1
|
Xia Y, Liu W, Meng J, Hu J, Liu W, Kang J, Luo B, Zhang H, Tang W. Principles, developments, and applications of spatially resolved spectroscopy in agriculture: a review. FRONTIERS IN PLANT SCIENCE 2024; 14:1324881. [PMID: 38269139 PMCID: PMC10805836 DOI: 10.3389/fpls.2023.1324881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Agriculture is the primary source of human survival, which provides the most basic living and survival conditions for human beings. As living standards continue to improve, people are also paying more attention to the quality and safety of agricultural products. Therefore, the detection of agricultural product quality is very necessary. In the past decades, the spectroscopy technique has been widely used because of its excellent results in agricultural quality detection. However, traditional spectral inspection methods cannot accurately describe the internal information of agricultural products. With the continuous research and development of optical properties, it has been found that the internal quality of an object can be better reflected by separating the properties of light, such as its absorption and scattering properties. In recent years, spatially resolved spectroscopy has been increasingly used in the field of agricultural product inspection due to its simple compositional structure, low-value cost, ease of operation, efficient detection speed, and outstanding ability to obtain information about agricultural products at different depths. It can also separate optical properties based on the transmission equation of optics, which allows for more accurate detection of the internal quality of agricultural products. This review focuses on the principles of spatially resolved spectroscopy, detection equipment, analytical methods, and specific applications in agricultural quality detection. Additionally, the optical properties methods and direct analysis methods of spatially resolved spectroscopy analysis methods are also reported in this paper.
Collapse
Affiliation(s)
- Yu Xia
- School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an, Shaanxi, China
| | - Wenxi Liu
- School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an, Shaanxi, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jingwu Meng
- School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an, Shaanxi, China
| | - Jinghao Hu
- School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an, Shaanxi, China
| | - Wenbo Liu
- School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an, Shaanxi, China
| | - Jie Kang
- School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an, Shaanxi, China
| | - Bin Luo
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Han Zhang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Tang
- School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Hu D, Jia T, Sun X, Zhou T, Huang Y, Sun Z, Zhang C, Sun T, Zhou G. Applications of optical property measurement for quality evaluation of agri-food products: a review. Crit Rev Food Sci Nutr 2023:1-21. [PMID: 37691446 DOI: 10.1080/10408398.2023.2255260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Spectroscopic techniques coupled with chemometric approaches have been widely used for quality evaluation of agricultural and food (agri-food) products due to the nondestructive, simple, fast, and easy characters. However, these techniques face the issues or challenges of relatively weak robustness, generalizability, and applicability in modeling and prediction because they measure the aggregate amount of light interaction with tissues, resulting in the combined effect of absorption and scattering of photons. Optical property measurement could separate absorption from scattering, providing new insights into more reliable prediction performance in quality evaluation, which is attracting increasing attention. In this review, a brief overview of the currently popular measurement techniques, in terms of light transfer principles and data analysis algorithms, is first presented. Then, the emphases are put on the recent advances of these techniques for measuring optical properties of agri-food products since 2000. Corresponding applications on qualitative and quantitative analyses of quality evaluation, as well as light transfer simulations within tissues, were reviewed. Furthermore, the leading groups working on optical property measurement worldwide are highlighted, which is the first summary to the best of our knowledge. Finally, challenges for optical property measurement are discussed, and some viewpoints on future research directions are also given.
Collapse
Affiliation(s)
- Dong Hu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, China
| | - Tianze Jia
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, China
| | - Xiaolin Sun
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, China
| | - Tongtong Zhou
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, China
| | - Yuping Huang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhizhong Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Chang Zhang
- Office of Educational Administration, Zhejiang A&F University, Hangzhou, China
| | - Tong Sun
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, China
| | - Guoquan Zhou
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
3
|
Tian S, Xu H. Mechanical-based and Optical-based Methods for Nondestructive Evaluation of Fruit Firmness. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shijie Tian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Huirong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
4
|
Effect of Ginger on Chemical Composition, Physical and Sensory Characteristics of Chicken Soup. Foods 2021; 10:foods10071456. [PMID: 34201805 PMCID: PMC8307344 DOI: 10.3390/foods10071456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
In order to investigate the effect of ginger on taste components and sensory characteristics in chicken soup, the content of amino acids, organic acids, 5′-nucleotides, and mineral elements were determined in chicken soup sample. With the ginger added, free amino acids in chicken soup obviously increased and exceeded the total amounts in ginger soup and chicken soup. The content of glutamic acid (122.74 μg/mL) was the highest among 17 free amino acids in ginger chicken soup. Meanwhile, six organic acids detected in chicken soup all obviously increased, among which lactic acid (1523.58 μg/mL) and critic acid (4692.41 μg/mL) exceeded 1000 μg/mL. The content of 5′-nucleotides had no obvious difference between ginger chicken soup and chicken soup. Compared with chicken soup, ginger chicken soup had a smaller particle size (136.43 nm) and color difference (79.69), but a higher viscosity. With ginger added in chicken soup, the content of seven mineral elements was reduced, and the content of total sugar increased. Results from an electronic tongue indicated a difference in taste profiles among the soups. The taste components and sensory quality of chicken soup were obviously affected by adding the ginger.
