimal process parameters are strongly affected by the chemical nature of the medicinal plant extract. This review aims to give a general guide to understand the effect of the process parameters on the product properties and process yield. This guideline could help practitioners and researchers to initially select the levels of the process variables to decrease the time and cost of the development stage of medicinal plants powders.
Collapse
Affiliation(s)
- Loreana Gallo
- Planta Piloto de Ingenieria Quimica (PLAPIQUI), CONICET - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahia Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Verónica Bucalá
- Planta Piloto de Ingenieria Quimica (PLAPIQUI), CONICET - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahia Blanca, Argentina.,Departamento de Ingeniería Química, UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| |
Collapse
|
21
|
Physicochemical properties and relaxation time in strength analysis of amorphous poly (vinyl-pyrrolidone) and maltodextrin: Effects of water, molecular weight, and lactose addition. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
de Andrade DF, de Oliveira EG, Pohlmann AR, Guterres SS, Külkamp-Guerreiro IC, Beck RCR. Fluid bed granulation as an innovative process to produce dry redispersible nanocapsules: Influence of cationic coating of particles. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2017.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Agudelo J, Cano A, González-Martínez C, Chiralt A. Disaccharide incorporation to improve survival during storage of spray dried Lactobacillus rhamnosus in whey protein-maltodextrin carriers. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Glass Transition-Associated Structural Relaxations and Applications of Relaxation Times in Amorphous Food Solids: a Review. FOOD ENGINEERING REVIEWS 2017. [DOI: 10.1007/s12393-017-9166-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Araujo-Díaz S, Leyva-Porras C, Aguirre-Bañuelos P, Álvarez-Salas C, Saavedra-Leos Z. Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydr Polym 2017; 167:317-325. [DOI: 10.1016/j.carbpol.2017.03.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/07/2017] [Accepted: 03/19/2017] [Indexed: 01/07/2023]
|
26
|
Maidannyk V, Nurhadi B, Roos Y. Structural strength analysis of amorphous trehalose-maltodextrin systems. Food Res Int 2017; 96:121-131. [DOI: 10.1016/j.foodres.2017.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 10/20/2022]
|
27
|
Degradation kinetics of encapsulated grape skin phenolics and micronized grape skins in various water activity environments and criteria to develop wide-ranging and tailor-made food applications. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2016.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Pycia K, Juszczak L, Gałkowska D, Witczak M, Jaworska G. Maltodextrins from chemically modified starches. Selected physicochemical properties. Carbohydr Polym 2016; 146:301-9. [DOI: 10.1016/j.carbpol.2016.03.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 11/25/2022]
|