1
|
Zhang P, Liu L, Huang Q, Li S, Geng F, Song H, An F, Li X, Wu Y. Mechanism study on the improvement of egg white emulsifying characteristic by ultrasound synergized citral: Physicochemical properties, molecular flexibility, protein structure. ULTRASONICS SONOCHEMISTRY 2024; 111:107104. [PMID: 39413471 PMCID: PMC11530919 DOI: 10.1016/j.ultsonch.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
As a natural emulsifier, egg white protein (EWP) has great interfacial characteristics and high security, and has broad development prospects. This study explored the impact of ultrasound synergized citral (CI) treatment on the microstructure, molecular flexibility and emulsifying property of EWP, and predicted the interaction between CI and ovalbumin (the main protein in EWP) through molecular docking. The decrease in free amino content and the growth in molecular weight of EWP suggested that CI and proteins were successfully grafted. The results of physicochemical properties revealed that UCEWP (ultrasound synergized citral-treated EWP) had smaller particle size and larger ζ-potential absolute value, which meant that the stability of UCEWP system was enhanced. From the perspective of interfacial characteristics, UCEWP had lower interfacial tension, which remarkably improved its emulsifying property. The emulsifying activity index (EAI) and emulsifying stability index (ESI) of UCEWP were 1.99 times and 3.19 times higher than that of natural EWP (NEWP). Analysis of Fourier transform infrared spectroscopy (FT-IR) and fluorescence spectroscopy illustrated that the secondary and tertiary structures of UCEWP were more disordered and stretched than those of EWPs. Protein microstructure demonstrated that UCEWP presented loose small particle distribution, and correlation analysis reflected that the improvement of molecular flexibility was positively correlated with the enhancement of emulsifying property. These results elucidated that ultrasound synergized CI treatment is an effective mean to improve the molecular flexibility and emulsifying property of EWP, which provides a valuable reference for further application of EWP.
Collapse
Affiliation(s)
- Pei Zhang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lan Liu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China.
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Hongbo Song
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China.
| | - Yingmei Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
2
|
Liu L, Bi J, Chi Y, Chi Y. Effects of pasteurization temperature and amino acids on the gelation behavior of liquid egg yolk: Emphasizing rheology, gel properties, intermolecular forces and microstructure. Food Chem 2024; 463:141508. [PMID: 39378724 DOI: 10.1016/j.foodchem.2024.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Pipeline blockage caused by liquid egg yolk (LEY) in the pasteurization process has become an urgent problem for egg industry. This study investigated the effects of amino acids (betaine/proline) on rheology of LEY and gel property of egg yolk gel (EYG) at various pasteurization temperatures (68, 72, and 76 °C). Rheological results revealed that 72 °C was the key transition point for increase in LEY thermal aggregation rate. Average particle size of EYG, BEYG and PEYG increased by 63.9 %, 27.3 % and 17.3 % with increasing pasteurization temperature. Amino acids promoted increase in disulfide bonding content and facilitated retention of free and bound water within gels. Moreover, amino acids enhanced crystallinity and order of gel structures. Amino acids can effectively mitigate thermal aggregation of LEY at mild temperatures and promote cross-linking of gel network at high temperatures. This study provides a theoretical foundation for heat resistance of LEY and application of EYG.
Collapse
Affiliation(s)
- Lan Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiahui Bi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Tian Y, Lv X, Oh DH, Kassem JM, Salama M, Fu X. Emulsifying properties of egg proteins: Influencing factors, modification techniques, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70004. [PMID: 39267186 DOI: 10.1111/1541-4337.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
As an essential food ingredient with good nutritional and functional properties and health benefits, eggs are widely utilized in food formulations. In particular, egg proteins have good emulsification properties and can be commonly used in various food products, such as mayonnaise and baked goods. Egg protein particles can act as stabilizers for Pickering emulsions because they can effectively adsorb at the oil-water interface, reduce interfacial tension, and form a stable physical barrier. Due to their emulsifying properties, biocompatibility, controlled release capabilities, and ability to protect bioactive substances, egg proteins have become ideal carriers for encapsulating and delivering functional substances. The focus of this review is to summarize current advances in using egg proteins as emulsifiers. The effects of influencing factors (temperature, pH, and ionic strength) and various modification methods (physical, chemical, and biological modification) on the emulsifying properties of egg proteins are discussed. In addition, the application of egg proteins as emulsifiers in food products is presented. Through in-depth research on the emulsifying properties of egg proteins, the optimization of their applications in food, biomedical, and other fields can be achieved.
