1
|
Tricou LP, Al-Hawat ML, Cherifi K, Manrique G, Freedman BR, Matoori S. Wound pH-Modulating Strategies for Diabetic Wound Healing. Adv Wound Care (New Rochelle) 2024; 13:446-462. [PMID: 38149883 DOI: 10.1089/wound.2023.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Significance: Chronic diabetic wounds on the lower extremities (diabetic foot ulcers, DFU) are one of the most prevalent and life-threatening complications of diabetes, responsible for significant loss of quality of life and cost to the health care system. Available pharmacologic treatments fail to achieve complete healing in many patients. Recent studies and investigational treatments have highlighted the potential of modulating wound pH in DFU. Recent Advances: Data from in vitro, preclinical, and clinical studies highlight the role of pH in the pathophysiology of DFU, and topical administration of pH-lowering agents have shown promise as a therapeutic strategy for diabetic wounds. In this critical review, we describe the role of pH in DFU pathophysiology and present selected low-molecular-weight and hydrogel-based pH-modulating systems for wound healing and infection control in diabetic wounds. Critical Issues: The molecular mechanisms leading to pH alterations in diabetic wounds are complex and may differ between in vitro models, animal models of diabetes, and the human pathophysiology. Wound pH-lowering bandages for DFU therapy must be tested in established animal models of diabetic wound healing and patients with diabetes to establish a comprehensive benefit-risk profile. Future Directions: As our understanding of the role of pH in the pathophysiology of diabetic wounds is deepening, new treatments for this therapeutic target are being developed and will be tested in preclinical and clinical studies. These therapeutic systems will establish a target product profile for pH-lowering treatments such as an optimal pH profile for each wound healing stage. Thus, controlling wound bed pH could become a powerful tool to accelerate chronic diabetic wound healing.
Collapse
Affiliation(s)
- Léo-Paul Tricou
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
- ISPB Faculté de Pharmacie, Université Claude Bernard Lyon 1, Lyon, France
- Chemical Engineering Department, Polytechnique Montreal, Montréal, Canada
| | | | - Katia Cherifi
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Benjamin R Freedman
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Matoori
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| |
Collapse
|
2
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
3
|
Onyango LA, Liang J. Manuka honey as a non-antibiotic alternative against Staphylococcus spp. and their small colony variant (SCVs) phenotypes. Front Cell Infect Microbiol 2024; 14:1380289. [PMID: 38868298 PMCID: PMC11168119 DOI: 10.3389/fcimb.2024.1380289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 06/14/2024] Open
Abstract
The antibiotic resistance (ABR) crisis is an urgent global health priority. Staphylococci are among the problematic bacteria contributing to this emergency owing to their recalcitrance to many clinically important antibiotics. Staphylococcal pathogenesis is further complicated by the presence of small colony variants (SCVs), a bacterial subpopulation displaying atypical characteristics including retarded growth, prolific biofilm formation, heightened antibiotic tolerance, and enhanced intracellular persistence. These capabilities severely impede current chemotherapeutics, resulting in chronic infections, poor patient outcomes, and significant economic burden. Tackling ABR requires alternative measures beyond the conventional options that have dominated treatment regimens over the past 8 decades. Non-antibiotic therapies are gaining interest in this arena, including the use of honey, which despite having ancient therapeutic roots has now been reimagined as an alternative treatment beyond just traditional topical use, to include the treatment of an array of difficult-to-treat staphylococcal infections. This literature review focused on Manuka honey (MH) and its efficacy as an anti-staphylococcal treatment. We summarized the studies that have used this product and the technologies employed to study the antibacterial mechanisms that render MH a suitable agent for the management of problematic staphylococcal infections, including those involving staphylococcal SCVs. We also discussed the status of staphylococcal resistance development to MH and other factors that may impact its efficacy as an alternative therapy to help combat ABR.
Collapse
Affiliation(s)
- Laura A. Onyango
- Department of Biology, Trinity Western University, Langley, BC, Canada
| | | |
Collapse
|
4
|
Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022; 14:pharmaceutics14081663. [PMID: 36015289 PMCID: PMC9414000 DOI: 10.3390/pharmaceutics14081663] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Honey was used in traditional medicine to treat wounds until the advent of modern medicine. The rising global antibiotic resistance has forced the development of novel therapies as alternatives to combat infections. Consequently, honey is experiencing a resurgence in evaluation for antimicrobial and wound healing applications. A range of both Gram-positive and Gram-negative bacteria, including antibiotic-resistant strains and biofilms, are inhibited by honey. Furthermore, susceptibility to antibiotics can be restored when used synergistically with honey. Honey’s antimicrobial activity also includes antifungal and antiviral properties, and in most varieties of honey, its activity is attributed to the enzymatic generation of hydrogen peroxide, a reactive oxygen species. Non-peroxide factors include low water activity, acidity, phenolic content, defensin-1, and methylglyoxal (Leptospermum honeys). Honey has also been widely explored as a tissue-regenerative agent. It can contribute to all stages of wound healing, and thus has been used in direct application and in dressings. The difficulty of the sustained delivery of honey’s active ingredients to the wound site has driven the development of tissue engineering approaches (e.g., electrospinning and hydrogels). This review presents the most in-depth and up-to-date comprehensive overview of honey’s antimicrobial and wound healing properties, commercial and medical uses, and its growing experimental use in tissue-engineered scaffolds.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Global antibiotic resistance is compromising the management of soft tissue infection and Acute Bacterial Skin and Skin Structure Infection (ABSSI). This review describes a novel topical treatment Reactive Oxygen (RO) gel which could compliment and in some situations replace systemic antibiotics. RECENT FINDINGS A novel topical treatment RO gel could have an important role in treatment, infection prevention and antimicrobial stewardship. RO is highly antimicrobial against Gram positive and negative bacteria, by slow release of oxygen radicals over a prolonged period of up to 72 h. It prevents and breaks down biofilm and may support healing by cellular signalling. Much clinical investigation remains to be delivered on RO therapy but there seem few disadvantages in its use and early clinical evaluations are extremely promising. SUMMARY Managing complicated skin and soft tissue infections require more than just antibiotic treatment. Soft tissue infection healing is often compromised by underlying comorbidities and pathology and increasingly the presence of highly antimicrobial-resistant bacteria. This has been highlighted particularly in war and trauma soft tissue infection. The fundamentals of soft tissue infection repair require early surgical drainage and debridement, correction of compromised physiology and treatment of underlying conditions and appropriate antimicrobial treatment. RO therapy could be an important advance.
