1
|
Hu B, Wang H, Liang H, Ma N, Wu D, Zhao R, Lv H, Xiao Z. Multiple effects of spicy flavors on neurological diseases through the intervention of TRPV1: a critical review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39041177 DOI: 10.1080/10408398.2024.2381689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The spicy properties of foods are contributed by various spicy flavor substances (SFs) such as capsaicin, piperine, and allicin. Beyond their distinctive sensory characteristics, SFs also influence health conditions and numerous studies have associated spicy flavors with disease treatment. In this review, we enumerate different types of SFs and describe their role in food processing, with a specific emphasis on critically examining their influence on human wellness. Particularly, detailed insights into the mechanisms through which SFs enhance physiological balance and alleviate neurological diseases are provided, and a systematic analysis of the significance of transient receptor potential vanilloid type-1 (TRPV1) in regulating metabolism and nervous system homeostasis is presented. Moreover, enhancing the accessibility and utilization of SFs can potentially amplify the physiological effects. This review aims to provide compelling evidence for the integration of food flavor and human health.
Collapse
Affiliation(s)
- Boyong Hu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Wang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Liang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Ma
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Diyi Wu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruotong Zhao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haoming Lv
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zuobing Xiao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Zambrano V, Bustos R, Arozarena Y, Mahn A. Optimization of a Microencapsulation Process Using Oil-in-Water (O/W) Emulsion to Increase Thermal Stability of Sulforaphane. Foods 2023; 12:3869. [PMID: 37893763 PMCID: PMC10606704 DOI: 10.3390/foods12203869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Sulforaphane (SFN) is a bioactive compound widely studied for its potential applications in pharmaceutical, nutraceutical, and food industries since it offers health benefits due to its nature as a Phase 2 enzyme inducer. Its application in the food industry has been limited because SFN is unstable at high temperatures in an aqueous milieu. An option to increase SFN stability and protect it from thermal degradation is microencapsulation. The aim of this work was to optimize a microencapsulation process using oil-in-water emulsion to increase the thermal stability of SFN. The operation conditions that gave the highest entrapment efficiency were determined via experimental design and response surface methodology. Thermal degradation of microencapsulated SFN was studied at 37, 50, 60, and 70 °C. The optimum microencapsulation conditions were 8 min stirring, SFN/Gum Arabic ratio of 0.82, and surfactant/oil ratio of 1.0, resulting in an entrapment efficiency of 65%, which is the highest reported so far. The thermal stability of microencapsulated SFN was greatly enhanced compared with free SFN, with a 6-fold decrease in the degradation kinetic constant and a 41% increase in the activation energy. These results will contribute to a more efficient incorporation of SFN in various food matrices and explore new microencapsulation technologies to maximize the efficiency and stability of SFN.
Collapse
Affiliation(s)
- Víctor Zambrano
- Department of Chemical Engineering, University of Santiago of Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170019, Chile; (V.Z.); (R.B.)
| | - Rubén Bustos
- Department of Chemical Engineering, University of Santiago of Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170019, Chile; (V.Z.); (R.B.)
| | - Yipsy Arozarena
- Food Science and Technology Doctorate Program, University of Santiago of Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Andrea Mahn
- Department of Chemical Engineering, University of Santiago of Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9170019, Chile; (V.Z.); (R.B.)
