1
|
Zhou Z, Zhu R, Song Y, Zhang W, Sun B, Zhang Z, Yao H. Penguin-Driven Dissemination and High Enrichment of Antibiotic Resistance Genes in Lake Sediments across Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39083437 DOI: 10.1021/acs.est.4c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Numerous penguins can propagate pathogens with antibiotic resistance genes (ARGs) into Antarctica. However, the effects of penguin dissemination on the lake ARGs still have received little attention via guano deposition. Here, we have profiled ARGs in ornithogenic sediments subject to penguin guano (OLS) and nonornithogenic sediments (NOLS) from 16 lakes across Antarctica. A total of 191 ARGs were detected in all sediment samples, with a much higher abundance and diversity in OLS than in NOLS. Surprisingly, highly diverse and abundant ARGs were found in the OLS with a detection frequency of >40% and an absolute abundance of (2.34 × 109)-(4.98 × 109) copies g-1, comparable to those in coastal estuarine sediments and pig farms. The strong correlations of identified resistance genes with penguin guano input amount, environmental factors, mobile genetic elements, and bacterial community, in conjunction with network and redundancy analyses, all indicated that penguins were responsible for the dissemination and high enrichment of ARGs in lake sediments via the guano deposition, which might greatly outweigh local human-activity effects. Our results revealed that ARGs could be carried into lakes across the Antarctica through penguin migration, food chains, and guano deposition, which were closely connected with the widespread pollution of ARGs at the global scale.
Collapse
Affiliation(s)
- Zeming Zhou
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yixin Song
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wanying Zhang
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bowen Sun
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, U.K
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
2
|
Shuai X, Zhou Z, Zhu L, Achi C, Lin Z, Liu Z, Yu X, Zhou J, Lin Y, Chen H. Ranking the risk of antibiotic resistance genes by metagenomic and multifactorial analysis in hospital wastewater systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133790. [PMID: 38368689 DOI: 10.1016/j.jhazmat.2024.133790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Antimicrobial resistance poses a serious threat to human health. Hospital wastewater system (HWS) is an important source of antibiotic resistance genes (ARGs). The risk of ARGs in HWS is still an under-researched area. In this study, we collected publicly metagenomic datasets of 71 hospital wastewater samples from 18 hospitals in 13 cities. A total of 9838 contigs were identified to carry 383 unique ARGs across all samples, of which 2946 contigs were plasmid-like sequences. Concurrently, the primary hosts of ARGs within HWS were found to be Escherichia coli and Klebsiella pneumoniae. To further evaluate the risk of each ARG subtype, we proposed a risk assessment framework based on the importance of corresponding antibiotics as defined by the WHO and three other indicators - ARG abundance (A), mobility (M), and host pathogenicity (P). Ninety ARGs were identified as R1 ARGs having high-risk scores, which meant having a high abundance, high mobility, and carried by pathogens in HWS. Furthermore, 25% to 49% of genomes from critically important pathogens accessed from NCBI carried R1 ARGs. A significantly higher number of R1 ARGs was carried by pathogens in the effluents of municipal wastewater treatment plants from NCBI, highlighting the role of R1 ARGS in accelerating health and environmental risks.