Collapse
|
6
|
O'Farrell C, Hall TJ, Grover LM, Cox SC. Formulation of an antibacterial topical cream containing bioengineered honey that generates reactive oxygen species. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112664. [DOI: 10.1016/j.msec.2022.112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022]
|
7
|
Aslan E, Vyas C, Yupanqui Mieles J, Humphreys G, Diver C, Bartolo P. Preliminary Characterization of a Polycaprolactone-SurgihoneyRO Electrospun Mesh for Skin Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 15:89. [PMID: 35009233 PMCID: PMC8746156 DOI: 10.3390/ma15010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 05/09/2023]
Abstract
Skin is a hierarchical and multi-cellular organ exposed to the external environment with a key protective and regulatory role. Wounds caused by disease and trauma can lead to a loss of function, which can be debilitating and even cause death. Accelerating the natural skin healing process and minimizing the risk of infection is a clinical challenge. Electrospinning is a key technology in the development of wound dressings and skin substitutes as it enables extracellular matrix-mimicking fibrous structures and delivery of bioactive materials. Honey is a promising biomaterial for use in skin tissue engineering applications and has antimicrobial properties and potential tissue regenerative properties. This preliminary study investigates a solution electrospun composite nanofibrous mesh based on polycaprolactone and a medical grade honey, SurgihoneyRO. The processing conditions were optimized and assessed by scanning electron microscopy to fabricate meshes with uniform fiber diameters and minimal presence of beads. The chemistry of the composite meshes was examined using Fourier transform infrared spectroscopy and X-ray photon spectroscopy showing incorporation of honey into the polymer matrix. Meshes incorporating honey had lower mechanical properties due to lower polymer content but were more hydrophilic, resulting in an increase in swelling and an accelerated degradation profile. The biocompatibility of the meshes was assessed using human dermal fibroblasts and adipose-derived stem cells, which showed comparable or higher cell metabolic activity and viability for SurgihoneyRO-containing meshes compared to polycaprolactone only meshes. The meshes showed no antibacterial properties in a disk diffusion test due to a lack of hydrogen peroxide production and release. The developed polycaprolactone-honey nanofibrous meshes have potential for use in skin applications.
Collapse
Affiliation(s)
- Enes Aslan
- Department of Machine and Metal Technologies, Gumusova Vocational School, Duzce University, Duzce 81850, Turkey;
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
| | - Joel Yupanqui Mieles
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
| | - Gavin Humphreys
- School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Carl Diver
- Department of Engineering, Manchester Metropolitan University, Manchester M15 6BH, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (C.V.); (J.Y.M.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
8
|
McLoone P, Zhumbayeva A, Yunussova S, Kaliyev Y, Yevstafeva L, Verrall S, Sungurtas J, Austin C, Allwood JW, McDougall GJ. Identification of components in Kazakhstan honeys that correlate with antimicrobial activity against wound and skin infecting microorganisms. BMC Complement Med Ther 2021; 21:300. [PMID: 34930218 PMCID: PMC8690519 DOI: 10.1186/s12906-021-03466-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background Antimicrobial drug resistance is a major public health threat that can render infections including wound and skin infections untreatable. The discovery of new antimicrobials is critical. Approaches to discover novel antimicrobial therapies have included investigating the antimicrobial activity of natural sources such as honey. In this study, the anti-microbial activity and chemical composition of 12 honeys from Kazakhstan and medical grade manuka honey were investigated. Methods Agar well diffusion and broth culture assays were used to determine anti-microbial activity against a range of skin and wound infecting micro-organisms. Folin-Ciocalteu method was used to determine the total phenol content of the honeys and non-targeted liquid chromatography analysis was performed to identify components that correlated with antimicrobial activity. Results In the well diffusion assay, the most susceptible micro-organisms were a clinical isolate of Methicillin resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis (ATCC 19433). Buckwheat & multi-floral honey from Kazakhstan demonstrated the highest antimicrobial activity against these two micro-organisms. Kazakhstan honeys with a buckwheat floral source, and manuka honey had the highest total phenol content. Non-targeted liquid chromatography analysis identified components that correlated with anti-microbial activity as hydroxyphenyl acetic acid, p-coumaric acid, (1H)–quinolinone, and abscisic acid. Conclusions The Kazakhstan honeys selected in this study demonstrated antimicrobial activity against wound and skin infecting micro-organisms. Compounds identified as correlating with antimicrobial activity could be considered as potential bioactive agents for the treatment of wound and skin infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03466-0.
Collapse
Affiliation(s)
- Pauline McLoone
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan, Kazakhstan, 0100000.
| | - Aizhan Zhumbayeva
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan, Kazakhstan, 0100000
| | - Sofiya Yunussova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan, Kazakhstan, 0100000
| | - Yerkhat Kaliyev
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Nur-Sultan, Kazakhstan, 0100000
| | - Ludmila Yevstafeva
- Medical Microbiology, Republican Diagnostic Center, University Medical Center, Nur-Sultan, Kazakhstan
| | - Susan Verrall
- Information and Computational Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Julie Sungurtas
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Ceri Austin
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - J Will Allwood
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| | - Gordon J McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, Scotland, UK
| |
Collapse
|
9
|
Hall TJ, Villapún VM, Addison O, Webber MA, Lowther M, Louth SET, Mountcastle SE, Brunet MY, Cox SC. A call for action to the biomaterial community to tackle antimicrobial resistance. Biomater Sci 2021; 8:4951-4974. [PMID: 32820747 DOI: 10.1039/d0bm01160f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global surge of antimicrobial resistance (AMR) is a major concern for public health and proving to be a key challenge in modern disease treatment, requiring action plans at all levels. Microorganisms regularly and rapidly acquire resistance to antibiotic treatments and new drugs are continuously required. However, the inherent cost and risk to develop such molecules has resulted in a drying of the pipeline with very few compounds currently in development. Over the last two decades, efforts have been made to tackle the main sources of AMR. Nevertheless, these require the involvement of large governmental bodies, further increasing the complexity of the problem. As a group with a long innovation history, the biomaterials community is perfectly situated to push forward novel antimicrobial technologies to combat AMR. Although this involvement has been felt, it is necessary to ensure that the field offers a united front with special focus in areas that will facilitate the development and implementation of such systems. This paper reviews state of the art biomaterials strategies striving to limit AMR. Promising broad-spectrum antimicrobials and device modifications are showcased through two case studies for different applications, namely topical and implantables, demonstrating the potential for a highly efficacious physical and chemical approach. Finally, a critical review on barriers and limitations of these methods has been developed to provide a list of short and long-term focus areas in order to ensure the full potential of the biomaterials community is directed to helping tackle the AMR pandemic.