| |
Collapse
|
3
|
Qing S, Long Y, Wu Y, Shu S, Zhang F, Zhang Y, Yue J. Hot-air-assisted radio frequency blanching of broccoli: heating uniformity, physicochemical parameters, bioactive compounds, and microstructure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2664-2674. [PMID: 36647340 DOI: 10.1002/jsfa.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Vegetables are often blanched before drying. The hot-water blanching (HWB) of broccoli reduces quality and is environmentally harmful. In this work, hot-air-assisted radio frequency heating blanching (HA-RFB) of broccoli was developed for use before further drying processes. Blanching sufficiency, heating uniformity, and heating rate during HA-RFB were investigated to improve the product's physicochemical properties and texture. Suitable heating conditions were achieved when HA-RFB was applied with hot air at 70 °C, with an electrode gap of 10.7 cm, using a cylindrical container for the broccoli. RESULTS Under these conditions, the relative peroxidase activity in broccoli decreased to 3.26% within 117 s, with 13.45% of weight loss. In comparison with HWB broccoli, the products blanched by HA-RFB preserved their texture, bioactive compounds, and microstructure better. The ascorbic acid, sulforaphane, and total glucosinolate content in HA-RFB products were 251.1%, 131.9% and 36.7% higher than those in HWB broccoli, and HA-RFB treatment led to a greater weight loss (13.45 ± 0.50%) than HWB (8.70 ± 1.70%), which is very helpful for the subsequent drying process. CONCLUSION This study demonstrated that HA-RFB could be a promising substitute for HWB to blanch broccoli and other flower vegetables, especially as a pretreatment in the drying process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuting Qing
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Long
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Wu
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Shumin Shu
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Fei Zhang
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Yan Zhang
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Jin Yue
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, China
| |
Collapse
|
4
|
Mahn A, Pérez CE, Zambrano V, Barrientos H. Maximization of Sulforaphane Content in Broccoli Sprouts by Blanching. Foods 2022; 11:foods11131906. [PMID: 35804720 PMCID: PMC9266238 DOI: 10.3390/foods11131906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Broccoli sprouts are a recognized source of health-promoting compounds, such as glucosinolates, glucoraphanin, and sulforaphane (SFN). Maximization of SFN content can be achieved by technological processing. We investigated the effect of blanching conditions to determine the optimal treatment that maximizes sulforaphane content in broccoli sprouts. Broccoli seeds (cv. Traditional) grown under controlled conditions were harvested after 11 days from germination and subjected to different blanching conditions based on a central composite design with temperature and time as experimental factors. Results were analyzed by ANOVA followed by a Tukey test. The optimum conditions were identified through response surface methodology. Blanching increased sulforaphane content compared with untreated sprouts, agreeing with a decrease in total glucosinolates and glucoraphanin content. Temperature significantly affected SFN content. Higher temperatures and shorter immersion times favor glucoraphanin hydrolysis, thus increasing SFN content. The optimum conditions were blanching at 61 °C for 4.8 min, resulting in 54.3 ± 0.20 µmol SFN/g dry weight, representing a 3.3-fold increase with respect to untreated sprouts. This is the highest SFN content reported for sprouts subjected to any treatment so far. The process described in this work may contribute to developing functional foods and nutraceuticals that provide sulforaphane as an active principle.
Collapse
Affiliation(s)
- Andrea Mahn
- Department of Chemical Engineering, Faculty of Engineering, University of Santiago of Chile, Santiago 9170019, Chile;
- Correspondence: ; Tel.: +56-227-181-833
| | - Carmen Elena Pérez
- Department of Agro Industrial Engineering, Pontificia Bolivariana University, Cra. 6 No. 97A-99, Montería 230001, Colombia;
| | - Víctor Zambrano
- Department of Chemical Engineering, Faculty of Engineering, University of Santiago of Chile, Santiago 9170019, Chile;
| | - Herna Barrientos
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170019, Chile;
| |
Collapse
|
5
|
Liu B, Tao Y, Manickam S, Li D, Han Y, Yu Y, Liu D. Influence of sequential exogenous pretreatment and contact ultrasound-assisted air drying on the metabolic pathway of glucoraphanin in broccoli florets. ULTRASONICS SONOCHEMISTRY 2022; 84:105977. [PMID: 35279633 PMCID: PMC8915014 DOI: 10.1016/j.ultsonch.2022.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this investigation, the combinations of exogenous pretreatment (melatonin or vitamin C) and contact ultrasound-assisted air drying were utilized to dry broccoli florets. To understand the influences of the studied dehydration methods on the conversion of glucoraphanin to bioactive sulforaphane in broccoli, various components (like glucoraphanin, sulforaphane, myrosinase, etc.) and factors (temperature and moisture) involved in the metabolism pathway were analyzed. The results showed that compared with direct air drying, the sequential exogenous pretreatment and contact ultrasound drying shortened the drying time by 19.0-22.7%. Meanwhile, contact sonication could promote the degradation of glucoraphanin. Both melatonin pretreatment and vitamin C pretreatment showed protective effects on the sulforaphane content and myrosinase activity during the subsequent drying process. At the end of drying, the sulforaphane content in samples dehydrated by the sequential melatonin (or vitamin C) pretreatment and ultrasound-intensified drying was 14.4% (or 26.5%) higher than only air-dried samples. The correlation analysis revealed that the exogenous pretreatment or ultrasound could affect the enzymatic degradation of glucoraphanin and the generation of sulforaphane through weakening the connections of sulforaphane-myrosinase, sulforaphane-VC, and VC-myrosinase. Overall, the reported results can enrich the biochemistry knowledge about the transformation of glucoraphanin to sulforaphane in cruciferous vegetables during drying, and the combined VC/melatonin pretreatment and ultrasound drying is conducive to protect bioactive sulforaphane in dehydrated broccoli.
