1
|
Li Y, Pang J, Lin Y, Liu W, Zou Z, Liu G, Liu Q. Structural characterization and mast cell stabilizing activity of Red-edge tea polysaccharide. Food Chem X 2024; 23:101613. [PMID: 39100250 PMCID: PMC11295999 DOI: 10.1016/j.fochx.2024.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
The potential anti-allergic properties of tea have been demonstrated in studies supporting theanine and catechin. However, research on tea polysaccharides' anti-allergic properties has been limited. In this study, we extracted red-edge tea crude polysaccharide (RETPS) and evaluated its anti-allergic activity using the mast cell, passive cutaneous anaphylaxis, and passive systemic anaphylaxis models. We purified RETPS using the DEAE-52 cellulose column, analyzed its composition and structural characteristics, and compared the anti-allergic properties of different polysaccharide fractions. The purified components RETPS-3 and RETPS-4 displayed higher galacturonic acid content and lower molecular weight (106.61 kDa and 53.95 kDa, respectively) compared to RETPS (310.54 kDa). In addition, RETPS-3 and RETPS-4 demonstrated superior anti-allergic activity than RETPS in mice's passive cutaneous and systemic allergic reactions. Our findings provide evidence of the anti-allergic potential of tea polysaccharides and offer a theoretical foundation for developing tea polysaccharides as a functional anti-allergic food product.
Collapse
Affiliation(s)
- Yan Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Jinhao Pang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Yongfeng Lin
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Wenmei Liu
- San Ming MING BAWEI Industry Research Institute, Sanming 353000, China
- Changting County Green Economy Ecological Health Industry Research Institute, Longyan 366300, China
| | - Zehua Zou
- San Ming MING BAWEI Industry Research Institute, Sanming 353000, China
- Changting County Green Economy Ecological Health Industry Research Institute, Longyan 366300, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Qingmei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| |
Collapse
|
2
|
Wang X, Fan C, Wang X, Feng T, Xia S, Yu J. Formation mechanism of off-flavor and the inhibition regulatory strategies in the algal oil-loaded emulsions-a review. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39216015 DOI: 10.1080/10408398.2024.2397451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Algal oil rich in docosahexaenoic acid is easily oxidized and degraded to produce volatile short-chain compounds, leading to the deterioration of product flavor. Currently, the emulsion delivery of algal oil provides a promising approach to minimize oxidative deterioration and conceal its off-flavor. However, algal oil emulsions would also experience unanticipated oxidation as a result of the large specific surface area between the aqueous phase and the oil phase. The current paper offers a mechanism overview behind off-flavor formation in algal oil emulsions and explores corresponding strategies for the inhibition regulation. Additionally, the paper delves into the factors influencing lipid oxidation and the perception of off-flavors in such emulsions. To mitigate the development of off-flavors in algal oil emulsions resulting from oxidation, it is crucial to decline the likelihood of lipid oxidation and proactively prevent the creation of off-flavors whenever possible. Minimizing the release of volatile off-flavor compounds that are inevitably generated is also considered effective for weakening off-flavor. Moreover, co-encapsulation with particular desirable aroma substances could improve the overall flavor characteristics of emulsions.
Collapse
Affiliation(s)
- Xinshuo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunli Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xingwei Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Tingting Feng
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingyang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Cheng T, Tian Y, Liu C, Yang H, Wang Z, Xu M, Guo Z, Zhou L. Effect of xanthan gum (XG) and carrageenan (CG) ratio on casein (CA)-XG-CG ternary complex: Used to improve the stability of liquid diabetes formula food for special medical purposes. Int J Biol Macromol 2024; 269:131770. [PMID: 38688793 DOI: 10.1016/j.ijbiomac.2024.131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
Poor storage stability limits the application of liquid diabetes formula food for special medical purposes (L-D-FSMP) in maintaining blood sugar stability in diabetic patients. This work aims to improve the stability of L-D-FSMP by adjusting the ratio of xanthan gum (XG) and carrageenan (CG) in casein (CA)-XG-CG ternary complex. The centrifugal sedimentation rate results showed that the compound ratio of XG and CG had a greater impact on L-D-FSMP storage stability. Transmission electron microscopy (TEM) results showed that the combination of CA, XG and CG occurred. Fourier transform infrared spectroscopy (FTIR) results showed that CA, XG and CG were mainly combined through hydrogen bonds and ionic bonds to form a CA-XG-CG ternary complex. When the ratio of XG and CG was 1:1, the number of disulfide bonds was the largest. The results of three-phase contact angle and emulsifying ability confirmed that when the ratio of XG and CG was 1:1, CA-XG-CG had the strongest emulsifying ability. The particle size distribution and zeta-potential results showed that when the ratio of XG and CG was 1:1, L-D-FSMP had the narrowest particle size distribution range and the strongest stability. These results may provide valuable information for the production of stable L-D-FSMP.