Collapse
Affiliation(s)
- Thomas J Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Owen Addison
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Colney, NR4 7UQ, UK
| | - Morgan Lowther
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie E T Louth
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie E Mountcastle
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
10
|
Zhang F, Chen Z, Su F, Zhang T. Comparison of topical honey and povidone iodine-based dressings for wound healing: a systematic review and meta-analysis. J Wound Care 2021; 30:S28-S36. [PMID: 33856925 DOI: 10.12968/jowc.2021.30.sup4.s28] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES In this review and meta-analysis, we analyse the evidence to compare the efficacy of honey and povidone iodine-based dressings on the outcome of wound healing. METHOD A systematic literature search was performed using PRISMA guidelines in academic databases including MEDLINE, Scopus, Embase and CENTRAL. A meta-analysis was carried out to assess the effect of honey and povidone iodine-based dressings on mean healing duration, mean hospital stay duration and visual analogue scale (VAS) score of pain. RESULTS From the search, 12 manuscripts with a total of 1236 participants (mean age: 40.7±11.7 years) were included. The honey-based dressings demonstrated a medium-to-large effect in reduction of mean healing duration (Hedge's g: -0.81), length of hospital stay (-3.1) and VAS score (-1.2) as compared with the povidone iodine-based dressings. We present evidence (level 1b) in favour of using honey for improvement of wound recovery as compared with povidone iodine. CONCLUSION This review and meta-analysis demonstrate beneficial effects of honey-based dressings over povidone iodine-based dressings for wound recovery.
Collapse
Affiliation(s)
- Fujie Zhang
- Wound Treatment Center, Tianjin Fifth Central Hospital, Tianjin 300450, P. R. China
| | - Zongnan Chen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin 300450, P. R. China
| | - Feng Su
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin 300450, P. R. China
| | - Taijuan Zhang
- Wound Treatment Center, Tianjin Fifth Central Hospital, Tianjin 300450, P. R. China
| |
Collapse
|
11
|
Hall TJ, Hughes EAB, Sajjad H, Kuehne SA, Grant MM, Grover LM, Cox SC. Formulation of a reactive oxygen producing calcium sulphate cement as an anti-bacterial hard tissue scaffold. Sci Rep 2021; 11:4491. [PMID: 33627825 PMCID: PMC7904759 DOI: 10.1038/s41598-021-84060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/08/2021] [Indexed: 01/22/2023] Open
Abstract
Prophylactic antibiotic bone cements are extensively used in orthopaedics. However, the development of antimicrobial resistance to antibiotics, demonstrates a need to find alternative treatments. Herein, an antimicrobial honey (SurgihoneyRO-SHRO) has been successfully incorporated into a calcium sulphate (CS) based cement to produce a hard tissue scaffold with the ability to inhibit bacterial growth. Antimicrobial properties elicited from SHRO are predominantly owed to the water-initiated production of reactive oxygen species (ROS). As an alternative to initially loading CS cement with SHRO, in order to prevent premature activation, SHRO was added into the already developing cement matrix, locking available water into the CS crystal structure before SHRO addition. Promisingly, this methodology produced > 2.5 times (715.0 ± 147.3 μM/mL/g) more ROS over 24 h and exhibited a compressive strength (32.2 ± 5.8 MPa) comparable to trabecular bone after 3 weeks of immersion. In-vitro the SHRO loaded CS scaffolds were shown to inhibit growth of clinically relevant organisms, Staphylococcus aureus and Pseudomonas aeruginosa, with comparable potency to equivalent doses of gentamicin. Encouragingly, formulations did not inhibit wound healing or induce an inflammatory response from osteoblasts. Overall this study highlights the prophylactic potential of CS-SHRO cements as an alternative to traditional antibiotics.
Collapse
Affiliation(s)
- Thomas J Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, Northern Ireland, UK.
| | - Erik A B Hughes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, Northern Ireland, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2TH, Northern Ireland, UK
| | - Hamzah Sajjad
- School of Dentistry, Institute of Clinical Science, University of Birmingham, Edgbaston, Birmingham, B5 7EG, Northern Ireland, UK
| | - Sarah A Kuehne
- School of Dentistry, Institute of Clinical Science, University of Birmingham, Edgbaston, Birmingham, B5 7EG, Northern Ireland, UK.,Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B5 7EG, Northern Ireland, UK
| | - Melissa M Grant
- School of Dentistry, Institute of Clinical Science, University of Birmingham, Edgbaston, Birmingham, B5 7EG, Northern Ireland, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, Northern Ireland, UK
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, Northern Ireland, UK
| |
Collapse
|
12
|
Green KJ, Dods K, Hammer KA. Development and validation of a new microplate assay that utilises optical density to quantify the antibacterial activity of honeys including Jarrah, Marri and Manuka. PLoS One 2020; 15:e0243246. [PMID: 33296391 PMCID: PMC7725308 DOI: 10.1371/journal.pone.0243246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/17/2020] [Indexed: 01/22/2023] Open
Abstract
The phenol equivalence assay is the current industry-adopted test used to quantify the antibacterial activity of honeys in Australia and New Zealand. Activity is measured based on the diffusion of honey through agar and resulting zone of growth inhibition. Due to differences in the aqueous solubilities of antibacterial compounds found in honeys, this method may not be optimal for quantifying activity. Therefore, a new method was developed based on the existing broth microdilution assay that is widely used for determining minimum inhibitory concentrations (MICs). It utilises the four organisms Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, and an optical density endpoint to quantify bacterial growth. Decreases in bacterial growth in the presence of honey, relative to the positive growth control, are then used to derive a single value to represent the overall antibacterial activity of each honey. Antibacterial activity was quantified for a total of 77 honeys using the new method, the phenol equivalence assay and the standard broth microdilution assay. This included 69 honeys with undisclosed floral sources and the comparators Manuka, Jarrah (Eucalyptus marginata), Marri (Corymbia calophylla), artificial and multifloral honey. For the 69 honey samples, phenol equivalence values ranged from 0-48.5 with a mean of 34 (% w/v phenol). Mean MICs, determined as the average of the MICs obtained for each of the four organisms for each honey ranged from 7-24% (w/v honey). Using the new assay, values for the 69 honeys ranged from 368 to 669 activity units, with a mean of 596. These new antibacterial activity values correlated closely with mean MICs (R2 = 0.949) whereas the relationship with phenol equivalence values was weaker (R2 = 0.649). Limit of detection, limit of quantitation, measuring interval, limit of reporting, sensitivity, selectivity, repeatability, reproducibility, and ruggedness were also investigated and showed that the new assay was both robust and reproducible.