Collapse
|
5
|
Hu D, Sun T, Yao L, Yang Z, Wang A, Ying Y. Monte Carlo: A flexible and accurate technique for modeling light transport in food and agricultural products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Fahmy AR, Becker T, Jekle M. 3D printing and additive manufacturing of cereal-based materials: Quality analysis of starch-based systems using a camera-based morphological approach. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102384] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Hu D, Lu R, Ying Y. Spatial-frequency domain imaging coupled with frequency optimization for estimating optical properties of two-layered food and agricultural products. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Dong X, Huang Y, Pan Y, Wang K, Prakash S, Zhu B. Investigation of sweet potato starch as a structural enhancer for three‐dimensional printing of
Scomberomorus niphonius
surimi. J Texture Stud 2019; 50:316-324. [DOI: 10.1111/jtxs.12398] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/25/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Xiuping Dong
- School of Food Science and TechnologyDalian Polytechnic University Dalian China
- National Engineering Research Center of SeafoodDalian Polytechnic University Dalian China
| | - Ying Huang
- School of Food Science and TechnologyDalian Polytechnic University Dalian China
- National Engineering Research Center of SeafoodDalian Polytechnic University Dalian China
| | - Yuxi Pan
- School of Food Science and TechnologyDalian Polytechnic University Dalian China
- National Engineering Research Center of SeafoodDalian Polytechnic University Dalian China
| | - Kexin Wang
- School of Food Science and TechnologyDalian Polytechnic University Dalian China
- National Engineering Research Center of SeafoodDalian Polytechnic University Dalian China
| | - Sangeeta Prakash
- School of Agriculture and Food SciencesThe University of Queensland Brisbane Queensland Australia
| | - Beiwei Zhu
- School of Food Science and TechnologyDalian Polytechnic University Dalian China
- National Engineering Research Center of SeafoodDalian Polytechnic University Dalian China
| |
Collapse
|
9
|
Eisel M, Ströbl S, Pongratz T, Stepp H, Rühm A, Sroka R. Investigation of optical properties of dissected and homogenized biological tissue. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 30251487 DOI: 10.1117/1.jbo.23.9.091418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Knowledge of tissue optical properties, in particular the absorption μa and the reduced scattering coefficient μs', is required for diagnostic and therapeutic applications in which the light distribution during treatment has to be known. As it is generally very difficult to obtain this information with sufficient accuracy in vivo, optical properties are often approximately determined on ex vivo tissue samples. In this case, the obtained optical properties may strongly depend on the sample preparation. The extent of the expectable preparation-dependent differences was systematically investigated in comparative measurements on dissected and homogenized porcine tissue samples (liver, lung, brain, and muscle). These measurements were performed at wavelengths 520, 635, 660, and 785 nm, using a dual-step reflectance device and at a spectral range of 515 to 800 nm with an integrating sphere setup. In a third experiment, the density of tissue samples (dissected and homogenized) was investigated, as the characteristic of the packaging of internal tissue structures strongly influences the absorption and scattering. The standard errors of the obtained absorption and reduced scattering coefficients were found to be reduced in case of homogenized tissue. Homogenizing the tissues also allows a much easier and faster sample preparation, as macroscopic internal tissue structures are destroyed in the homogenized tissue so that a planar tissue sample with well-defined thickness can easily and accurately be prepared by filling the tissue paste into a cuvette. Consequently, a better reproducibility result was obtained when using homogenized samples. According to the density measurements accomplished for dissected and homogenized tissue samples, all types of tissues, except lung, showed a decrease in the density due to the homogenization process. The presented results are in good agreement for μs' regardless of the preparation procedure, whereas μa differs, probably influenced by blood content and dehydration. Because of faster and easier preparation and easier sample positioning, homogenization prior to measurement seems to be suitable for investigating the optical properties ex vivo. Additionally, by means of using the homogenization process, the sample size and thickness do not need to be particularly large, as is the case for most biopsies from the OR.
Collapse
Affiliation(s)
- Maximilian Eisel
- Klinikum der Universität München, Laser-Forschungslabor, LIFE-Zentrum, Munich, Germany
- University Hospital of Munich, Department of Urology, Munich, Germany
| | - Stephan Ströbl
- Klinikum der Universität München, Laser-Forschungslabor, LIFE-Zentrum, Munich, Germany
- University Hospital of Munich, Department of Urology, Munich, Germany
| | - Thomas Pongratz
- Klinikum der Universität München, Laser-Forschungslabor, LIFE-Zentrum, Munich, Germany
- University Hospital of Munich, Department of Urology, Munich, Germany
| | - Herbert Stepp
- Klinikum der Universität München, Laser-Forschungslabor, LIFE-Zentrum, Munich, Germany
- University Hospital of Munich, Department of Urology, Munich, Germany
| | - Adrian Rühm
- Klinikum der Universität München, Laser-Forschungslabor, LIFE-Zentrum, Munich, Germany
- University Hospital of Munich, Department of Urology, Munich, Germany
| | - Ronald Sroka
- Klinikum der Universität München, Laser-Forschungslabor, LIFE-Zentrum, Munich, Germany
- University Hospital of Munich, Department of Urology, Munich, Germany
| |
Collapse
|