1
|
Costa A, Sneddon NW, Goi A, Visentin G, Mammi LME, Savarino EV, Zingone F, Formigoni A, Penasa M, De Marchi M. Invited review: Bovine colostrum, a promising ingredient for humans and animals-Properties, processing technologies, and uses. J Dairy Sci 2023; 106:5197-5217. [PMID: 37268582 DOI: 10.3168/jds.2022-23013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/30/2023] [Indexed: 06/04/2023]
Abstract
Mammalian colostrum, known as "liquid gold," is considered a valuable source of essential nutrients, growth factors, probiotics, prebiotics, antibodies, and other bioactive compounds. Precisely for this reason, bovine colostrum (BC) is an emerging ingredient for the feed, food, and pharmaceutical industries, being nowadays commercially available in a variety of forms in several countries. Moreover, quite a large number of functional foods and supplements for athletes, human medicines, pet nutrition plans, and complementary feed for some livestock categories, such as piglets and calves, contain BC. The amount of BC yielded by a cow after calving represents approximately 0.5% of the yearly output in dairy breeds. For its nutritional properties and low availability, BC is characterized by a greater market value and an increasing demand compared with other by-products of the dairy sector. However, information regarding the market size of BC for the food and pharmaceutical industries, as well as future developments and perspectives, is scarcely available in the scientific literature. This lack can be attributed to industrial secrecy as well as to the relatively small scale of the BC business when compared with other dairy products, which makes the BC market limited, specific, and intended for a restricted audience. From a legal perspective, regulations assign BC to the large family of milk-derived powders; thus, collecting specific production data, as well as import-export trend information, is not straightforward and can result in unprecise estimates. Given that the interest in BC is increasing in different fields, it is important to have an overview of the production steps and of pros and cons of this emerging ingredient. The present narrative review discloses why BC has started to be considered a product rather than a by-product of the dairy industry. Moreover, the present document aims to summarize the existing methodologies used to assess BC quality in terms of immunoglobulin concentration, the different applications of BC in the industry, and the BC processing technologies. Finally, a panoramic view of the current international market is provided for the first time for this dairy product.
Collapse
Affiliation(s)
- A Costa
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell'Emilia (BO), Italy.
| | - N W Sneddon
- School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - A Goi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - G Visentin
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell'Emilia (BO), Italy
| | - L M E Mammi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell'Emilia (BO), Italy
| | - E V Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via N. Giustiniani 2, 35128 Padova (PD), Italy; Gastroenterology Unit, Azienda Ospedale Università di Padova, Via N. Giustiniani 2, 35128 Padova (PD), Italy
| | - F Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via N. Giustiniani 2, 35128 Padova (PD), Italy; Gastroenterology Unit, Azienda Ospedale Università di Padova, Via N. Giustiniani 2, 35128 Padova (PD), Italy
| | - A Formigoni
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell'Emilia (BO), Italy
| | - M Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
2
|
An updated and comprehensive review on the composition and preservation strategies of bovine colostrum and its contributions to animal health. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Mehra R, Garhwal R, Sangwan K, Guiné RPF, Lemos ET, Buttar HS, Visen PKS, Kumar N, Bhardwaj A, Kumar H. Insights into the Research Trends on Bovine Colostrum: Beneficial Health Perspectives with Special Reference to Manufacturing of Functional Foods and Feed Supplements. Nutrients 2022; 14:659. [PMID: 35277018 PMCID: PMC8840100 DOI: 10.3390/nu14030659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Bovine colostrum (BC) is the initial mammary secretion after parturition, which is nature's bountiful source consisting of nutritional and bioactive components present in a highly concentrated low-volume format. All mammalian newborns require colostrum to enhance physiological processes such as lifelong immunity, gastrointestinal development, and resistance to microbial infections. The genetic, environmental, and processing methods can all have an impact on the biochemical contents of BC and its supplements. BC and its derivatives have been intensively researched for their potential use in functional foods, medicines, and animal feed. Evidence from clinical studies suggests that BC products are well-tolerated, nontoxic, and safe for human ingestion. Functional foods, feed, and pharmaceutical formulations based on bovine colostrum are playing noteworthy roles in the development of innovative products for promoting health and the prevention of chronic illnesses. This systematic review sheds light on recent research on (a) the effects of processing techniques on BC components, (b) emerging techniques used in the isolation and identification of novel components, (c) BC-based functional foods for human consumption and animal feed supplements, and (d) the role of BC in current drug delivery, as well as future recommendations.
Collapse
Affiliation(s)
- Rahul Mehra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (R.M.); (R.G.); (K.S.); (N.K.)
| | - Renu Garhwal
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (R.M.); (R.G.); (K.S.); (N.K.)
| | - Karnam Sangwan
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (R.M.); (R.G.); (K.S.); (N.K.)