Collapse
Affiliation(s)
- Yujuan Tian
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | | | - Mohamed Salama
- Dairy Department, National Research Centre, Dokki, Giza, Egypt
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
4
|
Zhao Y, Han Z, Zhu X, Chen B, Zhou L, Liu X, Liu H. Yeast Proteins: Proteomics, Extraction, Modification, Functional Characterization, and Structure: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18774-18793. [PMID: 39146464 DOI: 10.1021/acs.jafc.4c04821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Proteins are essential for human tissues and organs, and they require adequate intake for normal physiological functions. With a growing global population, protein demand rises annually. Traditional animal and plant protein sources rely heavily on land and water, making it difficult to meet the increasing demand. The high protein content of yeast and the complete range of amino acids in yeast proteins make it a high-quality source of supplemental protein. Screening of high-protein yeast strains using proteomics is essential to increase the value of yeast protein resources and to promote the yeast protein industry. However, current yeast extraction methods are mainly alkaline solubilization and acid precipitation; therefore, it is necessary to develop more efficient and environmentally friendly techniques. In addition, the functional properties of yeast proteins limit their application in the food industry. To improve these properties, methods must be selected to modify the secondary and tertiary structures of yeast proteins. This paper explores how proteomic analysis can be used to identify nutrient-rich yeast strains, compares the process of preparing yeast proteins, and investigates how modification methods affect the function and structure of yeast proteins. It provides a theoretical basis for solving the problem of inadequate protein intake in China and explores future prospects.
Collapse
Affiliation(s)
- Yan Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Zhaowei Han
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Xuchun Zhu
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Bingyu Chen
- Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Linyi Zhou
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Xiaoyong Liu
- Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Hongzhi Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550025, China
| |
Collapse
|
5
|
Tian Y, Wang S, Lv J, Ma M, Jin Y, Fu X. Transglutaminase cross-linking ovalbumin-flaxseed oil emulsion gels: Properties, microstructure, and performance in oxidative stability. Food Chem 2024; 448:138988. [PMID: 38522295 DOI: 10.1016/j.foodchem.2024.138988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and β-turn into β-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.
Collapse
Affiliation(s)
- Yue Tian
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shurui Wang
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiran Lv
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
6
|
Jiang J, Yang X, Wang H, Chi Y, Chi Y. Study on the gelling properties of egg white/surfactant system by different heating intensities. Poult Sci 2024; 103:103876. [PMID: 38833746 PMCID: PMC11190698 DOI: 10.1016/j.psj.2024.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
The aim of this study was to elucidate the different effects and difference mechanism of gelling properties among egg white (EW) treated with different heating intensities and the composite addition of rhamnolipid and soybean lecithin. Particle size analyzer, potentiometric analyzer, surface hydrophobicity method, and Fourier transform infrared spectroscopy techniques were used to determine the physicochemical properties and molecular structure, respectively. Low-field nuclear magnetic resonance, magnetic resonance imaging, texture profile analysis, and scanning electron microscopy techniques were used to analyze the gelling properties and gel structure, respectively. And we illuminate the different mechanisms in the gelling properties of the EW with various treatments and key internal factors that play important roles in improving gelling properties by establishing the link between the gelling properties and relevant characteristics by mixed effects model and visual network analysis. The results indicate raising the content of rhamnolipid decreased the migration of immobilized water in the EW gel and the free water content. At the heating intensities of 55 °C/3.5, 65 °C/2.5, and 67 °C/1.5 min, with an increase in rhamnolipid, the gel's cohesiveness, gumminess, and chewiness gradually increased. The mixed effects model indicated that heating intensities and composite ratios have a 2-way interaction on zeta potential, the relaxation time of bound water (T21), the content of bound water (P21), the content of immobilized water (P22), and fractal dimension (df) attributes (P < 0.05). The visual network analysis showed that the protein solubility, the relaxation time of immobilized water (T22), surface hydrophobicity, zeta potential, average particle size (d43) and the relaxation time of free water (T23) are critical contributors to the different gelling properties of EW subjected to various treatments and the improvement of gelling properties. This study will provide theoretical guidance for the development of egg white products and the expansion of egg white's application scope in the egg product processing industry.