Collapse
Affiliation(s)
- Beini Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yang Tao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yongbin Han
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ying Yu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Dongfeng Liu
- Zelang Postgraduate Working Station, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Mahn A, Comett R, Segura‐Ponce LA, Díaz‐Álvarez RE. Effect of pulsed electric field‐assisted extraction on recovery of sulforaphane from broccoli florets. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrea Mahn
- Departamento de Ingeniería Química Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Raidel Comett
- Departamento de Ingeniería Química Universidad de Santiago de Chile (USACH) Santiago Chile
| | | | | |
Collapse
|
7
|
Yuanfeng W, Chengzhi L, Ligen Z, Juan S, Xinjie S, Yao Z, Jianwei M. Approaches for enhancing the stability and formation of sulforaphane. Food Chem 2020; 345:128771. [PMID: 33601652 DOI: 10.1016/j.foodchem.2020.128771] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
The isothiocyanate sulforaphane (SF) is one of the most potent naturally occurring Phase 2 enzymes inducers derived from brassica vegetables like broccoli, cabbage, brussel sprouts, etc. Ingestion of broccoli releases SF via hydrolysis of glucoraphanin (GRP) by plant myrosinase and/or intestinal microbiota. However, both SF and plant myrosinase are thermal-labile, and the epithiospecifier protein (ESP) directs the hydrolysis of GRP toward formation of sulforaphane nitrile instead of SF. In addition, bacterial myrosinase has low hydrolyzing efficiency. In this review, we discuss strategies that could be employed to improve the stability of SF, increase SF formation during thermal and non-thermal processing of broccoli, and enhance the myrosinase-like activity of the gut microbiota. Furthermore, new cooking methods or blanching technologies should be developed to maintain myrosinase activity, and novel thermostable myrosinase and/or microbes with high SF producing abilities should also be developed.
Collapse
Affiliation(s)
- Wu Yuanfeng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Lv Chengzhi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Zou Ligen
- Hangzhou Academy of Agricultural Sciences, Zhejiang, Hangzhou, China.
| | - Sun Juan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Song Xinjie
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Zhang Yao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China.
| | - Mao Jianwei
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China; Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China.
| |
Collapse
|
8
|
Effect of Drum-Drying Conditions on the Content of Bioactive Compounds of Broccoli Pulp. Foods 2020; 9:foods9091224. [PMID: 32887455 PMCID: PMC7554832 DOI: 10.3390/foods9091224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022] Open
Abstract
This work studied the effect of drum-rotation frequency, drum temperature, and water-to-pulp ratio in a double-drum drier on the content of sulforaphane, glucoraphanin, total phenolic compounds, ascorbic acid, and antioxidant activity of broccoli pulp through a multilevel factorial design with one replicate. Drum-drying conditions did not significantly affect sulforaphane content, unlike glucoraphanin, however the poor adherence of broccoli pulp resulted in a final product with undefined shape and heterogeneous color. On the other hand, antioxidant activity was unevenly affected by drying conditions; however, drum-rotation frequency affected it in the same way that phenolic compounds and ascorbic acid, showing a concordant behavior. The ascorbic acid content decreased significantly after drying, and it was highly dependent on the experimental factors, resulting in a regression model that explained 90% of its variability. Drum-rotation frequency of 5 Hz, drum temperature of 125 °C, and water-to-pulp ratio of 0.25 resulted in an apparent increase of sulforaphane and phenolic compounds content of 13.7% and 47.6%, respectively. Drum drying has great potential to fabricate dehydrated broccoli-based foods with functional properties. Besides, since drum drying has low investment and operation costs, it represents a very attractive option for the industrialization of broccoli derivatives.
