1
|
Niaz T, Mackie A. Effect of beta glucan coating on controlled release, bioaccessibility, and absorption of β-carotene from loaded liposomes. Food Funct 2024; 15:1627-1642. [PMID: 38247312 DOI: 10.1039/d3fo04123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Recently, the use of biopolymers as coating material to stabilise phospholipid-based nanocarriers has increased. One such class of biopolymers is the dietary fibre beta-glucan (βG). In this study, we developed and characterized beta-carotene (βC) loaded βG coated nanoliposomes (GNLs) to investigate the effect of βG coating on the stability, controlled release, bioaccessibility, diffusion and subsequent absorption of the lipophilic active agent. The size, charge (Z-potential), and FTIR spectra were measured to determine the physicochemical stability of GNLs. βG coating reduced the bioaccessibility, provided prolonged release and improved the antioxidant activity of the nanoliposomes. Multiple particle tracking (MPT) data suggested that βC-GNLs were less diffusive in porcine intestinal mucus (PIM). Additionally, the microviscosity of the PIM treated with GNLs was observed to be higher (0.04744 ± 0.00865 Pa s) than the PIM incubated with uncoated NLs (0.015 ± 0.0004 Pa s). An Ex vivo experiment was performed on mouse jejunum to measure the absorption of beta-carotene from coated (βC-GNLs) and uncoated nanoliposomes (βC-NLs). Data showed that after 2 hours, 27.7 ± 1.3 ng mL-1 of βC encapsulated in GNLs and 61.54 ± 3 ng mL-1 of the βC encapsulated in uncoated NLs was absorbed by mouse intestinal mucosa. These results highlight that coating with βG stabilise NLs during gastrointestinal digestion and provides more sustained release of βC from nanoliposomes.
Collapse
Affiliation(s)
- Taskeen Niaz
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Alan Mackie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
2
|
Wen C, Cao L, Yu Z, Liu G, Zhang J, Xu X. Advances in lipo-solubility delivery vehicles for curcumin: bioavailability, precise targeting, possibilities and challenges. Crit Rev Food Sci Nutr 2023; 64:10835-10854. [PMID: 37410019 DOI: 10.1080/10408398.2023.2229433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
BACKGROUND Curcumin (Cur) is a natural pigment containing a diketone structure, which has attracted extensive attention due to its strong functional activities. However, the low solubility and poor stability of Cur limit its low bioavailability and multi-function. It is essential to develop effective measures to improve the unfavorable nature of Cur and maximize its potential benefits in nutritional intervention. SCOPE AND APPROACH The focus of this review is to emphasize the construction of lipo-solubility delivery vehicles for Cur, including emulsion, nanoliposome and solid liposome. In addition, the potential benefits of vehicles-encapsulated Cur in the field of precise nutrition were summarized, including high targeting properties and multiple disease interventions. Further, the deficiencies and prospects of Cur encapsulated in vehicles for precise nutrition were discussed. KEY FINDINGS AND CONCLUSIONS The well-designed lipo-solubility delivery vehicles for Cur can improve its stability in food processing and the digestion in vivo. To meet the nutritional requirements of special people for Cur-based products, the improvement of the bioavailability by using delivery vehicles will provide a theoretical basis for the precise nutrition of Cur in functional food.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Liyan Cao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Zhenyue Yu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| |
Collapse
|
3
|
Anal AK, Boonlao N, Ruktanonchai UR. Emulsion Systems Stabilized with Biopolymers to Enhance Oral Bioaccessibility and Bioavailability of Lipophilic Bioactive Compounds. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Molteni C, La Motta C, Valoppi F. Improving the Bioaccessibility and Bioavailability of Carotenoids by Means of Nanostructured Delivery Systems: A Comprehensive Review. Antioxidants (Basel) 2022; 11:antiox11101931. [PMID: 36290651 PMCID: PMC9598319 DOI: 10.3390/antiox11101931] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids are bioactive compounds provided by the diet playing a key role in maintaining human health. Therefore, they should be ingested daily in an adequate amount. However, even a varied and well-balanced diet does not guarantee an adequate intake, as both the bioaccessibility and bioavailability of the compounds significantly affect their absorption. This review summarizes the main results achieved in improving the bioaccessibility and bioavailability of carotenoids by means of nanostructured delivery systems, discussing in detail the available lipid-based and biopolymeric nanocarriers at present, with a focus on their formulation and functional efficiency. Although the toxicity profile of these innovative delivery systems is not fully understood, especially for long-term intake, these systems are an effective and valuable approach to increase the availability of compounds of nutritional interest.
Collapse
Affiliation(s)
- Camilla Molteni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219593
| | - Fabio Valoppi
- Department of Food and Nutrition, University of Helsinki, PL 66, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
- Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, University of Helsinki, PL 64, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Xie D, Li P, Zhu Y, He J, Zhang M, Liu K, Lin H, Zhai H, Li X, Ma Y. Comparative bioactivity profile of phospholipids from three marine byproducts based on the zebrafish model. J Food Biochem 2022; 46:e14229. [PMID: 35575312 DOI: 10.1111/jfbc.14229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
Phospholipids (PLs) are important components of physiological metabolism in animals and plants, and they have been widely used in clinical treatment, cosmetics, and industry. With the development of marine resources, marine PLs rich in polyunsaturated fatty acids have attracted increasing attention. As important marine resources, shrimp heads (SH), codfish roe (CR), and squid gonads (SG) contain a high PL content. The antithrombotic, antistroke, anti-inflammatory, pro-angiogenic, and cardioprotective activities of PLs from SH, CR, and SG were evaluated and compared using the in vivo zebrafish model. The results showed that the PL extracts of SH, CR, and SG had significant biological activities, which lays a theoretical foundation for the development and utilization of PLs in marine byproducts in the future, providing a new choice for the prevention of inflammatory and cardiovascular diseases. PRACTICAL APPLICATIONS: In this experiment, phospholipids in seafood from different sources were extracted, and their biological activities were comprehensively evaluated and compared using the zebrafish model to lay a foundation for the development of cardiovascular drugs, health food, special medicinal food, and other effective components. The utilization of marine byproducts not only makes full use of resources, but it also protects the environment.