Collapse
Affiliation(s)
- Jiwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiaoxue Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Huiyong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, P.R. China.
| |
Collapse
|
7
|
Chen J, Zhang W, Chen Y, Li M, Liu C, Wu X. Effect of glycosylation modification on structure and properties of soy protein isolate: A review. J Food Sci 2024; 89:4620-4637. [PMID: 38955774 DOI: 10.1111/1750-3841.17181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Soybean protein isolate (SPI) is a highly functional protein source used in various food applications, such as emulsion, gelatin, and food packaging. However, its commercial application may be limited due to its poor mechanical properties, barrier properties, and high water sensitivity. Studies have shown that modifying SPI through glycosylation can enhance its functional properties and biological activities, resulting in better application performance. This paper reviews the recent studies on glycosylation modification of SPI, including its quantification method, structural improvements, and enhancement of its functional properties, such as solubility, gelation, emulsifying, and foaming. The review also discusses how glycosylation affects the bioactivity of SPI, such as its antioxidant and antibacterial activity. This review aims to provide a reference for further research on glycosylation modification and lay a foundation for applying SPI in various fields.
Collapse
Affiliation(s)
- Jinjing Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Wanting Zhang
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Yiming Chen
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Meng Li
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Chang Liu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| | - Xiuli Wu
- College of Food Science and Engineering, Changchun University, Changchun, Jilin, China
| |
Collapse
|
8
|
Li J, Wang X, Chang C, Gu L, Su Y, Yang Y, Agyei D, Han Q. Chicken Egg White Gels: Fabrication, Modification, and Applications in Foods and Oral Nutraceutical Delivery. Foods 2024; 13:1834. [PMID: 38928777 PMCID: PMC11202995 DOI: 10.3390/foods13121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Chicken egg white (EW) proteins possess various useful techno-functionalities, including foaming, gelling or coagulating, and emulsifying. The gelling property is one of the most important functionalities of EW proteins, affecting their versatile applications in the food and pharmaceutical industries. However, it is challenging to develop high-quality gelled foods and innovative nutraceutical supplements using native EW and its proteins. This review describes the gelling properties of EW proteins. It discusses the development and action mechanism of the physical, chemical, and biological methods and exogenous substances used in the modification of EW gels. Two main applications of EW gels, i.e., gelling agents in foods and gel-type carriers for nutraceutical delivery, are systematically summarized and discussed. In addition, the research and technological gaps between modified EW gels and their applications are highlighted. By reviewing the new modification strategies and application trends of EW gels, this paper provides insights into the development of EW gel-derived products with new and functional features.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xuechun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Li X, Zhang Y, Wu Y, Huang Y, Huang X, Wu Y, Geng F, Huang Q, Huang M, Li X. Divalent metal ions under low concentration environment improved the thermal gel properties of egg yolk. Poult Sci 2024; 103:103697. [PMID: 38608389 PMCID: PMC11017334 DOI: 10.1016/j.psj.2024.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
To improve the thermal gel properties of egg yolk, the effect of several valence metal ions (K+, Ca2+, Mg2+ and Fe3+) with different concentrations (0-0.72%) on the rheological, gel, and structural properties of egg yolk were investigated. Results showed that monovalent and divalent ions were beneficial to the formation of uniform and dense gel network, especially with the addition of 0.72% magnesium ion, which further improved gel hardness, water holding capacity (WHC) and viscoelastic properties, the properties of egg yolk gel increased with the increase of the concentration of mono-bivalent metal ions. Adding ferric ion remarkably increased the average particle size (d4,3) and apparent viscosity of egg yolk, destroying the disulfide bonds and the hydrophobic interactions in gel. Fourier transform infrared spectroscopy (FT-IR) and fluorescence spectra analysis revealed that metal ions promoted the hydrophobic aggregation among egg yolk proteins and induced the transition of protein secondary structure from ordered to disordered. This work will provide a theoretical reference for the development of low salt and nutrient fortified egg yolk products.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yufeng Zhang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yingmei Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yujie Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xiang Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongyan Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|
10
|
Wang D, Liu Y, Guo M, Sun J. Effect of Ball-Milling Treatment Combined with Glycosylation on the Structure and Functional Properties of Litopenaeus vannamei Protein. Foods 2024; 13:1284. [PMID: 38731655 PMCID: PMC11083002 DOI: 10.3390/foods13091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 05/13/2024] Open
Abstract
Litopenaeus vannamei protein (LVP) is a high-quality protein. However, its functional properties do not fully meet the needs of food processing. In this study, LVP-xylose conjugates were prepared by conventional wet heat method (GLVP) and ball-milling-assisted wet heat method (GBLVP), respectively. The changes in structure and functional properties of the glycosylated LVP were explored. The findings revealed that ball-milling pretreatment increased the grafting degree to 35.21%. GBLVP had a sparser surface structure and lower particle size than GLVP. FTIR spectra showed that xylose was grafted onto LVP successfully and GBLVP had the lowest α-helix content. Compared with GLVP, GBLVP had a decrease in intrinsic fluorescence intensity and surface hydrophobicity, and an increase in UV absorption intensity. Moreover, GBLVP had higher foaming capacity, solubility and water-holding capacity, and lower allergenicity than GLVP. However, ball-milling pretreatment had a negative impact on the vitro digestibility and oil-holding capacity of GBLVP. In conclusion, ball-milling-assisted treatment of glycosylation could effectively improve the functional properties of LVP, benefiting the broader application of LVP in the food industry.