Collapse
Affiliation(s)
- Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Caihua Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hong Yang
- Libang Clinical Nutrition Co., Ltd., Xi'an, Shanxi 710065, China
| | - Zhongjiang Wang
- Agricultural Products Processing Design Institute, Hainan Academy of Agricultural Sciences, Haikou, Hainan 571100, China
| | - Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
4
|
Shi Y, Liu Y, Sun Y, Zhong M, Rashid A, Qayum A, Liang Q, Rehman A, Ma H, Ren X. Interfacial multilayer self-assembly of protein and polysaccharides: Ultrasonic regulation, stability and application in delivery lutein. Int J Biol Macromol 2024; 272:132880. [PMID: 38838893 DOI: 10.1016/j.ijbiomac.2024.132880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
In this study, the layer-by-layer adsorption behavior of sodium caseinate, pectin, and chitosan on the oil-water interface was illustrated using multi-frequency ultrasound. We investigated the impact of ultrasound on various factors, such as particle size, zeta potential, and interfacial protein/polysaccharide concentration. It was observed that ultrasound has significantly decreased droplet size and increased the surface area at the interface, hence promoting the adsorption of protein/polysaccharide. In the sonicated multilayer emulsion, the concentrations of interface proteins, pectin, and chitosan increased to 84.82 %, 90.49 %, and 83.31 %, respectively. The findings of the study indicated that the application of ultrasonic treatment had a significant impact on the emulsion's surface charge and the prevention of droplet aggregation. As a result, the stability of the emulsion system, including its resistance to salt, temperature, and storage conditions, has been significantly improved. Moreover, the emulsion showed an increase in the retention rate of lutein by 21.88 % after a high-temperature water bath and by 19.35 % after UV irradiation. Certainly, the multilayer emulsion treated with ultrasound demonstrated a superior and prolonged releasing behavior. These findings demonstrated the suitability of the ultrasound treatment for the preparation of emulsions to deliver bioactive compounds.
Collapse
Affiliation(s)
- Yihang Shi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
5
|
Sepeidnameh M, Fazlara A, Hosseini SMH, Pourmahdi Borujeni M. Encapsulation of grape seed oil in oil-in-water emulsion using multilayer technology: Investigation of physical stability, physicochemical and oxidative properties of emulsions under the influence of the number of layers. Curr Res Food Sci 2024; 8:100771. [PMID: 38831922 PMCID: PMC11145428 DOI: 10.1016/j.crfs.2024.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Many studies have shown that grape seed oil (GSO) is one of the vegetable fats that are plentiful in essential fatty acids and can be used as a fat substitute or to modify fat in food products to reduce saturated fatty acids. However, due to its low solubility and high sensitivity to oxidation, it is necessary to develop delivery systems that can distribute GSO in food more effectively. Recently, the preparation of emulsions using the layer-by-layer (LBL) method has many advantages in delivering lipid-soluble functional compounds. This research was used to check the formation of GSO oil-loaded primary, secondary and tertiary multilayer emulsions stabilized by mixture of anionic gelatin, cationic chitosan, and anionic basil seed gum (BSG) as the aqueous phase at pH 5, prepared using a layer-by-layer electrostatic deposition technique. Multilayer emulsions prepared by GSO and a mixture of gelatin, chitosan, and BSG as the aqueous phase at pH 5. Finally, the effect of the number of layers on the physicochemical properties (particle size, viscosity, turbidity, refractive index, and physical stability) and oxidative stability (peroxide value, thiobarbituric acid value, and fatty acid profile) during the storage time (30 days) at two temperatures 25 °C & 4 °C was investigated. Also, the zeta potential and Fourier transform infrared spectroscopy (FTIR) of mono-layer and multi-layer emulsions were investigated. The results revealed that by increasing the number of layers of multi-layer emulsion of GSO, the stability has improved. Thus, the tertiary emulsion has been more effective than the other two emulsions in maintaining the physicochemical characteristics and stability over time (P < 0.001). Morphological characterization and FTIR spectroscopy results confirmed that gelatin, chitosan, and BSG were successfully loaded into the LBL emulsions. This study can improve the original percept of multilayer emulsions and promulgate their potential applications for the entire encapsulation of essential fatty acids to enrich and prevent peroxide attack.