Collapse
|
9
|
Effect of Ultrasound-Assisted Blanching on Myrosinase Activity and Sulforaphane Content in Broccoli Florets. Catalysts 2020. [DOI: 10.3390/catal10060616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sulforaphane (SFN) is a health-promoting compound occurring in broccoli. It is formed by action of myrosinase in a two-step reaction that also yields undesirable compounds such as nitriles and isothionitriles. Different techniques affecting enzyme activity and tissue integrity were proposed to increase SFN content in the edible parts and discards of broccoli. Ultrasound processing is an emerging technology that produces these effects in foods, but has been poorly explored in broccoli so far. The aim of this work was to study the effect of ultrasound-assisted blanching on myrosinase activity and SFN content in broccoli florets. Myrosinase showed first-order inactivation kinetics in blanching at different temperatures with and without ultrasound processing. The inactivation rate was faster using ultrasound, with kinetic constants two orders of magnitude higher than without ultrasound. The activation energy (Ea) in traditional blanching (57.3 kJ mol−1) was higher than in ultrasound-assisted blanching (15.8 kJ mol−1). Accordingly, ultrasound accelerates myrosinase inactivation. The blanching time and temperature significantly affected myrosinase activity and SFN content. At 60 °C and 4 min of ultrasound-assisted blanching, myrosinase activity was minimum and SFN content was the highest. These findings may help to design SFN enrichment processes and will contribute to the valorization of agro-industrial wastes.
Collapse
|
10
|
Sulforaphane in broccoli-based matrices: Effects of heat treatment and addition of oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Zambrano V, Bustos R, Mahn A. Insights about stabilization of sulforaphane through microencapsulation. Heliyon 2019; 5:e02951. [PMID: 31844781 PMCID: PMC6895643 DOI: 10.1016/j.heliyon.2019.e02951] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/27/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The health–promoting properties of sulforaphane (SFN) are well known, however its instability is still a hurdle for its incorporation into food matrices. SFN can be stabilized by microencapsulation, technique sparingly explored for isothiocyanates so far. This review summarizes the advances in microencapsulation of SFN and other isothiocyanates. Encapsulation efficiency and degradation rate of sulforaphane in different systems are compared and discussed. Ionic gelation and complex coacervation seem more adequate for SFN, both underexplored until now. Drying conditions after chemical encapsulation are determinant, most likely related to thermal degradation of SFN. The current information is insufficient to identify the most adequate encapsulation system and the optimal process conditions to stabilize SFN aiming at its incorporation into food matrices. Accordingly, encapsulation conditions should be investigated, which arises as a new research line. Stability studies are encouraged since this information will help in designing SFN microencapsulation strategies that extend the industrial application of this promising health-promoting compound.
Collapse
Affiliation(s)
- Víctor Zambrano
- Department of Chemical Engineering, University of Santiago of Chile, Avenida Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Rubén Bustos
- Department of Chemical Engineering, University of Santiago of Chile, Avenida Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Andrea Mahn
- Department of Chemical Engineering, University of Santiago of Chile, Avenida Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| |
Collapse
|
12
|
Li Z, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H. Natural Sulforaphane From Broccoli Seeds Against Influenza A Virus Replication in MDCK Cells. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19858221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| |
Collapse
|
13
|
Mahn A, Saavedra A, Paz Rubio M. Kinetic study of sulforaphane stability in blanched and un-blanched broccoli ( Brassica oleracea var. italica) florets during storage at low temperatures. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:4687-4693. [PMID: 30333666 PMCID: PMC6170350 DOI: 10.1007/s13197-018-3395-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/17/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Sulforaphane is a health-promoting compound found in broccoli. Given its high thermo-lability, its preservation through high-temperature processes seems inconvenient. Accordingly, storage at low temperature is an alternative. There are no studies about the evolution of sulforaphane content during storage at low temperatures. The change of sulforaphane content in blanched and un-blanched broccoli florets during storage at 10, - 1, - 21 and - 45 °C for 83 days was studied. In blanched broccoli, sulforaphane content followed a first-order degradation kinetics (R2 ≥ 0.95). A two-consecutive irreversible reactions model described adequately the evolution of sulforaphane content in un-blanched broccoli (R2 ≥ 0.94). Activation energies from Arrhenius equation resulted in 19.4 kJ/mol for blanched and 30 kJ/mol (formation) and 58 kJ/mol (degradation) for un-blanched broccoli. Storage of un-blanched broccoli at - 45 °C for 40 days maximized sulforaphane content. These results could be useful to propose broccoli storage conditions that preserve or maximize sulforaphane content.