Collapse
Affiliation(s)
| | | | | | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (D.W.); (Y.L.); (M.G.)
| |
Collapse
|
11
|
Qi Q, Shi D, Su W, Mu Y. N-glycoproteomic profiling reveals structural and functional alterations in yellow primary preserved egg white under saline-alkali treatment. Food Chem X 2024; 21:101244. [PMID: 38420501 PMCID: PMC10900575 DOI: 10.1016/j.fochx.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
The posttranslational N-glycosylation of food proteins is important to their structure and function. However, the N-glycoproteomics of yellow preserved egg white were rarely reported. This study explored the changes of N-glycoproteome in yellow preserved eggs white after salt and alkali treatment. A total of 213 N-glycosites were identified on 102 glycoproteins, revealing prevalent glycosylation motifs and multiple N-glycosites within proteins. Salt and alkali treatment significantly altered the glycosylation patterns, impacting major proteins differently. GO analysis indicated the roles of differentially expressed glycoproteins in responding to stimuli and biological regulation. KEGG analysis emphasized the importance of salivary secretion pathway in enzyme secretion and peptide generation. Protein domain analysis highlighted the downregulation of Serpin. Protein-protein interaction networks revealed Apolipoprotein B as central players. This study provides essential structural information on the glycosylation modifications of egg white proteins, contributing to our understanding of the mechanisms behind the functional properties of preserved eggs.
Collapse
Affiliation(s)
- Qi Qi
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Denghui Shi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Li X, Li F, Zhang X, Tang W, Huang M, Huang Q, Tu Z. Interaction mechanisms of edible film ingredients and their effects on food quality. Curr Res Food Sci 2024; 8:100696. [PMID: 38444731 PMCID: PMC10912050 DOI: 10.1016/j.crfs.2024.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Traditional food packaging has problems such as nondegradable and poor food safety. Edible films play an important role in food packaging, transportation and storage, having become a focus of research due to their low cost, renewable, degradable, safe and non-toxic characteristics. According to the different materials of edible films substrate, edible films are usually categorized into proteins, polysaccharides and composite edible films. Functional properties of edible films prepared from different substrate materials also vary, single substrate edible films are defective in some aspects. Functional ingredients such as proteins, polysaccharides, essential oils, natural products, nanomaterials, emulsifiers, and so on are commonly added to edible films to improve their functional properties, extend the shelf life of foods, improve the preservation of sensory properties of foods, and make them widely used in the field of food preservation. This paper introduced the classification, characteristics, and modification methods of common edible films, discussed the interactions among the substrate ingredients of composite edible films, the influence of functional ingredients on the properties of edible films, and the effects of modified edible films on the quality of food, aiming to provide new research ideas for the wide application and further study of edible films.
Collapse
Affiliation(s)
- Xin Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Fenghong Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xuan Zhang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Weiyuan Tang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
13
|
Zhang T, Li S, Yang M, Li Y, Liu X, Shang X, Liu J, Du Z, Yu T. Egg White Protein-Proanthocyanin Complexes Stabilized Emulsions: Investigation of Physical Stability, Digestion Kinetics, and Free Fatty Acid Release Dynamics. Molecules 2024; 29:743. [PMID: 38338486 PMCID: PMC10856577 DOI: 10.3390/molecules29030743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Egg white proteins pose notable limitations in emulsion applications due to their inadequate wettability and interfacial instability. Polyphenol-driven alterations in proteins serve as an effective strategy for optimizing their properties. Herein, covalent and non-covalent complexes of egg white proteins-proanthocyanins were synthesized. The analysis of structural alterations, amino acid side chains and wettability was performed. The superior wettability (80.00° ± 2.23°) and rigid structure (2.95 GPa) of covalent complexes established favorable conditions for their utilization in emulsions. Furthermore, stability evaluation, digestion kinetics, free fatty acid (FFA) release kinetics, and correlation analysis were explored to unravel the impact of covalent and non-covalent modification on emulsion stability, dynamic digestion process, and interlinkages. Emulsion stabilized by covalent complex exhibited exceptional stabilization properties, and FFA release kinetics followed both first-order and Korsmeyer-Peppas models. This study offers valuable insights into the application of complexes of proteins-polyphenols in emulsion systems and introduces an innovative approach for analyzing the dynamics of the emulsion digestion process.