Collapse
Affiliation(s)
- Marziyeh Sepeidnameh
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Fazlara
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Mahdi Pourmahdi Borujeni
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
6
|
Zhao S, Zhao Y, Liu H, Chen Q, Sun H, Kong B. Combined effects of high-intensity ultrasound treatment and hydrogen peroxide addition on the thermal stabilities of myofibrillar protein emulsions at low ionic strengths. ULTRASONICS SONOCHEMISTRY 2024; 104:106841. [PMID: 38442572 PMCID: PMC10924124 DOI: 10.1016/j.ultsonch.2024.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
In this study, the effects of high-intensity ultrasound (HIU) treatment combined with hydrogen peroxide (H2O2) addition on the thermal stability of myofibrillar protein (MP)-stabilized emulsions in low-salt conditions were investigated. Results showed that compared to using either HIU or H2O2 treatment alone, HIU treatment combined with H2O2 was most effective in enhancing the physical stability of emulsions. Moreover, the emulsion stabilized by MPs co-treated with HIU and H2O2 exhibited the most uniform distribution, highest absolute zeta potential, and optimal rheological properties upon heating. This combination effect during heating was caused by the inhibition of disulfide bond cross-linking of myosin heads by H2O2 and the dissociation of filamentous myosin structures using the HIU treatment. In addition, the results of oxidative stability analysis indicated that the addition of H2O2 increased the content of oxidation products; however, the overall influence on the oxidative stability of emulsions was not significant. In conclusion, the combination of HIU and H2O2 treatment is a promising approach to suppress heat-induced MP aggregation and improve the thermal stability of corresponding emulsions.
Collapse
Affiliation(s)
- Siqi Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yubo Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongbo Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Basharat Z, Afzaal M, Saeed F, Islam F, Hussain M, Ikram A, Pervaiz MU, Awuchi CG. Nutritional and functional profile of carob bean ( Ceratonia siliqua): a comprehensive review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2164590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zunaira Basharat
- Department of Food Science, University of the Punjab Lahore, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Chinaza Godswill Awuchi
- School of Natural and Applied Sciences, Kampala International University, Kansanga, Kampala, Uganda
| |
Collapse
|
8
|
Zhang L, Li Y, Sun X, Lai S, Chen F. The droplet breakup model and characteristics of pH-shifted peanut protein isolate-high methoxyl pectin stabilised emulsions under ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 94:106340. [PMID: 36842215 PMCID: PMC9984890 DOI: 10.1016/j.ultsonch.2023.106340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/17/2023] [Indexed: 05/27/2023]
Abstract
The effect of pH on the occurrence states of peanut protein isolate (PPI) and high methoxyl pectin (HMP), and droplet breakup model of the emulsions under ultrasound were studied. Particle size distribution and scanning electron microscopy results showed that PPI-HMP existed a soluble complex at pH 5.0, had no interaction at pH 7.0, and was co-soluble at pH 9.0. Droplet breakup model results revealed that the characteristics of emulsion stabilised by PPI-HMP treated at pH 5.0 was different from that at pH 7.0 and 9.0. The average diameter of the droplet well satisfied the model. According to rheological properties, interface tension, and microstructure, the formation mechanism and characteristics of emulsion stabilised by PPI-HMP treated at pH 5.0 was different from that at pH 7.0 and pH 9.0. The research provided a reference for constructing emulsions using pH-shifted PPI-HMP under ultrasound.
