1
|
Sharma A, Singh A, Pendyala B, Balamurugan S, Patras A. Inactivation of deposited bioaerosols on food contact surfaces with UV-C light emitting diode devices. Appl Environ Microbiol 2025; 91:e0109324. [PMID: 39570036 DOI: 10.1128/aem.01093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The airborne transmission of infectious diseases and bioaerosol-induced cross-contamination pose significant challenges in the food, dairy, and pharma industries. This study evaluated the effectiveness of 279 nm UV-C LED irradiation for decontaminating bioaerosols, specifically containing microorganisms such as Escherichia coli (C3040- Kanamycin resistant), Salmonella Enteritidis (ATCC 4931), and Pseudomonas fragi (ATCC 4973), on food contact surfaces. Borosilicate glass, silicon rubber, and stainless steel (316L) surfaces were selected for experimentation for their usage in the food industry. A 50 µL cell suspension was aerosolized at 25 psi pressure using a 4-jet BLAM Nebulizer within a customized glass chamber and then deposited onto the surface of the coupons. The serial dilution approach was used for the microbial enumeration, followed by duplicate plating. With a low Root Mean Square Error (RMSE) and high R2 values, the biphasic kinetic model for UV-C inactivation curves of all three pathogens demonstrated the excellent goodness of fit parameters. At a UV-C dose of 6 mJ cm-2, glass surfaces showed the maximum microbial inactivation (i.e., 2.80, 3.81, and 3.56 log CFU/mL for E. coli, Salmonella, and P. fragi, respectively). Stainless steel and silicon rubber surfaces showed significant microbial inactivation, but log10 reductions observed were consistently lower than glass surface. Our research indicates that UV-C LEDs (279 nm) can effectively disinfect bioaerosols on food contact surfaces.IMPORTANCEFood safety is a major public health concern, with contaminated food causing serious illnesses. UV-C light, used for germicidal action, is effective in disinfecting surfaces and is not subject to the same strict legal restrictions as chemical disinfectants, simplifying compliance with food safety regulations. In this study, we evaluated the efficacy of UV-C (279 nm) LED systems for inactivation of surface-deposited bioaerosols of kanamycin-resistant Escherichia coli (C3040), Salmonella Enteritidis (ATCC 4931), and Pseudomonas fragi (ATCC 4973). The research outcomes can be used to develop UV-based surface disinfection systems to minimize the risk of foodborne illnesses and enhance safety in high-traffic food preparation areas.
Collapse
Affiliation(s)
- Aakash Sharma
- Department of Food and Animal Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Amritpal Singh
- Department of Food and Animal Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Brahmaiah Pendyala
- Department of Food and Animal Sciences, Tennessee State University, Nashville, Tennessee, USA
| | | | - Ankit Patras
- Department of Food and Animal Sciences, Tennessee State University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Tchonkouang RD, Lima AR, Quintino AC, Cristofoli NL, Vieira MC. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods 2023; 12:3227. [PMID: 37685160 PMCID: PMC10486447 DOI: 10.3390/foods12173227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A variety of bioactive substances present in fruit- and vegetable-processed products have health-promoting properties. The consumption of nutrient-rich plant-based products is essential to address undernutrition and micronutrient deficiencies. Preservation is paramount in manufacturing plant-based nonsolid foods such as juices, purees, and sauces. Thermal processing has been widely used to preserve fruit- and vegetable-based products by reducing enzymatic and microbial activities, thereby ensuring safety and prolonged shelf life. However, the nutritional value of products is compromised due to the deleterious effects of thermal treatments on essential nutrients and bioactive compounds. To prevent the loss of nutrients associated with thermal treatment, alternative technologies are being researched extensively. In studies conducted on nonsolid food, UV-C treatment has been proven to preserve quality and minimize nutrient degradation. This review compiles information on the use of UV-C technology in preserving the nutritional attributes of nonsolid foods derived from fruit and vegetables. The legislation, market potential, consumer acceptance, and limitations of UV-C are reviewed.