Collapse
Affiliation(s)
- Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (T.Z.); (S.L.); (M.Y.); (Y.L.); (X.L.); (X.S.); (J.L.); (Z.D.)
| | - Ting Yu
- Department of Nutrition, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
14
|
Liu X, Tian G, Hou Y, Zhang Q, Li X, Zuo S, Zhu B, Sang Y. Monosaccharide-induced glycation enhances gelation and physicochemical properties of myofibrillar protein from oyster (Crassostrea gigas). Food Chem 2023; 428:136795. [PMID: 37450954 DOI: 10.1016/j.foodchem.2023.136795] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/13/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Glycation offers a promising potential to improve protein gelling properties in food industries. Therefore, the study was aimed to illustrate the effect of five monosaccharides (erythrose-aldotetrose, xylose-aldopentose, glucose-aldohexose, galactose-aldohexose, and fructose-ketohexose) with different carbon numbers and structure on the structure-gelling relationship of myofibrillar protein (MP) from oyster (Crassostrea gigas). Results showed that monosaccharides significantly increased the glycation degree of MP by increasing sulfhydryl content, forming stable tertiary conformation and decreasing surface hydrophobicity. Moreover, the gel properties of MP like gel strength, water holding capacity, water mobility were improved by alleviating aggregation including the increase of solubility and the decrease of particle sizes. Oyster MP glycated by glucose (aldohexose) possessed the optimal gel properties. Molecular docking simulation showed that hydrogen bonds and hydrocarbon bonds were the mainly non-covalent binding modes. The study will provide a theoretical basis for oyster protein glycation and expand its application on food gel.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Yakun Hou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Qing Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiaoyan Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shuojing Zuo
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Beiwei Zhu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
15
|
Duan W, Chen L, Liu F, Li X, Wu Y, Cheng L, Liu J, Ai C, Huang Q, Zhou Y. The properties and formation mechanism of ovalbumin-fucoidan complex. Int J Biol Macromol 2023; 241:124644. [PMID: 37121411 DOI: 10.1016/j.ijbiomac.2023.124644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
The polymeric materials formed by proteins and polysaccharides through molecular interactions have attracted public attention. In this study, a novel binary complex consisting of ovalbumin (OVA) and fucoidan (FUC) was obtained by electrostatic self-assembly. The self-assembly properties and the formation mechanism of the OVA-FUC binary complex were investigated by changing the charging degree and density of complex through altering pH value and polysaccharides proportion. Structural changes during the OVA-FUC electrostatic self-assembly process were investigated by a phase diagram, ζ-potential, and particle size. The optimal conditions for preparing soluble OVA-FUC binary complex were determined by the protein retention rate and insoluble solids content. Results showed that the soluble OVA-FUC binary complex could be obtained at the pH of 3.5 to 5, and the insoluble OVA-FUC binary complex was generated at the pH of 2.5 to 3.5. The OVA-FUC binary complex (19 ± 0.29 mN/m) possessed a medium ability to reduce interfacial tension of the water-oil interface compared with OVA (15 ± 1.13 mN/m) and FUC (24 ± 0.3 mN/m), indicating that OVA-FUC binary complex has good amphiphilicity and can be applied as a potential pH-controlled emulsifier in function food systems for delivering bioactive substances.