Collapse
Affiliation(s)
- Lifen Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yingxi Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Xiaoyang Sun
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China
| | - Shaojuan Lai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
9
|
Flamminii F, De Flaviis R, Sacchetti G, Caponio F, Michele Paradiso V, Daniela Di Mattia C. Unravelling the role of sodium chloride and hydroxytyrosol on the colloidal properties and oxidative stability of olive oil-based o/w emulsions: a multivariate statistical approach. Food Chem 2022; 405:134767. [DOI: 10.1016/j.foodchem.2022.134767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/25/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
10
|
Ren Z, Chen Z, Zhang Y, Lin X, Weng W, Li B. Pickering Emulsions Stabilized by Tea Water-Insoluble Protein Nanoparticles From Tea Residues: Responsiveness to Ionic Strength. Front Nutr 2022; 9:892845. [PMID: 35558751 PMCID: PMC9087344 DOI: 10.3389/fnut.2022.892845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Tea water-insoluble protein nanoparticles (TWIPNs) can be applied to stabilize Pickering emulsions. However, the effect of ionic strength (0–400 mmol/L) on the characteristics of Pickering emulsions stabilized by TWIPNs (TWIPNPEs) including volume-averaged particle size (d4,3), zeta potential, microstructure and rheological properties is still unclear. Therefore, this work researched the effect of ionic strength on the characteristics of TWIPNPEs. The d4,3 of TWIPNPEs in the aquatic phase increased with the increase in ionic strength (0–400 mmol/L), which was higher than that in the SDS phase. Furthermore, the flocculation index of TWIPNPEs significantly (P < 0.05) increased from 24.48 to 152.92% with the increase in ionic strength. This could be verified from the microstructure observation. These results indicated that ionic strength could promote the flocculation of TWIPNPEs. Besides, the absolute values of zeta potential under different ionic strengths were above 40 mV in favor of the stabilization of TWIPNPEs. The viscosity of TWIPNPEs as a pseudoplastic fluid became thin when shear rate increased from 0.1 to 100 s−1. The viscoelasticity of TWIPNPEs increased with increasing ionic strength to make TWIPNPEs form a gel-like Pickering emulsion. the possible mechanism of flocculation stability of TWIPNPEs under different ionic strengths was propose. TWIPNs adsorbed to the oil-water interface would prompt flocculation between different emulsion droplets under the high ionic strength to form gel-like behavior verified by CLSM. These results on the characteristics of TWIPNPEs in a wide ionic strength range would provide the theoretical basis for applying Pickering emulsions stabilized by plant proteins in the food industry.
Collapse
Affiliation(s)
- Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,College of Food Science, South China Agricultural University, Guangzhou, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.,Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian, China
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Marcela Vélez-Erazo E, Kiyomi Okuro P, Gallegos-Soto A, Lopes da Cunha R, Dupas Hubinger M. Protein-based strategies for fat replacement: approaching different protein colloidal types, structured systems and food applications. Food Res Int 2022; 156:111346. [DOI: 10.1016/j.foodres.2022.111346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
|
12
|
Effect of NaCl on the Rheological, Structural, and Gelling Properties of Walnut Protein Isolate-κ-Carrageenan Composite Gels. Gels 2022; 8:gels8050259. [PMID: 35621557 PMCID: PMC9141317 DOI: 10.3390/gels8050259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we discovered that a certain concentration of Na+ (15 mM) significantly improved the bond strength (12.94 ± 0.93 MPa), thermal stability (72.68 °C), rheological properties, and textural attributes of walnut protein isolate (WNPI)-κ-carrageenan (KC) composite gel. Electrostatic force, hydrophobic interaction, hydrogen bond, and disulfide bond were also significantly strengthened; the α-helix decreased, and the β-sheet increased in the secondary structure, indicating that the protein molecules in the gel system aggregated in an orderly manner, which led to a much denser and more uniform gel network as well as improved water-holding capacity. In this experimental research, we developed a new type of walnut protein gel that could provide technical support for the high-value utilization and quality control of walnut protein.