Collapse
Affiliation(s)
- Rose Daphnee Tchonkouang
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Alexandre R. Lima
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Andreia C. Quintino
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Nathana L. Cristofoli
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Margarida C. Vieira
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
- Department of Food Engineering, High Institute of Engineering, Universidade do Algarve, Campus da Penha, 8000-139 Faro, Portugal
| |
Collapse
|
3
|
Performance of UV-LED and UV-C treatments for the inactivation of Escherichia coli ATCC 25922 in food model solutions: Influence of optical and physical sample characteristics. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
4
|
Grandsir C, Falagán N, Alamar MC. Application of novel technologies to reach net‐zero greenhouse gas emissions in the fresh pasteurised milk supply chain: A review. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Natalia Falagán
- Plant Science Laboratory Cranfield University Cranfield MK43 0AL UK
| | - M. Carmen Alamar
- Plant Science Laboratory Cranfield University Cranfield MK43 0AL UK
| |
Collapse
|
5
|
Hirt B, Fiege J, Cvetkova S, Gräf V, Scharfenberger-Schmeer M, Durner D, Stahl M. Comparison and prediction of UV-C inactivation kinetics of S. cerevisiae in model wine systems dependent on flow type and absorbance. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Inactivation of B. cereus spores in whole milk and almond milk by serpentine path coiled tube UV-C system: Numerical simulation of flow field, lipid peroxidation and volatiles analysis. Food Res Int 2022; 160:111652. [DOI: 10.1016/j.foodres.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
|
7
|
Neokleous I, Tarapata J, Papademas P. Nonthermal turbulent flow
ultraviolet‐C
(
UV‐C
) radiation processing for cheese whey‐brines purification. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ioanna Neokleous
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology Limassol Cyprus
| | - Justyna Tarapata
- Department of Dairy Science and Quality Management, Faculty of Food Sciences University of Warmia and Mazury Olsztyn Poland
| | - Photis Papademas
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology Limassol Cyprus
| |
Collapse
|
8
|
Design and efficiency evaluation of a mid-size serpentine Dean flow UV-C system for the processing of whole milk using computational fluid dynamics and biodosimetry. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Neoκleous I, Tarapata J, Papademas P. Non-thermal Processing Technologies for Dairy Products: Their Effect on Safety and Quality Characteristics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thermal treatment has always been the processing method of choice for food treatment in order to make it safe for consumption and to extend its shelf life. Over the past years non-thermal processing technologies are gaining momentum and they have been utilized especially as technological advancements have made upscaling and continuous treatment possible. Additionally, non-thermal treatments are usually environmentally friendly and energy-efficient, hence sustainable. On the other hand, challenges exist; initial cost of some non-thermal processes is high, the microbial inactivation needs to be continuously assessed and verified, application to both to solid and liquid foods is not always available, some organoleptic characteristics might be affected. The combination of thermal and non-thermal processing methods that will produce safe foods with minimal effect on nutrients and quality characteristics, while improving the environmental/energy fingerprint might be more plausible.
Collapse
|
10
|
|
11
|
Bhatnagar S, Aoyagi H. Thermal and UV Degradation Kinetics of Water-Soluble Extracellular Pigment Produced by Talaromyces purpurogenus. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02733-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Ochoa-Velasco C, Beristain-Bauza S, Hernández-Carranza P, Ruiz-López I. A reactor engineering approach to describe bacterial inactivation during continuous UV-C light processing. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Vashisht P, Pendyala B, Gopisetty VVS, Patras A. Modeling and validation of delivered fluence of a continuous Dean flow pilot scale UV system: monitoring fluence by biodosimetry approach. Food Res Int 2021; 148:110625. [PMID: 34507769 DOI: 10.1016/j.foodres.2021.110625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
The inactivation of pathogenic microorganisms in water and high transmittance liquid foods has been studied extensively. The efficiency of the process is relatively low for treating opaque liquid foods using traditional UV systems. This study evaluated the ability of UV-C light to inactivate foodborne pathogens in a simulated opaque fluid (6.5 to 17 cm-1) at commercial relevant flow rates (31.70, 63.40, 95.10 gph) using a pilot-scale Dean Flow UV system. In this study, a mathematical model for the prediction of delivered fluence was developed by the biodosimetry method. The results revealed that increased Reduction equivalent fluence (REF) rates were observed with increased flow rates due to additional turbulence. The experimental and calculated REF were well correlated with the UV-C absorption coefficient range of 6.5 to 17 cm-1 indicating efficient mixing in the reactor. REF scaled up linearly at experimental conditions as an inverse function of flow rate and absorption coefficient, and a linear mathematical model (R2 > 0.99, p < 0.05) to predict delivered REF was developed. The model was tested and validated against independent experiments using Salmonella Typhimurium and Bacillus cereus endospores. The predicted and experimental REF values were in close agreement (p > 0.05). It is demonstrated that the developed model can predict the REF, thus microbial inactivation of microbial suspensions in simulated fluid with the absorption coefficient of 6.5-17 cm-1 and flow rates of 31.70-95.10 gph. The pilot system will be field-tested against microorganisms in highly absorbing and scattering fluids.
Collapse
Affiliation(s)
- Pranav Vashisht
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA
| | - Brahmaiah Pendyala
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA.
| | - Vybhav Vipul Sudhir Gopisetty
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA
| | - Ankit Patras
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA.
| |
Collapse
|