Collapse
Affiliation(s)
- Kathryn J. Green
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- CRC for Honey Bee Products, The University of Western Australia, Crawley, WA, Australia
| | - Kenneth Dods
- CRC for Honey Bee Products, The University of Western Australia, Crawley, WA, Australia
- ChemCentre, Resources and Chemistry Precinct, Bentley, Western Australia, Australia
| | - Katherine A. Hammer
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- CRC for Honey Bee Products, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
13
|
McLoone P, Tabys D, Fyfe L. Honey Combination Therapies for Skin and Wound Infections: A Systematic Review of the Literature. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2020; 13:875-888. [PMID: 33262630 PMCID: PMC7700082 DOI: 10.2147/ccid.s282143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/22/2022]
Abstract
Topical application of medical grade honey is recommended for the clinical management of wound infections. The suitability of honey as a wound healing agent is largely due to its antibacterial activity, immune modulatory properties, and biocompatibility. Despite the usefulness of honey in wound healing, chronic wound infections continue to be a global problem requiring new and improved therapeutic interventions. Several recent studies have investigated the effects of combining honey with other therapies or agents with the aim of finding more efficacious treatments. In this systematic review, the database PubMed was used to carry out a search of the scientific literature on the combined effects of honey and other therapies on antimicrobial activity and wound and skin healing. The search revealed that synergistic or additive antimicrobial effects were observed in vitro when honey was combined with antibiotics, bacteriophages, antimicrobial peptides, natural agents, eg, ginger or propolis and other treatment approaches such as the use of chitosan hydrogel. Outcomes depended on the type of honey, the combining agent or treatment and the microbial species or strain. Improved wound healing was also observed in vivo in mice when honey was combined with laser therapy or bacteriophage therapy. More clinical studies in humans are required to fully understand the effectiveness of honey combination therapies for the treatment of skin and wound infections.
Collapse
Affiliation(s)
- Pauline McLoone
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan
| | - Dina Tabys
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan
| | - Lorna Fyfe
- Dietetics, Nutrition, and Biological Sciences, Queen Margaret University, Musselburgh, East Lothian EH21 6UU, UK
| |
Collapse
|
14
|
Nolan VC, Harrison J, Wright JEE, Cox JAG. Clinical Significance of Manuka and Medical-Grade Honey for Antibiotic-Resistant Infections: A Systematic Review. Antibiotics (Basel) 2020; 9:antibiotics9110766. [PMID: 33142845 PMCID: PMC7693943 DOI: 10.3390/antibiotics9110766] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023] Open
Abstract
Antimicrobial resistance is an ever-increasing global issue that has the potential to overtake cancer as the leading cause of death worldwide by 2050. With the passing of the "golden age" of antibiotic discovery, identifying alternative treatments to commonly used antimicrobials is more important than ever. Honey has been used as a topical wound treatment for millennia and more recently has been formulated into a series of medical-grade honeys for use primarily for wound and burn treatment. In this systematic review, we examined the effectiveness of differing honeys as an antimicrobial treatment against a variety of multidrug-resistant (MDR) bacterial species. We analysed 16 original research articles that included a total of 18 different types of honey against 32 different bacterial species, including numerous MDR strains. We identified that Surgihoney was the most effective honey, displaying minimum inhibitory concentrations as low as 0.1% (w/v); however, all honeys reviewed showed a high efficacy against most bacterial species analysed. Importantly, the MDR status of each bacterial strain had no impact on the susceptibility of the organism to honey. Hence, the use of honey as an antimicrobial therapy should be considered as an alternative approach for the treatment of antibiotic-resistant infections.
Collapse
Affiliation(s)
- Victoria C. Nolan
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (V.C.N.); (J.H.)
| | - James Harrison
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (V.C.N.); (J.H.)
| | - John E. E. Wright
- Department of Intensive Care Medicine, Great Western Hospital NHS Foundation Trust, Swindon SN3 6BB, UK;
| | - Jonathan A. G. Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (V.C.N.); (J.H.)
- Correspondence: ; Tel.: +44-121-204-5011
| |
Collapse
|
15
|
Hall TJ, Azoidis I, Barroso IA, Hughes EAB, Grover LM, Cox SC. Formulation of an antimicrobial superabsorbent powder that gels in situ to produce reactive oxygen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111479. [PMID: 33255058 DOI: 10.1016/j.msec.2020.111479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
The enzymatic oxidation of glucose to produce reactive oxygen species (ROS) provides honey with antimicrobial efficacy. This mechanism offers an alternative to traditional antibiotics; however, topical use of honey is limited due to its adherent and highly viscous properties. This study aims to overcome these issues by engineering a powder-based system that eases delivery and offers in situ activation of ROS. Starch based drying agents were utilised to enable freeze drying of a medical honey, with methylated-β-cyclodextrin (MCD) enabling the highest active incorporation (70%) while still producing a free-flowing powder. Addition of a superabsorbent, sodium polyacrylate (≤40%) was shown to facilitate in situ gelation of the powder, with an absorption capacity of up to 120.7 ± 4.5 mL g-1. Promisingly efficacy of the optimised superabsorbent powder was demonstrated in vitro against several clinically relevant Gram-negative and Gram-positive bacteria (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa). Alongside this no adverse effects were observed against human dermal fibroblasts. Application of the superabsorbent powder in an ex-vivo porcine wound model revealed capability to form a protective hydrogel barrier in less than 1 min. Overall, this novel ROS producing superabsorbent powder has potential to tackle topical infections without using traditional antibiotics.
Collapse
Affiliation(s)
- Thomas J Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland.
| | - Ioannis Azoidis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland
| | - Inês A Barroso
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland
| | - Erik A B Hughes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland; NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham B15 2TH, United Kingdom of Great Britain and Northern Ireland
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
16
|
Godocikova J, Bugarova V, Kast C, Majtan V, Majtan J. Antibacterial potential of Swiss honeys and characterisation of their bee-derived bioactive compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:335-342. [PMID: 31584691 DOI: 10.1002/jsfa.10043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Antibacterial activity of honey is not only crucial characteristic in selection of honey for medical usage but also an important honey quality marker. The aim of the study was to characterise the antibacterial potential of 29 honey samples representing the main types of multi-floral blossom and honeydew honeys produced in Switzerland. Antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa was expressed as a minimum inhibitory and bactericidal concentrations (MIC and MBC). Furthermore, the content of bee-derived glucose oxidase (GOX) and its enzymatic product, H2 O2 , were also evaluated. RESULTS All honey samples successfully met basic defined criteria (moisture and hydroxymethylfurfural (HMF)) tested in this study. Honeydew honeys were the most effective honey samples and generated the highest levels of H2 O2 . A strong significant correlation was found between the overall antibacterial activity and the level of H2 O2 among all honey samples. Interestingly, the content of GOX in honey samples did not correlate with their antibacterial activity as well as H2 O2 production capacity. A weak antibacterial activity was determined in five floral honeys, most likely due to increased enzymatic activity of pollen-derived catalase. CONCLUSION This study showed that antibacterial effect of Swiss honey samples is associated mainly with H2 O2 . © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jana Godocikova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Bugarova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Viktor Majtan
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
17
|
Sindi A, Chawn MVB, Hernandez ME, Green K, Islam MK, Locher C, Hammer K. Anti-biofilm effects and characterisation of the hydrogen peroxide activity of a range of Western Australian honeys compared to Manuka and multifloral honeys. Sci Rep 2019; 9:17666. [PMID: 31776432 PMCID: PMC6881396 DOI: 10.1038/s41598-019-54217-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
The antibacterial activity of honeys derived from the endemic flora of the southwest corner of Western Australia, including the trees Jarrah (Eucalyptus marginata) and Marri (Corymbia calophylla), remains largely unexplored. Investigation of these honeys showed minimum inhibitory concentrations (MICs) of 6.7-28.0% (w/v) against Gram positive and negative bacteria. Honey solutions showed enhanced antibacterial activity after hydrogen peroxide was allowed to accumulate prior to testing, with a mean MIC after accumulation of 14.3% compared to 17.4% before accumulation. Antibacterial activity was reduced after treatment with catalase enzyme, with a mean MIC of 29.4% with catalase compared to 15.2% without catalase. Tests investigating the role of the Gram negative outer membrane in honey susceptibility revealed increases in activity after destabilisation of the outer membrane. Honeys reduced both the formation of biofilm and the production of bacterial pigments, which are both regulated by quorum sensing. However, these reductions were closely correlated with global growth inhibition. Honey applied to existing biofilms resulted in decreased metabolic activity and minor decreases in viability. These results enhance our understanding of the mechanisms of antibacterial action of Jarrah and Marri honeys, and provide further support for the use of honey in the treatment of infected wounds.