Collapse
Affiliation(s)
- Xinyi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Chioma Achi
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, United Kingdom
| | - Zejun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinyu Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanhan Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
McDougall FK, Speight N, Funnell O, Boardman WSJ, Power ML. Dynamics of Antimicrobial Resistance Carriage in Koalas (Phascolarctos Cinereus) and Pteropid Bats (Pteropus Poliocephalus) Before, During and After Wildfires. MICROBIAL ECOLOGY 2024; 87:39. [PMID: 38332161 PMCID: PMC10853082 DOI: 10.1007/s00248-024-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Fiona K McDougall
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Oliver Funnell
- Zoos South Australia, Frome Rd, Adelaide, SA, 5001, Australia
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Michelle L Power
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
4
|
Shuai X, Zhou Z, Ba X, Lin Y, Lin Z, Liu Z, Yu X, Zhou J, Zeng G, Ge Z, Chen H. Bacteriophages: Vectors of or weapons against the transmission of antibiotic resistance genes in hospital wastewater systems? WATER RESEARCH 2024; 248:120833. [PMID: 37952327 DOI: 10.1016/j.watres.2023.120833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Antimicrobial resistance poses a serious threat to human health and is responsible for the death of millions of people annually. Hospital wastewater is an important hotspot for antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). However, little is known about the relationship between phages and ARGs in hospital wastewater systems (HWS). In the present study, the viral diversity of 12 HWSs using data from public metagenomic databases was investigated. Viruses were widely found in both the influent and effluent of each HWS. A total of 45 unique ARGs were carried by 85 viral contigs, which accounted for only 0.14% of the total viral populations, implying that ARGs were not commonly present in phages. Three efflux pump genes were identified as shared between phages and bacterial genomes. However, the predominant types of ARGs in HWS such as aminoglycoside- and beta-lactam-resistance genes were rarely found in phages. Based on CRISPR spacer and tRNA matches, interactions between 171 viral contigs and 60 antibiotic-resistant genomes were predicted, including interactions involving phages and vancomycin-resistant Enterococcus_B faecium or beta-lactam-resistant Klebsiella pneumoniae. More than half (56.1%) of these viral contigs indicated lytic and none of them carried ARGs. As the vOTUs in this study had few ARGs and were primarily lytic, HWS may be a valuable source for phage discovery. Future studies will be able to experimentally validate these sequence-based results to confirm the suitability of HWS phages for pathogen control measures in wastewater.
Collapse
Affiliation(s)
- Xinyi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yanhan Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zejun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinyu Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangshu Zeng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ziye Ge
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Liu Y, Smith W, Gebrewold M, Wang X, Simpson SL, Bivins A, Ahmed W. Comparison of concentration and extraction workflows for qPCR quantification of intI1 and vanA in untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166442. [PMID: 37604373 DOI: 10.1016/j.scitotenv.2023.166442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) measurement of antibiotic resistance genes (ARGs) in untreated municipal wastewater may prove useful in combating the antimicrobial resistance crisis. However, harmonizing and optimizing qPCR-based workflows is essential to facilitate comparisons across studies, and includes achieving highly-effective ARG capture through efficient concentration and extraction procedures. In the current study, combinations of sample volume, membrane types and DNA extraction kits within filtration and centrifugation-based workflows were used to quantify 16S ribosomal RNA (16S rRNA), class 1 integron-integrase gene (intI1) and an ARG encoding resistance to vancomycin (vanA) in untreated wastewater sampled from three wastewater treatment plants (WWTPs). Highly abundant 16S rRNA and intI1 were detected in 100 % of samples from all three WWTPs using both 2 and 20 mL sample volumes, while lower prevalence vanA was only detected when using the 20 mL volume. When filtering 2 mL of wastewater, workflows with 0.20-/0.40-μm polycarbonate (PC) membranes generally yielded greater concentrations of the three targets than workflows with 0.22-/0.45-μm mixed cellulose ester (MCE) membranes. The improved performance was diminished when the sample volume was increased to 20 mL. Consistently greater concentrations of 16S rRNA, intI1 and vanA were yielded by filtration-based workflows using PC membranes combined with a DNeasy PowerWater (DPW) Kit, regardless of the sample volume used, and centrifugation-based workflows with DNeasy Blood & Tissue Kit for 2-mL wastewater extractions. Within the filtration-based workflows, the DPW kit yielded more detection and quantifiable results for less abundant vanA than the DNeasy PowerSoil Pro Kit and FastDNA™ SPIN Kit for Soil. These findings indicate that the performance of qPCR-based workflows for surveillance of ARGs in wastewater varies across targets, sample volumes, concentration methods and extraction kits. Workflows must be carefully considered and validated considering the target ARGs to be monitored.