Collapse
Affiliation(s)
- Wenshan Duan
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Fei Liu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yongyan Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lujie Cheng
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junmei Liu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Yan Zhou
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
16
|
Ding K, Geng H, Guo W, Sun W, Zhan S, Lou Q, Huang T. Ultrasonic-assisted glycosylation with κ-carrageenan on the functional and structural properties of fish gelatin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37016806 DOI: 10.1002/jsfa.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Fish gelatin (FG) has multifunctional properties similar to mammalian gelatin (MG), and it has been recognized as the optimal alternative to MG. While its poor surface-active and gelling properties significantly limit its application values, glycosylation has been successfully used to increase surface-active properties of FG, but the influence of ultrasonic-associated glycosylation (UAG) on the gelling and structural characteristics of FG is still rarely reported. This article explores UAG (100-200 W, 0.5-1 h) with κ-carrageenan (κC) on the functional properties (emulsifying, gelling and rheological properties) and structural characteristics of FG. RESULTS The longer time and higher power of ultrasonics accelerated the glycosylation reaction with an increase in glycosylation degree and browning index values. Compared with original FG, FG-κC mixture and bovine gelatin, UAG-modified FG possessed higher emulsification activity index, emulsion stability index, gel strength, hardness and melting temperature values. Among them, gelatin modified by appropriate ultrasonic conditions (200 W, 0.5 h) had the highest emulsifying and gelling properties. Rheological results showed that UAG contributed to the gelation process of gelatin with advanced gelation time and endowed it with high viscosity. Structural analysis indicated that UAG promoted κC to link with FG by the formation of covalent and hydrogen bonds, restricting more bound and immobilized water in the gels, exhibiting higher gelling properties. CONCLUSION This work showed that UAG with κC is a promising method to produce high gelling and emulsifying properties of FG that could replace MG. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Keying Ding
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Hulin Geng
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Wenwen Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Wanyi Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Zhejiang, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| | - Qiaoming Lou
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Zhejiang, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Zhejiang, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Zhejiang, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| |
Collapse
|
17
|
Li X, Sha XM, Yang HS, Ren ZY, Tu ZC. Ultrasonic treatment regulates the properties of gelatin emulsion to obtain high-quality gelatin film. Food Chem X 2023; 18:100673. [PMID: 37091513 PMCID: PMC10119886 DOI: 10.1016/j.fochx.2023.100673] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Gelatin emulsion was an important process for preparing gelatin films. A gelatin film with water resistance and ductility could be prepared using gelatin emulsion, whereas the prepared gelatin film has several defects (e.g., low tensile strength and poor thermal stability). This study aimed to modify gelatin emulsion through ultrasonic treatment, then gelatin film was prepared by the modified gelatin emulsion. The results showed that: under the condition of ultrasonic treatment for 12 min at 400 w, zeta potential and viscosity of gelatin emulsion were the largest; thickness, water vapor permeability (WVP) and water solubility (WS) of corresponding gelatin film were the lowest, and the tensile strength (TS), elongation at break (EAB), denaturation temperature (Tm) and enthalpy value (ΔH) of corresponding gelatin film were the highest. The above result suggested that ultrasonic treatment can be used to prepare a gelatin film with better quality by regulating the properties of gelatin emulsion, and a certain correlation was found between the properties of gelatin emulsion and the properties of gelatin film.
Collapse
|
18
|
Zhang X, Sun Z, Zeng Q, Jin H, Wang S, Jin Y, Hu Y, Cai Z. Utilization of ovalbumin-propylene glycol alginate complex system for superior foam: The effect of pH-driven phase behavior. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Liu X, Zhang X, Ding L, Jin H, Chen N, Huang X, Jin Y, Cai Z. Natural egg yolk emulsion as wall material to encapsulate DHA by two-stage homogenization: emulsion stability, rheology analysis and powder properties. Food Res Int 2023; 167:112658. [PMID: 37087208 DOI: 10.1016/j.foodres.2023.112658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/31/2022] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
The use of safe physical means to achieve egg yolk as natural carrier for active ingredients plays an important role in increasing the added value of egg yolk. In this paper, we prepared DHA-fortified egg yolk emulsion using high-speed shearing (HSS) only and HSS combined with high-pressure homogenization (HPH), respectively. HPH reduced particle size and zeta potential, allowing for better emulsion stability. After 14 days of storage, the encapsulation efficiency was 93.88% even with 15% (w/w) algae oil addition. Rheology analysis presented that HPH improve the viscoelasticity, indicating the enhancement of interaction force between droplets. Then, vaccum low-temperature spray drying (VLTSD) was used to produce powder, which allowed for minimal damage to the encapsulation structure according to scanning electron microscopy and the hydration properties of powder was improved. This work provides a new idea for using egg yolk to encapsulate DHA and improving the properties of egg yolk powder.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xinyue Zhang
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lixian Ding
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Haobo Jin
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nan Chen
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xi Huang
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
20
|
Zhan F, Luo J, Sun Y, Hu Y, Fan X, Pan D. Antioxidant Activity and Cell Protection of Glycosylated Products in Different Reducing Sugar Duck Liver Protein Systems. Foods 2023; 12:foods12030540. [PMID: 36766069 PMCID: PMC9914316 DOI: 10.3390/foods12030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Duck liver is an important by-product of duck food. In this study, we investigated the effects of glucose, fructose, and xylose on the antioxidant properties of glycosylated products of duck liver protein and their protective effects on HepG2 cells. The results show that the glycosylation products of the three duck liver proteins (DLP-G, DLP-F, and DLP-X) all exhibit strong antioxidant activity; among three groups, DLP-X shows the strongest ability to scavenge DPPH, ·OH free radicals, and ABTS+ free radicals. The glycosylated products of duck liver protein are not toxic to HepG2 cells and significantly increase the activity of antioxidant enzymes such as SOD, CAT, and GSH-Px in HepG2 cells at the concentration of 2.0 g/L, reducing oxidative stress damage of cells (p < 0.05). DLP-X has a better effect in reducing oxidative damage and increasing cellular activity in HepG2 cells than DLP-G and DLP-F (p < 0.05). In this study, the duck liver protein glycosylated products by glucose, fructose, and xylose were named as DLP-G, DLP-F, and DLP-X, respectively.
