1
|
Wei G, Tao J, Fu X, Wang D, Dong X, Huang A. Insights into the effect of complex phosphates on acid-induced milk fan gel properties: Texture, rheological, microstructure, and molecular forces. J Dairy Sci 2024; 107:9054-9073. [PMID: 38762104 DOI: 10.3168/jds.2024-24737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 05/20/2024]
Abstract
Milk fan cheese, a type of stretched cheese, presents challenges in its stretch forming. This study investigated the effects of complex phosphates (sodium tripolyphosphate and sodium dihydrogen phosphate, STPP-DSP) on the gelling properties of acid-induced milk fan gel and the mechanisms contributing to its stretch forming. The treatment of milk fan gel with STPP-DSP resulted in improved functional and textural properties compared with the control group. In particular, drawing length increased significantly from 69.67 nm to 80.33 nm, and adhesiveness increased from 1,737.89 g/mm to 1,969.79 g/mm. The addition of STPP-DSP also led to increased viscosity, elastic modulus (G'), and viscous modulus (G″). Microstructural analysis revealed the formation of a fibrous structure within the gel after STPP-DSP treatment, facilitating uniform embedding of fat globules and emulsification. Structural analysis showed that the addition of STPP-DSP increased β-fold and decreased random coiling of the gel, facilitating the unfolding of protein structures. Additionally, UV absorption spectroscopy and excitation emission matrix spectroscopy results indicated the formation of a chelate between STPP-DSP and milk fan gel, increasing protein-protein molecular interactions. Evidence from differential scanning calorimetry and X-ray diffraction demonstrated the formation of sodium caseinate chelate. Fourier transform infrared spectroscopy and zeta potential analysis revealed that the sodium caseinate chelate formed through hydrophobicity, hydrogen bonding, and electrostatic forces. These findings provided theoretical insights into how phosphates can improve the stretch forming of milk fan gel, facilitating the application of phosphate additives in stretched-cheese processing.
Collapse
Affiliation(s)
- Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jifang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaoping Fu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Daodian Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaozhu Dong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China..
| |
Collapse
|
2
|
Lim QY, Cheng LH. A review on stringiness property of cheese and the measuring technique. J Texture Stud 2023. [PMID: 37985234 DOI: 10.1111/jtxs.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
This review paper provides a deep understanding of stringiness property in a cheese product. Stringiness is used to describe the extended continuous strand of a molten cheese, especially mozzarella cheese. Stringiness is often described quantitatively by stretch length, as well as qualitative definition which focuses on the dimension of strand and ease of extensibility. Very often, the scope of defining stringiness attributes is limited by the measuring techniques because a complete experimental setup is required to obtain information on both stretch quantity and stretch quality. Among the measuring methods, cheese extensibility rig stands out to be the best method to assess stringiness attribute of a cheese as it is an objective method. In addition, a detailed study on the molecular behavior and interactions among natural and imitation cheese components in delivering stringiness, and the challenges faced therein have been reviewed. Thus, the review provides a foundation for the development of vegan cheese or plant-based cheese with stringiness properties.
Collapse
Affiliation(s)
- Qai-Yeing Lim
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Lai-Hoong Cheng
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
3
|
Wang W, Jia R, Hui Y, Zhang F, Zhang L, Liu Y, Song Y, Wang B. Utilization of two plant polysaccharides to improve fresh goat milk cheese: Texture, rheological properties, and microstructure characterization. J Dairy Sci 2023; 106:3900-3917. [PMID: 37080791 DOI: 10.3168/jds.2022-22195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/22/2022] [Indexed: 04/22/2023]
Abstract
This study aimed to evaluate the effects of added jujube polysaccharide (JP) and Lycium barbarum polysaccharide (LBP) on the texture, rheological properties, and microstructure of goat milk cheese. Seven groups of fresh goat milk cheese were produced with 4 levels (0, 0.2, 0.6, and 1%, wt/wt) of JP and LBP. The goat milk cheese containing 1% JP showed the highest water-holding capacity, hardness, and the strongest rheological properties by creating a denser and more stable casein network structure. In addition, the yield of goat milk cheese was substantially improved as a result of JP incorporation. Cheeses containing LBP expressed lower fat content, higher moisture, and softer texture compared with the control cheese. Fourier-transform infrared spectroscopy and low-field nuclear magnetic resonance analysis demonstrated that the addition of JP improved the stability of the secondary protein structure in cheese and significantly enhanced the binding capacity of the casein matrix to water molecules due to strengthened intermolecular interactions. The current research demonstrated the potential feasibility of modifying the texture of goat milk cheese by JP or LBP, available for developing tunable goat milk cheese to satisfy consumer preferences and production needs.