Collapse
Affiliation(s)
- Yawen Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Metasebia Gebrewold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70809, USA
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
6
|
Abramova A, Berendonk TU, Bengtsson-Palme J. A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments. ENVIRONMENT INTERNATIONAL 2023; 178:108084. [PMID: 37421899 DOI: 10.1016/j.envint.2023.108084] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
The environment is an important component in the emergence and transmission of antimicrobial resistance (AMR). Despite that, little effort has been made to monitor AMR outside of clinical and veterinary settings. Partially, this is caused by a lack of comprehensive reference data for the vast majority of environments. To enable monitoring to detect deviations from the normal background resistance levels in the environment, it is necessary to establish a baseline of AMR in a variety of settings. In an attempt to establish this baseline level, we here performed a comprehensive literature survey, identifying 150 scientific papers containing relevant qPCR data on antimicrobial resistance genes (ARGs) in environments associated with potential routes for AMR dissemination. The collected data included 1594 samples distributed across 30 different countries and 12 sample types, in a time span from 2001 to 2020. We found that for most ARGs, the typically reported abundances in human impacted environments fell in an interval from 10-5 to 10-3 copies per 16S rRNA, roughly corresponding to one ARG copy in a thousand bacteria. Altogether these data represent a comprehensive overview of the occurrence and levels of ARGs in different environments, providing background data for risk assessment models within current and future AMR monitoring frameworks.
Collapse
Affiliation(s)
- Anna Abramova
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance research (CARe) in Gothenburg, Sweden; Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Thomas U Berendonk
- Institute for Hydrobiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance research (CARe) in Gothenburg, Sweden; Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
7
|
Sun J, Yuan Y, Cai L, Zeng M, Li X, Yao F, Chen W, Huang Y, Shafiq M, Xie Q, Zhang Q, Wong N, Wang Z, Jiao X. Metagenomic evidence for antibiotics-driven co-evolution of microbial community, resistome and mobilome in hospital sewage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121539. [PMID: 37019259 DOI: 10.1016/j.envpol.2023.121539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Overconsumption of antibiotics is an immediate cause for the emergence of antimicrobial resistance (AMR) and antibiotic resistant bacteria (ARB), though its environmental impact remains inadequately clarified. There is an urgent need to dissect the complex links underpinning the dynamic co-evolution of ARB and their resistome and mobilome in hospital sewage. Metagenomic and bioinformatic methods were employed to analyze the microbial community, resistome and mobilome in hospital sewage, in relation to data on clinical antibiotic use collected from a tertiary-care hospital. In this study, resistome (1,568 antibiotic resistance genes, ARGs, corresponding to 29 antibiotic types/subtypes) and mobilome (247 types of mobile genetic elements, MGEs) were identified. Networks connecting co-occurring ARGs with MGEs encompass 176 nodes and 578 edges, in which over 19 types of ARGs had significant correlations with MGEs. Prescribed dosage and time-dependent antibiotic consumption were associated with the abundance and distributions of ARGs, and conjugative transfer of ARGs via MGEs. Variation partitioning analyses show that effects of conjugative transfer were most likely the main contributors to transient propagation and persistence of AMR. We have presented the first evidence supporting idea that use of clinical antibiotics is a potent driving force for the development of co-evolving resistome and mobilome, which in turn supports the growth and evolution of ARB in hospital sewage. The use of clinical antibiotics calls for greater attention in antibiotic stewardship and management.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China; Guangdong Province Center for Disease Control and Prevention, Guangzhou, 511400, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Leshan Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, 515041, China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Weidong Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yuanchun Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China
| | - Qiaoxin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Naikei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515041, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, 515041, China.