Collapse
Affiliation(s)
- Feili Zhan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Jiafeng Luo
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Yangyang Hu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Xiankang Fan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Correspondence: ; Tel.: +86-135-6789-6492
| |
Collapse
|
21
|
Luo X, Lu J, Wu Y, Duan W, An F, Huang Q, Chen L, Wei S. Reducing the potential allergenicity of amandin through binding to (-)-epigallocatechin gallate. Food Chem X 2022; 16:100482. [PMID: 36304206 PMCID: PMC9594120 DOI: 10.1016/j.fochx.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Amandin (AMP) binding to EGCG changed protein structure. AMP bound to EGCG primarily through glutamate and cysteine residues. Alkaline and free radical methods dented AMP allergenic, but the principles differed.
Potential allergenicity of amandin was reduced by binding amandin with (−)-epigallocatechin gallate (EGCG) via alkaline, free radical, ultrasound-assisted alkaline, and ultrasound-assisted free radical methods. These results of total phenol content, free sulfhydryl group, free amino group, surface hydrophobicity, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated that amandin might be covalently bound to EGCG through reactive groups such as sulfhydryl and amino groups, or non-covalently through hydrophobic interactions. Fourier transformed infrared (FT-IR) spectroscopy and fluorescence spectroscopy revealed structural changes of amandin-EGCG conjugate, which also caused significant reduction in potential allergenicity of amandin. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) found that amandin bound to EGCG mainly through cysteine and glutamate residues, and linear epitope for amandin was reduced. This provided a new method and theoretical basis of hypoallergenic almond food.
Collapse
Affiliation(s)
- Xin Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiankang Lu
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Xinjiang Province, 843300, China
| | - Yongyan Wu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenshan Duan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China,Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou, China,Corresponding authors at: Guizhou Medical University, Gui 'an New District, Guizhou Province 550025, China.
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China,Corresponding authors at: Guizhou Medical University, Gui 'an New District, Guizhou Province 550025, China.
| | - Shaofeng Wei
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China,Corresponding authors at: Guizhou Medical University, Gui 'an New District, Guizhou Province 550025, China.
| |
Collapse
|
22
|
Du T, Xu J, Zhu S, Yao X, Guo J, Lv W. Effects of spray drying, freeze drying, and vacuum drying on physicochemical and nutritional properties of protein peptide powder from salted duck egg white. Front Nutr 2022; 9:1026903. [PMID: 36337632 PMCID: PMC9626763 DOI: 10.3389/fnut.2022.1026903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2023] Open
Abstract
Salted duck egg white contains many kinds of high quality protein, but it is often discarded as food factory waste because of high salinity and other reasons. The discarded salted duck egg white not only causes a waste of resources, but also causes environmental pollution. Using salted duck egg white as raw material, this study was completed to investigate the effects of three drying methods including freeze drying, vacuum drying, and spray drying on physicochemical and nutritional properties of protein powder from salted duck egg white. The results showed that the solubility, foaming and foaming stability, emulsification and emulsification stability of the protein peptide of salted duck egg white decreased to different degrees after drying. The scavenging rates of freeze-dried samples for superoxide anion, hydroxyl radical, and 1,1-Diphenyl-2-picrylhydrazyl (DPPH·) reached 48.76, 85.03, and 80.17%, respectively. Freeze drying had higher scavenging rates than vacuum drying and spray drying. The results of electron microscopy showed that freeze-drying had the least effect on the structure of protein peptide powder of salted duck egg white. The purpose of this experiment was to provide theoretical guidance and technical support for industrial drying of salted duck egg white protein solution.