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
| | - Edite Teixeira Lemos
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | | | - Naveen Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (R.M.); (R.G.); (K.S.); (N.K.)
| | | | - Harish Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India; (R.M.); (R.G.); (K.S.); (N.K.)
| |
Collapse
|
4
|
Gomes RD, Anaya K, Galdino AB, Oliveira JP, Gama MA, Medeiros CA, Gavioli EC, Porto ALF, Rangel AH. Bovine colostrum: A source of bioactive compounds for prevention and treatment of gastrointestinal disorders. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Bovine Colostrum for Human Consumption—Improving Microbial Quality and Maintaining Bioactive Characteristics through Processing. DAIRY 2021. [DOI: 10.3390/dairy2040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The main purpose of bovine colostrum, being the milk secreted by a cow after giving birth, is to transfer passive immunity to the calf. The calves have an immature immune system as they lack immunoglobulins (Igs). Subsequently, the supply of good quality bovine colostrum is required. The quality of colostrum is classified by low bacterial counts and adequate Ig concentrations. Bacterial contamination can contain a variety of human pathogens or high counts of spoilage bacteria, which has become more challenging with the emerging use of bovine colostrum as food and food supplements. There is also a growing risk for the spread of zoonotic diseases originating from bovines. For this reason, processing based on heat treatment or other feasible techniques is required. This review provides an overview of literature on the microbial quality of bovine colostrum and processing methods to improve its microbial quality and keep its nutritional values as food. The highlights of this review are as follows: high quality colostrum is a valuable raw material in food products and supplements; the microbial safety of bovine colostrum is increased using an appropriate processing-suitable effective heat treatment which does not destroy the high nutrition value of colostrum; the heat treatment processes are cost-effective compared to other methods; and heat treatment can be performed in both small- and large-scale production.
Collapse
|
6
|
Effect of hurdle technology of gentle pasteurisation and drying process on bioactive proteins, antioxidant activity and microbial quality of cow and buffalo colostrum. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Garimano N, Diaz Vergara LI, Kim AD, Badin EE, Sodero S, Bernal AM, Gonzalez DD, Amaral MM, Lespinard AR, Porporatto C, Montenegro MA, Palermo MS, Larzabal M, Cataldi AA, Ibarra C, Sacerdoti F. Preservation of protective capacity of hyperimmune anti-Stx2 bovine colostrum against enterohemorrhagic Escherichia coli O157:H7 pathogenicity after pasteurization and spray-drying processes. J Dairy Sci 2021; 104:5229-5238. [PMID: 33685676 DOI: 10.3168/jds.2020-19709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major etiologic agent that causes bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Shiga toxin (Stx) is the main virulence factor of EHEC responsible for the progression to HUS. Although many laboratories have made efforts to develop an effective treatment for Stx-mediated HUS, a specific therapy has not been found yet. Human consumption of bovine colostrum is known to have therapeutic effects against several gastrointestinal infections because of the peptide and proteins (including antibodies) with direct antimicrobial and endotoxin-neutralizing effects contained in this fluid. We have previously demonstrated that colostrum from Stx type 2 (Stx2)-immunized pregnant cows effectively prevents Stx2 cytotoxicity and EHEC O157:H7 pathogenicity. In this study we evaluated the preservation of the protective properties of hyperimmune colostrum against Stx2 (HIC-Stx2) after pasteurization and spray-drying processes by performing in vitro and in vivo assays. Our results showed that reconstituted HIC-Stx2 colostrum after pasteurization at 60°C for 60 min and spray-dried under optimized conditions preserved specific IgG that successfully neutralized Stx2 cytotoxicity on Vero cells. Furthermore, this pasteurized/dehydrated and reconstituted HIC-Stx2 preserved the protective capacity against EHEC infection in a weaned mice model. The consumption of hyperimmune HIC-Stx2 bovine colostrum could be effective for HUS prevention in humans as well as in EHEC control in calves. However, further studies need to be done to consider its use for controlling EHEC infections.
Collapse
Affiliation(s)
- N Garimano
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 1121
| | - L I Diaz Vergara
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - A D Kim
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 1121
| | - E E Badin
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - S Sodero
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - A M Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina, 1425
| | - D D Gonzalez
- Instituto de Virología/INVIT-CICVyA, National Institute of Agricultural Technology (INTA)-Castelar, Buenos Aires, Argentina, 1686
| | - M M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 1121
| | - A R Lespinard
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - C Porporatto
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - M A Montenegro
- Centro de Investigaciones y Transferencia de Villa María (CIT-VM-CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina, 5900
| | - M S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina, 1425
| | - M Larzabal
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, INTA-CONICET, Buenos Aires, Argentina, 1121
| | - A A Cataldi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, INTA-CONICET, Buenos Aires, Argentina, 1121
| | - C Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 1121
| | - F Sacerdoti
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, 1121.
| |
Collapse
|