| |
Collapse
|
8
|
Sims N, Holton E, Archer E, Botes M, Wolfaardt G, Kasprzyk-Hordern B. In-situ multi-mode extraction (iMME) sampler for a wide-scope analysis of chemical and biological targets in water in urbanized and remote (off-the-grid) locations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160034. [PMID: 36356746 DOI: 10.1016/j.scitotenv.2022.160034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Chemical pollution (including chemicals of emerging concern - CECs) continues to gain increasing attention as a global threat to human health and the environment, with numerous reports on the adverse and sometimes devastating effects upon ecosystems the presence of these chemicals can have. Whilst many studies have investigated presence of CECs in aquatic environments, these studies have been often focused on higher income countries, leaving significant knowledge gaps for many low-middle income countries. This study proposes a new integrated powerless, in-situ multi-mode extraction (iMME) sampler for the analysis of chemicals (105 CECs) and biological (5 genes) markers in water in contrasting settings: an urbanized Avon River in the UK and remote Olifants River in Kruger National Park in South Africa. The overarching goal was to develop a sampling device that maintains integrity of a diverse range of analytes via analyte immobilization using polymeric and glass fibre materials, without access to power supply or cold chain (continuous chilled storage) for sample transportation. Chemical analysis was achieved using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Several mobile CECs showed low stability in river water, at room temperature and typical 24 h sampling/transport time. It is therefore recommended that, in the absence of cooling, environmental water samples are spiked with internal standards on site, immediately after collection and analyte immobilization option is considered, in order to allow fully quantitative analysis. iMME has proven effective in immobilization, concentration and increased stability of CECs at room temperature (and at least 7 days storage) allowing for sample collection at remote locations. The results from the River Avon and Olifants River sampling indicate that the pristine environment of Olifants catchment is largely unaffected by CECs common in the urbanized River Avon in the UK with a few exceptions: lifestyle chemicals (e.g., caffeine, nicotine and their metabolites), paracetamol and UV filters due to tourism and carbamazepine due to its persistent nature. iMME equipped with an additional gene extraction capability provides an exciting new opportunity of comprehensive biochemical profiling of aqueous samples with one powerless in-situ device. Further work is required to provide full integration of the device and comprehensive assessment of performance in both chemical and biological targets.
Collapse
Affiliation(s)
- Natalie Sims
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK
| | - Elizabeth Holton
- Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK
| | - Edward Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marelize Botes
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
9
|
Bian J, Wang H, Ding H, Song Y, Zhang X, Tang X, Zhong Y, Zhao C. Unveiling the dynamics of antibiotic resistome, bacterial communities, and metals from the feces of patients in a typical hospital wastewater treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159907. [PMID: 36336059 DOI: 10.1016/j.scitotenv.2022.159907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Bacterial pathogens and antibiotic resistance genes (ARGs) are extensively disseminated into the environment via hospital wastewater (HWW), as it contains large quantities of feces from resident patients. However, studies on the antibiotic resistome and pathogenic bacteria from the gut of resident patients within the hospital wastewater treatment plant (hWWTP) are limited. Here, we examined and compared the occurrence and abundance of ARGs, mobile genetic elements (MGEs), metals, and bacterial communities from the feces of patients in a typical hWWTP system and determined the pathogenic hosts responsible for transferring ARGs. There were 176 ARGs and 43 MGEs detected in the feces of hospitalized patients, 129 genes were persistent, and 88 genes were enriched after HWW treatment, particularly for the blaVEB, blaNDM, and class 1 integron (intI1), with an average of 659-fold, 202-fold, and seven-fold enrichment, respectively. MGEs, especially Is613, in the feces of hospitalized patients were exceptionally abundant and even surpassed the abundance of total ARGs, which explained the persistence of ARGs in hWWTPs due to possible gene mobilization events. Bacteroidetes and Firmicutes were the most abundant phyla in these feces, accounting for 81 % of the total gut microbiota, while Epsilonbacteraeota and Proteobacteria dominated the hWWTPs. Additionally, 54 possible bacterial pathogens were found in the hospital environment, including four "ESKAPE" pathogens and 14 cancer-related pathogens. Many of them were strongly associated with different types of ARGs. Notably, Bacteroides was the major potential ARG-harboring pathogenic genus, as determined by the network analysis, and was highly abundant after the treatment. The altered microbial community was the major contributing factor shaping antibiotic resistome. This study might provide a comprehensive insight into the distribution profiles of ARGs and pathogens from the gut of inpatients throughout the HWW treatment system, which could be used as a reference for optimizing HWW treatment and monitoring public risk.