Collapse
Affiliation(s)
- Tianyin Du
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shengnan Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Xinjun Yao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jun Guo
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Ng CH, Tang PL, Ong YY. Enzymatic hydrolysis improves digestibility of edible bird’s nest (EBN): combined effect of pretreatment and enzyme. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Asaithambi N, Singha P, Singh SK. Comparison of the effect of hydrodynamic and acoustic cavitations on functional, rheological and structural properties of egg white proteins. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Inhibiting effect of dry heat on the heat-induced aggregation of egg white protein. Food Chem 2022; 387:132850. [DOI: 10.1016/j.foodchem.2022.132850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/09/2022] [Accepted: 03/27/2022] [Indexed: 01/07/2023]
|
26
|
Comprehensive identification and hydrophobic analysis of key proteins affecting foam capacity and stability during the evolution of egg white foam. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Xiang X, Hu G, Yu Z, Li X, Wang F, Ma X, Huang Y, Liu Y, Chen L. Changes in the textural and flavor characteristics of egg white emulsion gels induced by lipid and thermal treatment. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Liu L, Wang Q, Wu Y, Wang G, Geng F, Song H, Luo P, Huang Q. Effect of ball milling-assisted glycosylation modification on the structure and foaming property of egg white protein. J Food Sci 2022; 87:3117-3128. [PMID: 35703671 DOI: 10.1111/1750-3841.16218] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
The effect of different glycosylation degrees on molecular structure and foaming property of egg white protein (EWP) was investigated using ball milling-assisted glycosylation. The results showed the foaming ability (FA) and foam stability (FS) of EWP improved when the degree of glycosylation was increased. In particular, FA of ball milling-assisted glycosylation of EWP enhanced by 39.9% and 28.8%, and the FS increased by 28.7% and 24.0% compared with EWP and ball milling egg white protein (BE) at 150 min of reaction. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis could reflect the grafting degree of EWP and glucose molecules from the side. When EWP was fully grafted with glucose, endogenous fluorescence and free sulfhydryl groups indicated that tertiary structure of EWP was depolymerized, and Fourier transform infrared spectroscopy showed the secondary structure tended to change from order to disorder. The results of this study indicated that ball milling-assisted glycosylation modification was a practical method to improve the foaming property of EWP. PRACTICAL APPLICATION: EWP has great FA and FS, making it indispensable in the baking industry. In this study, ball milling-assisted glycosylation was used to improve the foaming property of EWP, and the molecular structure of EWP with different degrees of glycosylation was fully resolved. The results demonstrated that ball milling, as a physical pretreatment, can fully unfold the structure of EWP. When sugar molecules were fully grafted, the particle size of EWP reduced, solubility increased, and the stability of system improved, thus enhancing the foaming property of EWP. The results can provide theoretical basis for improving the foaming property of EWP and provide a reference value for its industrial application.
Collapse
Affiliation(s)
- Lan Liu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qia Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongyan Wu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoze Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hongbo Song
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| |
Collapse
|
29
|
Wang X, Wang S, Xu D, Peng J, Gao W, Cao Y. The Effect of Glycosylated Soy Protein Isolate on the Stability of Lutein and Their Interaction Characteristics. Front Nutr 2022; 9:887064. [PMID: 35685872 PMCID: PMC9172447 DOI: 10.3389/fnut.2022.887064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Lutein is a natural fat-soluble carotenoid with various physiological functions. However, its poor water solubility and stability restrict its application in functional foods. The present study sought to analyze the stability and interaction mechanism of the complex glycosylated soy protein isolate (SPI) prepared using SPI and inulin-type fructans and lutein. The results showed that glycosylation reduced the fluorescence intensity and surface hydrophobicity of SPI but improved the emulsification process and solubility. Fluorescence intensity and ultraviolet–visible (UV–Vis) absorption spectroscopy results showed that the fluorescence quenching of the glycosylated soybean protein isolate by lutein was static. Through thermodynamic parameter analysis, it was found that lutein and glycosylated SPI were bound spontaneously through hydrophobic interaction, and the binding stoichiometry was 1:1. The X-ray diffraction analysis results showed that lutein existed in the glycosylated soybean protein isolate in an amorphous form. The Fourier transform infrared spectroscopy analysis results revealed that lutein had no effect on the secondary structure of glycosylated soy protein isolate. Meanwhile, the combination of lutein and glycosylated SPI improved the water solubility of lutein and the stability of light and heat.
Collapse
Affiliation(s)
- Xia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jingwei Peng
- Chenguang Biotech Group Co., Ltd., Handan, China
| | - Wei Gao
- Chenguang Biotech Group Co., Ltd., Handan, China
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
30
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|