Collapse
Affiliation(s)
- Weizhe Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Rong Jia
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuanyuan Hui
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
4
|
Akarca G, Atık A, Atık İ, Denızkara AJ. A comparison study on functional and textural properties of mozzarella cheeses made from bovine and buffalo milks using different starter cultures. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
5
|
Structural, rheological and functional properties of extruded mozzarella cheese influenced by the properties of the renneted casein gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Nasiri M, Tavakolipour H, Safaeian S, Nadushan RM. Exploring the potential of modified potato starch and seaweed salt as structuring agents to design processed cheeses with desirable properties. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Schmidt F, Graf B, Hinrichs J, Kern C. Continuous microwave-assisted extrusion for high moisture texturized foods: A feasibility study. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Sharma P. ADSA Foundation Scholar Award: Materials science approach to the study of mechanical and diffusion properties in cheese. J Dairy Sci 2022; 105:4711-4721. [DOI: 10.3168/jds.2021-21093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
|
9
|
Moghiseh N, Arianfar A, Salehi EA, Rafe A. Effect of inulin/kefiran mixture on the rheological and structural properties of mozzarella cheese. Int J Biol Macromol 2021; 191:1079-1086. [PMID: 34606787 DOI: 10.1016/j.ijbiomac.2021.09.154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
The relationships between chemical, textural, rheological and microstructural properties of low fat mozzarella cheese incorporated with different ratios of inulin/kefiran mixture were studied. By increasing inulin content, the protein and moisture content was increased and as a result, the meltability was reduced. Although, textural properties of low-fat mozzarella was completely influenced by inulin incorporation and hardness was increased, but the lower springiness and higher cohesiveness of cheese was achieved at high level of inulin which may be related to the increase in moisture and protein. Rheological properties of low-fat mozzarella cheese confirmed its shear-thinning behavior in which the G' value was more than G″. Mechanical properties of cheese showed that inulin incorporation into cheese did not significantly change the rheological properties of the cheese matrix. Consequently, the formation of a more rigid and cross-linked protein structure which is less plasticized achieved at high inulin incorporation through keeping more water and protein and less fat content. SEM results indicated the sponge honeycomb structure of mozzarella cheese which clearly confirmed the textural and rheological properties and there was an interrelationship among chemical, textural, rheological and microstructural properties of low-fat mozzarella cheese incorporated at different ratios of inulin.
Collapse
Affiliation(s)
- Nasser Moghiseh
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Akram Arianfar
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.
| | - Esmaeil Ataye Salehi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Ali Rafe
- Department of Food Processing, Research Institute of Food Science and Technology (RIFST), PO Box 91735-147, Mashhad, Iran
| |
Collapse
|
10
|
Feng R, Lillevang SK, Ahrné L. Effect of Water Temperature and Time during Heating on Mass Loss and Rheology of Cheese Curds. Foods 2021; 10:foods10112881. [PMID: 34829162 PMCID: PMC8623044 DOI: 10.3390/foods10112881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
During the manufacturing of mozzarella, cheese curds are heated to the desired stretching temperature traditionally by immersion in water, which influences the curd characteristics before stretching, and consequently the final cheese properties. In this study, cheese curds were immersed in hot water at 60, 70, 80 and 90 °C up to 16 min and the kinetics of mass loss and changes of rheological properties were investigated. The total mass of cooked curds increased up to 10% during the first minute, independent of the temperature, as a consequence of water retention. Fat was the main component lost into the cooking water (<3.5% w/w), while the concentration of protein increased up to 3.4% (w/w) compared to uncooked curds due to the loss of other components. Curds macrostructure during cooking showed that curds fully fuse at 70 °C/4 min; 80 °C/2 min and 90 °C/1 min, while after intensive cooking (>8 min) they lost the ability to fuse as a consequence of protein contraction and fat loss. Storage modulus, representing the curd strength, was dependent on cooking temperature and positively, and linearly, correlated with curd protein content (21.7–24.9%). This work shows the potential to modify curd composition and structure, which will have consequences for further processing and final product properties.
Collapse
Affiliation(s)
- Ran Feng
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark;
| | | | - Lilia Ahrné
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark;
- Correspondence:
| |
Collapse
|