Collapse
Affiliation(s)
- Azhar Sindi
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Moses Van Bawi Chawn
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Magda Escorcia Hernandez
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Kathryn Green
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia.,The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia
| | - Md Khairul Islam
- The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia.,School of Allied Health, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Cornelia Locher
- The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia.,School of Allied Health, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Katherine Hammer
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia. .,The Cooperative Research Centre for Honey Bee Products Limited, Western Australia, Australia.
| |
Collapse
|
18
|
Halstead FD, Webber MA, Oppenheim BA. Use of an engineered honey to eradicate preformed biofilms of important wound pathogens: an in vitro study. J Wound Care 2019; 26:442-450. [PMID: 28795889 DOI: 10.12968/jowc.2017.26.8.442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE We previously reported on the ability of SurgihoneyRO (SHRO), an engineered honey, to prevent biofilm formation in vitro, but data were lacking regarding the activity against preformed biofilms. This study aims to assess whether SHRO has any antibacterial activity against mature, preformed biofilms and whether there is any evidence to support the observed clinical effectiveness when SHRO has been used anecdotally on acute and chronic wounds where biofilm is most likely present. METHOD We tested the in vitro antibacterial activity of SHRO against the mature biofilms of 16 clinically relevant wound pathogens, in terms of impacts on biofilm seeding and biofilm biomass. The honey was serially double diluted from 1:3 down to 1:6144, and the lowest dilution achieving a statistically significant reduction in biomass of ≥50%, compared with untreated controls, was recorded. RESULTS All 16 bacterial isolates were susceptible to SHRO, with reduced biofilm seeding observed for all, and percentage reductions ranging from 58% (ACI_C59) to 94.3% (MDR_B) for the strongest concentration of honey (1:3). Furthermore at this concentration, biofilm seeding of the test biofilm was reduced by 80-94.3% (when compared with the positive control) for 12/16 isolates. We additionally demonstrated that SHRO has antibiofilm impacts, with the 24 hour exposure resulting in disruption of the biofilm, reduced seeding and reduced biomass. CONCLUSION SHRO is effective at reducing seeding of preformed biofilms of clinically important wound pathogens in vitro, and also has antibiofilm activity. This supports the anecdotal clinical data for antibiofilm efficacy, and supports the use of SHRO as a promising topical wound care agent.
Collapse
Affiliation(s)
- F D Halstead
- Clinical Scientist, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK
| | - M A Webber
- Research Leader, NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK; Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, UK
| | - B A Oppenheim
- Consultant Microbiologist, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
19
|
Hall TJ, Blair JMA, Moakes RJA, Pelan EG, Grover LM, Cox SC. Antimicrobial emulsions: Formulation of a triggered release reactive oxygen delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109735. [PMID: 31349428 DOI: 10.1016/j.msec.2019.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/15/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
The enzyme glucose oxidase mediates the oxidation of glucose to produce reactive oxygen species (ROS), such as hydrogen peroxide. This reaction and its products are key to providing honey with its antimicrobial properties. Currently, honey is an adherent, highly viscous product that produces ROS by means of a water-initiated reaction. These properties reduce clinical usability and present a formulation problem for long term stability. This study aims to engineer a water-in-oil emulsion containing an engineered honey (SurgihoneyRO™) that is easy to administer topically and is controllably activated in-situ. Paraffin oil continuous emulsions formulated using the emulsifier polyglycerol polyricinoleate displayed shear-thinning characteristics. Viscosities between 1.4 and 19.3 Pa·s were achieved at a shear rate representative of post-mixing conditions (4.1 s-1) by changing the volume of the dispersed phase (30-60%). Notably, this wide viscosity range will be useful in tailoring future formulations for specific application mechanisms. When exposed to water and shear, these emulsion systems were found to undergo catastrophic phase inversion, evidenced by a change in conductivity from 0 μS in the non-aqueous state, to >180 μS in the sheared, inverted state. Encouragingly, sheared formulations containing ≥50% SurgihoneyRO™ generated sufficient levels of ROS to inhibit growth of clinically relevant Gram-positive and Gram-negative bacteria. This study demonstrates an ability to formulate ROS producing emulsions for use as an alternative to current topical antibiotic-based treatments. Promisingly, the ability of this system to release water-sensitive actives in response to shear may be useful for controlled delivery of other therapeutic molecules.
Collapse
Affiliation(s)
- Thomas J Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom of Great Britain and Northern Ireland.
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT, United Kingdom of Great Britain and Northern Ireland.
| | - Richard J A Moakes
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom of Great Britain and Northern Ireland.
| | - Edward G Pelan
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom of Great Britain and Northern Ireland.
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom of Great Britain and Northern Ireland.
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
20
|
Dryden M. Reactive oxygen species: a novel antimicrobial. Int J Antimicrob Agents 2017; 51:299-303. [PMID: 28887201 DOI: 10.1016/j.ijantimicag.2017.08.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 01/22/2023]
Abstract
The main solution to the global antibiotic resistance crisis is to reduce the volume of antibiotic use in medicine, agriculture and the environment. However, there is also a pressing need for novel antimicrobials. Despite much rhetoric, there are few entirely novel agents in development. One such therapy to reach clinical use is an agent using Reactive Oxygen Species (ROS), oxygen radicals, as an antimicrobial mechanism. ROS can be delivered to the site of infection in various formats. ROS are highly antimicrobial against Gram-positive and Gram-negative bacteria, viruses and fungi. They also prevent and break down biofilm. These functions make ROS potentially highly suitable for chronic inflammatory conditions, where antibiotics are frequently overused and relatively ineffective, including: chronic wounds, ulcers and burns; chronic rhinosinusitis, chronic bronchitis, bronchiectasis, cystic fibrosis and ventilated airways; recurrent cystitis; and prosthetic device infection. ROS could have an important role in infection prevention and antimicrobial stewardship. Much clinical investigation remains to be delivered on ROS therapy, but in vitro work on infection models and early clinical evaluations are extremely promising.