Collapse
Affiliation(s)
- Jing Bian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China; Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, People's Republic of China
| | - Hang Wang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, People's Republic of China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Haojie Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yunqian Song
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Xiaohui Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Xianjun Tang
- Breast cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, People's Republic of China
| | - Yihua Zhong
- Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, People's Republic of China.
| | - Chun Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China.
| |
Collapse
|
10
|
Zhao B, van Bodegom PM, Trimbos KB. Antibiotic Resistance Genes in Interconnected Surface Waters as Affected by Agricultural Activities. Biomolecules 2023; 13:biom13020231. [PMID: 36830600 PMCID: PMC9953135 DOI: 10.3390/biom13020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Pastures have become one of the most important sources of antibiotic resistance genes (ARGs) pollution, bringing risks to human health through the environment and the food that is grown there. Another significant source of food production is greenhouse horticulture, which is typically located near pastures. Through waterways, pasture-originated ARGs may transfer to the food in greenhouses. However, how these pasture-originated ARGs spread to nearby waterways and greenhouses has been much less investigated, while this may pose risks to humans through agricultural products. We analyzed 29 ARGs related to the most used antibiotics in livestock in the Netherlands at 16 locations in an agricultural area, representing pastures, greenhouses and lakes. We found that ARGs were prevalent in all surface waters surrounding pastures and greenhouses and showed a similar composition, with sulfonamide ARGs being dominant. This indicates that both pastures and greenhouses cause antibiotic resistance pressures on neighboring waters. However, lower pressures were found in relatively larger and isolated lakes, suggesting that a larger water body or a non-agricultural green buffer zone could help reducing ARG impacts from agricultural areas. We also observed a positive relationship between the concentrations of the class 1 integron (intl1 gene)-used as a proxy for horizontal gene transfer-and ARG concentration and composition. This supports that horizontal gene transfer might play a role in dispersing ARGs through landscapes. In contrast, none of the measured four abiotic factors (phosphate, nitrate, pH and dissolved oxygen) showed any impact on ARG concentrations. ARGs from different classes co-occurred, suggesting simultaneous use of different antibiotics. Our findings help to understand the spatial patterns of ARGs, specifically the impacts of ARGs from pastures and greenhouses on each other and on nearby waterways. In this way, this study guides management aiming at reducing ARGs' risk to human health from agricultural products.
Collapse
|
11
|
Liu N, Li G, Su Y, Zhao Y, Ma J, Huang G. Environmental drivers and interaction mechanisms of heavy metal and antibiotic resistome exposed to amoxicillin during aerobic composting. Front Microbiol 2023; 13:1079114. [PMID: 36687604 PMCID: PMC9845726 DOI: 10.3389/fmicb.2022.1079114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
The environmental accumulation and spread of antibiotic resistance pose a major threat to global health. Aerobic composting has become an important hotspot of combined pollution [e.g., antibiotic resistance genes (ARGs) and heavy metals (HMs)] in the process of centralized treatment and resource utilization of manure. However, the interaction mechanisms and environmental drivers of HMs resistome (MRGs), antibiotic resistance (genotype and phenotype), and microbiome during aerobic composting under the widely used amoxicillin (AMX) selection pressure are still poorly understood. Here, we investigated the dynamics of HMs bioavailability and their MRGs, AMX-resistant bacteria (ARB) and antibiotic resistome (ARGs and intI1), and bacterial community to decipher the impact mechanism of AMX by conducting aerobic composting experiments. We detected higher exchangeable HMs and MRGs in the AMX group than the control group, especially for the czrC gene, indicating that AMX exposure may inhibit HMs passivation and promote some MRGs. The presence of AMX significantly altered bacterial community composition and AMX-resistant and -sensitive bacterial structures, elevating antibiotic resistome and its potential transmission risks, in