Collapse
|
13
|
Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol Res 2022; 178:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - Saeed Mirarab
- Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, P.O. Box 578, Sari, Iran
| | - Ali Rashidinejhad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
14
|
Santos MA, Okuro PK, Fonseca LR, Cunha RL. Protein-based colloidal structures tailoring techno- and bio-functionality of emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Destruction of hydrogen bonding and electrostatic interaction in soy hull polysaccharide: Effect on emulsion stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Effects of the Incorporation of Calcium Chloride on the Physical and Oxidative Stability of Filled Hydrogel Particles. Foods 2022; 11:foods11030278. [PMID: 35159430 PMCID: PMC8834438 DOI: 10.3390/foods11030278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, the effects of calcium chloride (CaCl2) addition on the physical and oxidative stabilities of filled hydrogel were investigated. The results revealed that CaCl2 significantly enhanced the particle size, interfacial layer thickness, apparent viscosity, and viscoelastic behavior of filled hydrogels and decreased their light and whiteness values (p < 0.05). This phenomenon was mainly attributed to the strong binding ability between Ca2+ and protein/pectin mixtures, which were present in the interfacial area or aqueous phase, as verified by cryo-scanning electron microscopy results. Moreover, lower levels of CaCl2 (2 or 4 mM) significantly enhanced the oxidative stability of filled hydrogels (p < 0.05), particularly at a concentration of 4 mM. However, a higher level of CaCl2 (6 or 8 mM) resulted in an electrostatic shielding effect, which resulted in the aggregation of multiple droplets and the flocculation of the filled hydrogels, which negatively affected the oxidative stability of filled hydrogels. The findings of this study indicated that appropriate Ca2+ levels (4 mM) improved the physical and oxidative stability of filled hydrogel, and this finding may provide useful insights for the development of effective delivery systems for specific applications.
Collapse
|
17
|
Huang Y, Xiang X, Luo X, Li X, Yu X, Li S. Study on the emulsification and oxidative stability of ovalbumin-pectin-pumpkin seed oil emulsions using ovalbumin solution prepared by ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 78:105717. [PMID: 34509956 PMCID: PMC8441206 DOI: 10.1016/j.ultsonch.2021.105717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 05/07/2023]
Abstract
Pumpkin seed oil (PSO), which is a valuable compound with high nutritional value used for the prevention of various chronic diseases, is prone to oxidation. In this work, small and uniform (su) ovalbumin (OVA) and pectin (PEC) were used to stabilize PSO in the form of an emulsion. The results showed that suOVA-PEC-PSO emulsion with a droplet size of 9.82 ± 0.05 μm was successfully self-assembled from PSO, PEC, and suOVA solution (with a droplet size of 230.13 ± 14.10 nm) treated with 300 W ultrasound, owing to the formation of a more stable interfacial film on the surface of droplets. The interfacial, rheological, emulsifying, and antioxidant properties of the suOVA-PES-PSO emulsions were excellent, owing to the synergistic effects between PEC and suOVA solution. Moreover, the physical stability of the suOVA-PEC-PSO emulsions to salt stress, a freeze-thaw cycle, and heat treatment was also increased and the oxidation of linolenic acid was notably delayed. These results have extended the food-related applications of OVA and PSO, and provide a promising foundation for further exploration of the self-assembly of composite emulsions by small and uniform proteins.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiaole Xiang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
| | - Xiaoying Luo
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 102488, China.
| | - Xiongwei Yu
- Wuhan Xudong Food Co., Ltd., Wuhan 430000, China
| | - Shugang Li
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology/School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
18
|
Influence of Whey Protein Micro-Gel Particles and Whey Protein Micro-Gel Particles-Xanthan Gum Complexes on the Stability of O/W Emulsions. Polymers (Basel) 2021; 13:polym13142301. [PMID: 34301058 PMCID: PMC8309216 DOI: 10.3390/polym13142301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022] Open
Abstract
Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.
Collapse
|
19
|
Tan C, McClements DJ. Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation. Foods 2021; 10:foods10040812. [PMID: 33918596 PMCID: PMC8068840 DOI: 10.3390/foods10040812] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The food industry is one of the major users of emulsion technology, as many food products exist in an emulsified form, including many dressings, sauces, spreads, dips, creams, and beverages. Recently, there has been an interest in improving the healthiness, sustainability, and safety of foods in an attempt to address some of the negative effects associated with the modern food supply, such as rising chronic diseases, environmental damage, and food safety concerns. Advanced emulsion technologies can be used to address many of these concerns. In this review article, recent studies on the development and utilization of these advanced technologies are critically assessed, including nanoemulsions, high internal phase emulsions (HIPEs), Pickering emulsions, multilayer emulsions, solid lipid nanoparticles (SLNs), multiple emulsions, and emulgels. A brief description of each type of emulsion is given, then their formation and properties are described, and finally their potential applications in the food industry are presented. Special emphasis is given to the utilization of these advanced technologies for the delivery of bioactive compounds.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
- Correspondence: ; Tel.: +1-413-545-2275
| |
Collapse
|