Collapse
Affiliation(s)
- Matthew Dryden
- Hampshire Hospitals Foundation NHS Trust, Hampshire, UK; University of Southampton, Faculty of Medicine, Southampton, UK; Rare and Imported Pathogens Department, Public Health England, Porton Down, Wiltshire, UK.
| |
Collapse
|
21
|
Parker S, Pavlovic T, Patel R, Wilson P, McCullough J, Windsor A. Impact of Surgihoney Reactive Oxygen on surgical site infection (SSI) after complex abdominal wall reconstruction (AWR) of grade 3 and 4 ventral Hernias: A single arm pilot study. Int J Surg Protoc 2017; 5:18-21. [PMID: 31851744 PMCID: PMC6913560 DOI: 10.1016/j.isjp.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/16/2017] [Indexed: 11/27/2022] Open
Abstract
A protocol using Surgihoney in AWR of grade 3/4 Ventral Hernia Repairs is proposed. Our primary objective is to reduce wound infections/complications. 40 post-op wounds will be followed and assessed for infection using ASEPSIS criteria. Results to be compared to a retrospective cohort of 40 Ventral Hernia Repair patients. Secondary outcomes/complications will also be followed in this cohort of patients.
Introduction Following Abdominal Wall Reconstruction (AWR) wound infections occur in over one third of patients and rates can be even higher in entero-cutaneous fistula repair. A novel antimicrobial gel has been engineered by microbiologists called Surgihoney Reactive Oxygen (SHRO). SHRO gel will be applied to a group of patients. We aim to conduct a pilot case series with the hope to show a reduction in local wound complications after SHRO application. Methods and analysis A single arm pilot study of AWR patients will be carried out on patients with grade 3 and 4 (VHWG grade) ventral hernias. Patients’ pre-operative wounds will be graded according to the CDC classification scale. Post operatively the wounds will be classified according to the Wilson surgical site infection classification. Intervention: SHRO will be applied after abdominal fascial closure and before skin closure through a standardised method. Our results from the series will be compared to our retrospective standard wound care results. Data will be collected from 01.03.2017 to 01.11.2017. Primary outcome: Surgical site infection within 30 days of surgery, assessed by clinicians at 5, 15 and 30 days and by patient’s self-report for the intervening period. Secondary outcomes include other SSOs (haematoma, seroma, wound dehiscence, skin necrosis), duration of stay in hospital, reported side effects from local treatment and other systemic postoperative complications. We will aim for a cohort of 40 patients. Conclusions This study will provide an assessment of methods and feasibility of recruiting and following up patients who are treated with SHRO. On the basis of this pilot trial, a full trial may be proposed in the future which will provide additional, robust evidence on the clinical and cost effectiveness of SHRO in wound management following AWR. This may act as a model for the management of wounds in complex patients undergoing AWR.
Collapse
|
22
|
|
23
|
Abstract
For centuries, honey has been utilized for wound healing purposes. In recent times, this specific topic has become a field of interest, possibly due to the advent of antibiotic resistance in microbial pathogens. With constant technological advancement, the information regarding honey's mechanisms of action on wound healing has accumulated at a rapid pace. Similarly, clinical studies comparing honey with traditional wound care therapies are steadily emerging. As a follow-up to a previous review published in the journal in 2011, the current review article outlines publications regarding honey and wound healing that have been published between June 2010 and August 2016. Here we describe the most recent evidence regarding multiple types of honey and their mechanisms of action as antimicrobial agents, immunologic modulators, and physiologic mediators. In addition, outcomes of clinical studies involving a multitude of cutaneous wounds are also examined.
Collapse
|
24
|
Dryden M, Cooke J, Salib R, Holding R, Pender SLF, Brooks J. Hot topics in reactive oxygen therapy: Antimicrobial and immunological mechanisms, safety and clinical applications. J Glob Antimicrob Resist 2017; 8:194-198. [PMID: 28219826 DOI: 10.1016/j.jgar.2016.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 01/22/2023] Open
Abstract
Reactive oxygen species (ROS), when combined with various delivery mechanisms, has the potential to become a powerful novel therapeutic agent against difficult-to-treat infections, especially those involving biofilm. It is important in the context of the global antibiotic resistance crisis. ROS is rapidly active in vitro against all Gram-positive and Gram-negative bacteria tested. ROS also has antifungal and antiviral properties. ROS prevents the formation of biofilms caused by a range of bacterial species in wounds and respiratory epithelium. ROS has been successfully used in infection prevention, eradication of multiresistant organisms, prevention of surgical site infection, and intravascular line care. This antimicrobial mechanism has great potential for the control of bioburden and biofilm at many sites, thus providing an alternative to systemic antibiotics on epithelial/mucosal surfaces, for wound and cavity infection, chronic respiratory infections and possibly recurrent urinary infections as well as local delivery to deeper structures and prosthetic devices. Its simplicity and stability lend itself to use in developing economies as well.
Collapse
Affiliation(s)
- Matthew Dryden
- Hampshire Hospitals NHS Foundation Trust, UK; University of Southampton Faculty of Medicine, Southampton, UK.
| | - Jonathan Cooke
- Imperial College London, London, UK; University of Manchester, Manchester, UK
| | - Rami Salib
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Department of Otolaryngology/Head & Neck Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Rebecca Holding
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Sylvia L F Pender
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK; Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | |
Collapse
|
25
|
Dryden MS, Cooke J, Salib RJ, Holding RE, Biggs T, Salamat AA, Allan RN, Newby RS, Halstead F, Oppenheim B, Hall T, Cox SC, Grover LM, Al-Hindi Z, Novak-Frazer L, Richardson MD. Reactive oxygen: A novel antimicrobial mechanism for targeting biofilm-associated infection. J Glob Antimicrob Resist 2017; 8:186-191. [PMID: 28213334 DOI: 10.1016/j.jgar.2016.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/04/2016] [Indexed: 11/24/2022] Open
Abstract
Reactive oxygen species (ROS) is a novel therapeutic strategy for topical or local application to wounds, mucosa or internal structures where there may be heavy bacterial bioburden with biofilm and chronic inflammation. Bacterial biofilms are a significant problem in clinical settings owing to their increased tolerance towards conventionally prescribed antibiotics and their propensity for selection of further antibacterial resistance. There is therefore a pressing need for the development of alternative therapeutic strategies that can improve antibiotic efficacy towards biofilms. ROS has been successful in treating chronic wounds and in clearing multidrug-resistant organisms, including methicillin-resistant Staphylococcus aureus (MRSA), and carbapenemase-producing isolates from wounds and vascular line sites. There is significant antifungal activity of ROS against planktonic and biofilm forms. Nebulised ROS has been evaluated in limited subjects to assess reductions in bioburden in chronically colonised respiratory tracts. The antibiofilm activity of ROS could have great implications for the treatment of a variety of persistent respiratory conditions. Use of ROS on internal prosthetic devices shows promise. A variety of novel delivery mechanisms are being developed to apply ROS activity to different anatomical sites.