Collapse
Affiliation(s)
- Dongxiao Xie
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yongqiang Zhu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Mengqi Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Houwen Lin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongbin Zhai
- Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Xiaobin Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yaohong Ma
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
6
|
Jara-Quijada E, Pérez-Won M, Tabilo-Munizaga G, González-Cavieres L, Lemus-Mondaca R. An Overview Focusing on Food Liposomes and Their Stability to Electric Fields. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Stimuli-responsive nanoliposomes as prospective nanocarriers for targeted drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Boonlao N, Ruktanonchai UR, Anal AK. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids Surf B Biointerfaces 2021; 209:112211. [PMID: 34800865 DOI: 10.1016/j.colsurfb.2021.112211] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
The consumption of foods rich in antioxidants, vitamins, minerals including carotenoids etc. can boost the immune system to help fight off various infections including SARS- CoV 2 and other viruses. Carotenoids have been gaining attention particularly in food and pharmaceutical industries owing to their diverse functions including their role as pro-vitamin A activity, potent antioxidant properties, and quenching of reactive oxygen (ROS), such as singlet oxygen and lipid peroxides within the lipid bilayer of the cell membrane. Nevertheless, carotenoids being lipophilic, have poor solubility in aqueous medium and are also chemically instable. They are susceptible to degrade under stimuli environmental conditions during food processing, storage and gastrointestinal passage. They also exhibit poor oral bioavailability, thus, their applications in aqueous-based foods are limited. As a consequent, suitable delivery systems including colloids-based are needed to enhance the solubility, stability and bioavailability of carotenoids. This review presents challenges of incorporation and delivery of carotenoids focusing on stability and factors affecting bioavailability. Furthermore, designed factors impacting bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems are explicitly explained. Each delivery system exhibits its own advantages and disadvantages; thus, the delivery systems should be designed based on their targets and their further applications.
Collapse
Affiliation(s)
- Nuntarat Boonlao
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand
| | | | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
9
|
Recent advances in colloidal technology for the improved bioavailability of the nutraceuticals. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Sridhar K, Inbaraj BS, Chen BH. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants (Basel) 2021; 10:713. [PMID: 33946470 PMCID: PMC8147144 DOI: 10.3390/antiox10050713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Carotenoids are natural pigments widely used in food industries due to their health-promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, characterization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for varied lengths of time, while the release behavior and bioaccessibility were determined by various in vitro digestion and absorption models as well as bioavailability through elucidating pharmacokinetics in an animal model. Moreover, application of nanocarotenoids for various biological applications including antioxidant, anticancer, antibacterial, antiaging, cosmetics, diabetic wound healing and hepatic steatosis were summarized.
Collapse
Affiliation(s)
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (K.S.); or (B.S.I.)
| |
Collapse
|
11
|
Fernandes F, Dias-Teixeira M, Delerue-Matos C, Grosso C. Critical Review of Lipid-Based Nanoparticles as Carriers of Neuroprotective Drugs and Extracts. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:563. [PMID: 33668341 PMCID: PMC7996241 DOI: 10.3390/nano11030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The biggest obstacle to the treatment of diseases that affect the central nervous system (CNS) is the passage of drugs across the blood-brain barrier (BBB), a physical barrier that regulates the entry of substances into the brain and ensures the homeostasis of the CNS. This review summarizes current research on lipid-based nanoparticles for the nanoencapsulation of neuroprotective compounds. A survey of studies on nanoemulsions (NEs), nanoliposomes/nanophytosomes and solid lipid nanoparticles (SLNs)/nanostructured lipid carriers (NLCs) was carried out and is discussed herein, with particular emphasis upon their unique characteristics, the most important parameters influencing the formulation of each one, and examples of neuroprotective compounds/extracts nanoencapsulated using these nanoparticles. Gastrointestinal absorption is also discussed, as it may pose some obstacles for the absorption of free and nanoencapsulated neuroprotective compounds into the bloodstream, consequently hampering drug concentration in the brain. The transport mechanisms through which compounds or nanoparticles may cross BBB into the brain parenchyma, and the potential to increase drug bioavailability, are also discussed. Additionally, factors contributing to BBB disruption and neurodegeneration are described. Finally, the advantages of, and obstacles to, conventional and unconventional routes of administration to deliver nanoencapsulated neuroprotective drugs to the brain are also discussed, taking into account the avoidance of first-pass metabolism, onset of action, ability to bypass the BBB and concentration of the drug in the brain.
Collapse
Affiliation(s)
- Filipe Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
- NICiTeS—Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, 1649-028 Lisbon, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| |
Collapse
|
12
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Bagherzadeh M, Dinarvand R, Ahmadi S, Rabiee M, Tahriri M, Hamblin MR, Tayebi L, Webster TJ. The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Crit Rev Food Sci Nutr 2021; 62:3658-3697. [PMID: 33399020 DOI: 10.1080/10408398.2020.1867958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as β-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA.,Department of Dermatology, Harvard Medical School, Boston, USA
| | - Lobat Tayebi
- Department of Engineering, Norfolk State University, Norfolk, VA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
13
|
Soliman TN, Wahba MI, Badr AN. Fungal Pigments for Food Industry. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|