Collapse
Affiliation(s)
- Andrea Mahn
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, 9170019 Santiago, Chile
| | - Aldo Saavedra
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, 9170019 Santiago, Chile
| | - M. Paz Rubio
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, 9170019 Santiago, Chile
| |
Collapse
|
14
|
Yilmaz MS, Şakiyan Ö, Barutcu Mazi I, Mazi BG. Phenolic content and some physical properties of dried broccoli as affected by drying method. FOOD SCI TECHNOL INT 2018; 25:76-88. [PMID: 30205717 DOI: 10.1177/1082013218797527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Broccoli samples ( Brassica oleracea) with an initial moisture content of 82.87% (wb) were dried using microwave technology (18, 36, and 54 W/g). Convective drying was used as a control group. The dependent variables investigated in the study were phenolic content, color, rehydration capacity, and microstructure of broccoli samples. Moreover, the best fitting thin layer model to the experimental moisture ratio was determined. The phenolic contents were found as 892.4, 740.6, and 759.8 mg gallic acid/100 g dry matter for fresh, convective dried, and microwave (MW) dried at 54 W/g broccoli samples, respectively. The total phenolic content of samples dried at 54 W/g was closest to fresh samples compared to other MW power intensities and convective drying. A similar result was obtained for color values too. L*, a*, and b* of microwave-dried samples at 54 W/g were comparable to fresh broccoli. Another important result obtained from the study was the insignificant effect of drying conditions on rehydration capacity. In addition, it was found that microwave power had a positive effect on drying time; as the microwave powers applied were compared, the shortest drying time was reached at 54 W/g. When the process durations of microwave drying and convective drying were compared, it can be reported that a much lower process time for microwave drying was obtained with respect to convective drying. Drying in microwave oven has reduced the drying time by 49-52%. In the light of the results obtained, it may be declared that it is possible to produce high-quality dried broccoli samples in a very short time by using microwave drying at 54 W/g.
Collapse
Affiliation(s)
- Merve Sılanur Yilmaz
- 1 Department of Food Engineering, Ankara University, Ankara, Turkey.,2 Department of Food Engineering, Bitlis Eren University, Bitlis, Turkey
| | - Özge Şakiyan
- 1 Department of Food Engineering, Ankara University, Ankara, Turkey
| | | | | |
Collapse
|
15
|
Optimisation of Tray Drier Microalgae Dewatering Techniques Using Response Surface Methodology. ENERGIES 2018. [DOI: 10.3390/en11092327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The feasibility of the application of a tray drier in dewatering microalgae was investigated. Response surface methodology (RSM) based on Central Composite Design (CCD) was used to evaluate and optimise the effect of air temperature and air velocity as independent variables on the dewatering efficiency as a response function. The significance of independent variables and their interactions was tested by means of analysis of variance (ANOVA) with a 95% confidence level. Results indicate that the air supply temperature was the main parameter affecting dewatering efficiency, while air velocity had a slight effect on the process. The optimum operating conditions to achieve maximum dewatering were determined: air velocities and temperatures ranged between 4 to 10 m/s and 40 to 56 °C respectively. An optimised dewatering efficiency of 92.83% was achieved at air an velocity of 4 m/s and air temperature of 48 °C. Energy used per 1 kg of dry algae was 0.34 kWh.
Collapse
|
16
|
Wu Y, Shen Y, Wu X, Zhu Y, Mupunga J, Bao W, Huang J, Mao J, Liu S, You Y. Hydrolysis before Stir-Frying Increases the Isothiocyanate Content of Broccoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1509-1515. [PMID: 29357241 DOI: 10.1021/acs.jafc.7b05913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Broccoli is found to be a good source of glucosinolates, which can be hydrolyzed by endogenous myrosinase to obtain chemopreventive isothiocyanates (ITCs); among them, sulforaphane (SF) is the most important agent. Studies have shown that cooking greatly affects the levels of SF and total ITCs in broccoli. However, the stability of these compounds during cooking has been infrequently examined. In this study, we proved that the half-lives of SF and total ITCs during stir-frying were 7.7 and 5.9 min, respectively, while the myrosinase activity decreased by 80% after stir-frying for 3 min; SF and total ITCs were more stable than myrosinase. Thus, the contents of SF and total ITCs decreased during stir-frying largely because myrosinase was destroyed. Subsequently, it was confirmed that compared to direct stir-frying, hydrolysis of glucosinolates in broccoli for 90 min followed by stir-frying increased the SF and total ITC concentration by 2.8 and 2.6 times, respectively. This method provides large quantities of beneficial ITCs even after cooking.
Collapse
Affiliation(s)
- Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640, Guangdong, China
| | - Yuke Shen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Xuping Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Ye Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Jothame Mupunga
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Wenna Bao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Shiwang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Yuru You
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| |
Collapse
|
17
|
Pocasap P, Weerapreeyakul N, Tanthanuch W, Thumanu K. Sulforaphene in Raphanus sativus L. var. caudatus Alef increased in late-bolting stage as well as anticancer activity. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|