Collapse
Affiliation(s)
- Matthew S Dryden
- Hampshire Hospitals NHS Foundation Trust, UK; University of Southampton Faculty of Medicine, Southampton, UK.
| | - Jonathan Cooke
- Imperial College London, London, UK; University of Manchester, Manchester, UK
| | - Rami J Salib
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Department of Otolaryngology/Head & Neck Surgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Rebecca E Holding
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Timothy Biggs
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Ali A Salamat
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Raymond N Allan
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK; Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Rachel S Newby
- Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Fenella Halstead
- Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Beryl Oppenheim
- Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Thomas Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK
| | - Sophie C Cox
- Mycology Reference Centre Manchester, Centre for Respiratory Medicine and Allergy, University of Manchester and University Hospital of Manchester, Manchester M23 9LT, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK
| | - Zain Al-Hindi
- Mycology Reference Centre Manchester, Centre for Respiratory Medicine and Allergy, University of Manchester and University Hospital of Manchester, Manchester M23 9LT, UK
| | - Lilyann Novak-Frazer
- Mycology Reference Centre Manchester, Centre for Respiratory Medicine and Allergy, University of Manchester and University Hospital of Manchester, Manchester M23 9LT, UK
| | - Malcolm D Richardson
- Mycology Reference Centre Manchester, Centre for Respiratory Medicine and Allergy, University of Manchester and University Hospital of Manchester, Manchester M23 9LT, UK
| |
Collapse
|
26
|
Saeed K, Dryden M, Bassetti M, Bonnet E, Bouza E, Chan M, Cortes N, Davis JS, Esposito S, Giordano G, Gould I, Hartwright D, Lye D, Marin M, Morgan-Jones R, Lajara-Marco F, Righi E, Romano CL, Segreti J, Unal S, Williams RL, Yalcin AN. Prosthetic joints: shining lights on challenging blind spots. Int J Antimicrob Agents 2017; 49:153-161. [DOI: 10.1016/j.ijantimicag.2016.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/23/2016] [Accepted: 10/01/2016] [Indexed: 12/12/2022]
|
27
|
Lipsky BA, Dryden M, Gottrup F, Nathwani D, Seaton RA, Stryja J. Antimicrobial stewardship in wound care: a Position Paper from the British Society for Antimicrobial Chemotherapy and European Wound Management Association. J Antimicrob Chemother 2016; 71:3026-3035. [DOI: 10.1093/jac/dkw287] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
28
|
Dryden M, Dickinson A, Brooks J, Hudgell L, Saeed K, Cutting KF. A multi-centre clinical evaluation of reactive oxygen topical wound gel in 114 wounds. J Wound Care 2016; 25:140, 142-6. [PMID: 26947694 DOI: 10.12968/jowc.2016.25.3.140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This article reports the outcomes of the use of Surgihoney RO (SHRO), topical wound dressing in a multi-centre, international setting. The aims were to explore the clinical effects of SHRO, including a reduction in bacterial load and biofilm and improvement in healing in a variety of challenging non-healing and clinically infected wounds. METHOD This was a non-comparative evaluation, where both acute and chronic wounds with established delayed healing were treated with the dressing. Clinicians prospectively recorded wound improvement or deterioration, level of wound exudate, presence of pain, and presence of slough and necrosis. Analysis of this data provided information on clinical performance of the dressing. Semi-quantitative culture to assess bacterial bioburden was performed where possible. RESULTS We recruited 104 patients, mean age 61 years old, with 114 wounds. The mean duration of wounds before treatment was 3.7 months and the mean duration of treatment was 25.7 days. During treatment 24 wounds (21%) healed and the remaining 90 (79%) wounds improved following application of the dressing. No deterioration in any wound was observed. A reduction in patient pain, level of wound exudate and in devitalised tissue were consistently reported. These positive improvements in wound progress were reflected in the wound cultures that showed a reduction in bacterial load in 39 out of the 40 swabs taken. There were two adverse events recorded: a stinging sensation following application of the dressing was experienced by 2 patients, and 2 elderly patients died of causes unrelated to the dressing or to the chronic wound. These patients' wounds and their response to SHRO have been included in the analysis. CONCLUSION SHRO was well tolerated and shows great promise as an effective potent topical antimicrobial in the healing of challenging wounds. DECLARATION OF INTEREST Matthew Dryden has become a shareholder in Matoke Holdings, the manufacturer of Surgihoney RO, since the completion of this study. Keith Cutting is a consultant to Matoke Holdings.
Collapse
Affiliation(s)
- M Dryden
- Hampshire Hospitals NHS Foundation Trust, Basingstoke, UK.,Winchester and Rare and Imported Pathogens Dept PHE, Porton, UK
| | - A Dickinson
- Hampshire Hospitals NHS Foundation Trust, Basingstoke, UK
| | | | | | - K Saeed
- Hampshire Hospitals NHS Foundation Trust, Basingstoke, UK
| | | |
Collapse
|
29
|
Esposito S, Bassetti M, Bonnet E, Bouza E, Chan M, De Simone G, Dryden M, Gould I, Lye DC, Saeed K, Segreti J, Unal S, Yalcin AN. Hot topics in the diagnosis and management of skin and soft-tissue infections. Int J Antimicrob Agents 2016; 48:19-26. [PMID: 27216380 DOI: 10.1016/j.ijantimicag.2016.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/30/2016] [Accepted: 04/02/2016] [Indexed: 12/16/2022]
Abstract
Eighteen hot topics regarding the diagnosis and management of skin and soft-tissue infections (SSTIs) were selected and reviewed by members of the SSTI Working Group of the International Society of Chemotherapy (ISC). Despite the large amount of literature available on the issue selected, there are still many unknowns with regard to many of them and further studies are required to answer these challenging issues that face clinicians on a daily basis.
Collapse
Affiliation(s)
- Silvano Esposito
- Department of Infectious Diseases, University of Salerno, Salerno, Italy.
| | - Matteo Bassetti
- Department of Infectious Diseases, Santa Maria Misericordia Hospital, Udine, Italy
| | - Eric Bonnet
- Department of Infectious Diseases, Hôpital Joseph Ducuing, Toulouse, France
| | - Emilio Bouza
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Monica Chan
- Department of Infectious Diseases, Tan Tock Seng Hospital, Jalan Tan Tock Seng, Singapore
| | - Giuseppe De Simone
- Department of Infectious Diseases, University of Salerno, Salerno, Italy
| | - Matthew Dryden
- Hampshire Hospitals Foundation Trust, Winchester, UK; Southampton University School of Medicine, Southampton, UK; Rare and Imported Pathogens Department, Public Health England, UK
| | - Ian Gould
- Medical Microbiology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, UK
| | - David Chien Lye
- Institute of Infectious Diseases and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kordo Saeed
- Microbiology Department, Hampshire Hospitals NHS Foundation Trust, Royal Hampshire County Hospital, Winchester, UK; Microbiology Department, Hampshire Hospitals NHS Foundation Trust, Royal Hampshire County Hospital, Basingstoke, UK; University of Southampton Medical School, Southampton, UK
| | - John Segreti
- Department of Infectious Diseases, Rush University Medical Center, Chicago, IL, USA
| | - Serhat Unal
- Department of Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ata Nevzat Yalcin
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | |
Collapse
|
30
|
Halstead FD, Webber MA, Rauf M, Burt R, Dryden M, Oppenheim BA. In vitro activity of an engineered honey, medical-grade honeys, and antimicrobial wound dressings against biofilm-producing clinical bacterial isolates. J Wound Care 2016; 25:93-4, 96-102. [PMID: 26878302 DOI: 10.12968/jowc.2016.25.2.93] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Honey is recognised to be a good topical wound care agent owing to a broad-spectrum of antimicrobial activity combined with healing properties. Surgihoney RO (SH1) is a product based on honey that is engineered to produce enhanced reactive oxygen species (ROS) and has been reported to be highly antimicrobial. The objective was to investigate the ability of the engineered honey and its comparators to prevent biofilm formation in vitro. METHOD We tested the ability of three medical-grade honeys SH1, Activon manuka honey (MH) and Medihoney manuka honey (Med), alongside five antimicrobial dressings (AMDs) to prevent the formation of biofilms by 16 isolates. Honeys were serially double diluted from 1:3 down to 1:6144 and the lowest dilution achieving a statistically significant reduction in biomass of at least 50%, compared with untreated controls, was recorded. RESULTS Although all the honeys were antibacterial and were able to prevent the formation of biofilms, SH1 was the most potent, with efficacy at lower dilutions than the medical honeys for five isolates, and equivalent dilutions for a further six. Additionally, SH1 was superior in antibacterial potency to three commercially available AMDs that contain honey. CONCLUSION SH1 is effective at preventing bioflms from forming and is superior to medical honeys and AMDs in in vitro tests. DECLARATION OF INTEREST Surgihoney RO was provided free of charge for testing by Matoke Holdings, UK and the hospital pharmacy provided the other honeys and dressings. This paper presents independent research funded by the National Institute for Health Research (NIHR). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
Collapse
Affiliation(s)
- F D Halstead
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK.,Institute of Microbiology and Infection, School of Biosciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - M A Webber
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK.,Institute of Microbiology and Infection, School of Biosciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - M Rauf
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK.,Institute of Microbiology and Infection, School of Biosciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - R Burt
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK.,Institute of Microbiology and Infection, School of Biosciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - M Dryden
- Department of Microbiology and Infection, Hampshire Hospitals NHS Foundation Trust, UK.,Rare and Imported Pathogens Department, Public Health England, Porton Down, UK
| | - B A Oppenheim
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
31
|
Andreu V, Mendoza G, Arruebo M, Irusta S. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds. MATERIALS (BASEL, SWITZERLAND) 2015; 8:5154-5193. [PMID: 28793497 PMCID: PMC5455515 DOI: 10.3390/ma8085154] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
Abstract
A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients' quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management.
Collapse
Affiliation(s)
- Vanesa Andreu
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain.
| | - Gracia Mendoza
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain.
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain.
| | - Silvia Irusta
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Mariano Esquillor S/N, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid 28029, Spain.
| |
Collapse
|
32
|
Antimicrobial activity of organic honeys against food pathogenic bacterium Clostridium perfringens. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13165-015-0103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Cooke J, Dryden M, Patton T, Brennan J, Barrett J. The antimicrobial activity of prototype modified honeys that generate reactive oxygen species (ROS) hydrogen peroxide. BMC Res Notes 2015; 8:20. [PMID: 25627827 PMCID: PMC4312449 DOI: 10.1186/s13104-014-0960-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 12/23/2014] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Antimicrobial resistance continues to be a global issue in healthcare organisations. Honey has long been shown to possess wound healing and antimicrobial properties that are dependent on a number of physical and chemical properties of the honey. We tested the antimicrobial activity of a medicinal honey, Surgihoney® (SH) and two prototype modified honeys made by Apis mellifera (honeybee) against Staphylococcus aureus (NCIMB 9518). We also examined the modified honey prototypes for the ability to generate reactive oxygen species (ROS) by changing the level of production of hydrogen peroxide from the samples. METHODS Surgihoney® (SH) was compared with two modified honeys, Prototype 1 (PT1) and Prototype 2 (PT2) using a bioassay method against a standard strain of Staphylococcus aureus. Further work studied the rate of generation of ROS hydrogen peroxide from these preparations. RESULTS Surgihoney® antimicrobial activity was shown to be largely due to ROS hydrogen peroxide production. By modification of Surgihoney®, two more potent honey prototypes were shown to generate between a two- and three-fold greater antibacterial activity and up to ten times greater ROS peroxide activity. CONCLUSIONS Surgihoney® is a clinically available wound antiseptic dressing that shows good antimicrobial activity. Two further honey prototypes have been shown to have antimicrobial activity that is possible to be enhanced due to demonstrated increases in ROS peroxide activity.
Collapse
Affiliation(s)
- Jonathan Cooke
- />Centre for Infection Prevention and Management, Division of Medicine, Imperial College, Hammersmith Campus, London, W12 0NN UK
- />Manchester Pharmacy School, Faculty of Medical and Human Sciences University of Manchester, Manchester, UK
| | - Matthew Dryden
- />Hampshire Hospitals NHS Foundation Trust, Department of Microbiology, Romsey Road, Winchester, SO22 5DG UK
- />Rare and imported pathogens laboratory (RIPL), Public Health England, Manor Farm Road, Porton Down, Wiltshire, SP4 0JG UK
| | | | | | - John Barrett
- />Institute of Technology, Ash Lane, Sligo, Ireland
| |
Collapse
|
34
|
Dryden M, Milward G, Saeed K. Infection prevention in wounds with Surgihoney. J Hosp Infect 2014; 88:121-2. [DOI: 10.1016/j.jhin.2014.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/19/2014] [Indexed: 11/15/2022]
|