which the proportions of ARB and intI1 were greatly increased to 148- and 11.6-fold compared to the control group. Proteobacteria and Actinobacteria were significant biomarkers of AMX exposure and may be critical in promoting bacterial resistance development. S0134_terrestrial_group was significantly negatively correlated with blaTEM and czrC genes, which might play a role in the elimination of some ARGs and MRGs. Except for the basic physicochemical (MC, C/N, and pH) and nutritional indicators (NO3 --N, NH4 +-N), Bio-Cu may be an important environmental driver regulating bacterial resistance during composting. These findings suggested the importance of the interaction mechanism of combined pollution and its synergistic treatment during aerobic composting need to be emphasized.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China,Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China,Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling and Valorizing, College of Engineering, China Agricultural University, Beijing, China
| | - Yi Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Jun Ma
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China,Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China,*Correspondence: Jun Ma,
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling and Valorizing, College of Engineering, China Agricultural University, Beijing, China,Guangqun Huang,
| |
Collapse
|
12
|
Depta J, Niedźwiedzka-Rystwej P. The Phenomenon of Antibiotic Resistance in the Polar Regions: An Overview of the Global Problem. Infect Drug Resist 2023; 16:1979-1995. [PMID: 37034396 PMCID: PMC10081531 DOI: 10.2147/idr.s369023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/02/2022] [Indexed: 04/11/2023] Open
Abstract
The increasing prevalence of antibiotic resistance is a global problem in human and animal health. This leads to a reduction in the therapeutic effectiveness of the measures used so far and to the limitation of treatment options, which may pose a threat to human health and life. The problem of phenomenon of antibiotic resistance affects more and more the polar regions. This is due to the increase in tourist traffic and the number of people staying at research stations, unmodernised sewage systems in inhabited areas, as well as the migration of animals or the movement of microplastics, which may contain resistant bacteria. Research shows that the presence of antibiotic resistance genes is more dominant in zones of human and wildlife influence than in remote areas. In a polluted environment, there is evidence of a direct correlation between human activity and the spread and survival of antibiotic-resistant bacteria. Attention should be paid to the presence of resistance to synthetic and semi-synthetic antibiotics in the polar regions, which is likely to be correlated with human presence and activity, and possible steps to be taken. We need to understand many more aspects of this, such as bacterial epigenetics and environmental stress, in order to develop effective strategies for minimizing the spread of antibiotic resistance genes. Studying the diversity and abundance of antibiotic resistance genes in regions with less anthropogenic activity could provide insight into the diversity of primary genes and explain the historical evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Julia Depta
- Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland
- Correspondence: Paulina Niedźwiedzka-Rystwej, Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland, Tel +48 91 444 15 15, Email
| |
Collapse
|
13
|
Jeamsripong S, Thaotumpitak V, Anuntawirun S, Roongrojmongkhon N, Atwill ER, Hinthong W. Molecular Epidemiology of Antimicrobial Resistance and Virulence Profiles of Escherichia coli, Salmonella spp., and Vibrio spp. Isolated from Coastal Seawater for Aquaculture. Antibiotics (Basel) 2022; 11:1688. [PMID: 36551345 PMCID: PMC9774326 DOI: 10.3390/antibiotics11121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The occurrence of waterborne antimicrobial-resistant (AMR) bacteria in areas of high-density oyster cultivation is an ongoing environmental and public health threat given the popularity of shellfish consumption, water-related human recreation throughout coastal Thailand, and the geographical expansion of Thailand's shellfish industry. This study characterized the association of phenotypic and genotypic AMR, including extended-spectrum β-lactamase (ESBL) production, and virulence genes isolated from waterborne Escherichia coli (E. coli) (n = 84), Salmonella enterica (S. enterica) subsp. enterica (n = 12), Vibrio parahaemolyticus (V. parahaemolyticus) (n = 249), and Vibrio cholerae (V. cholerae) (n = 39) from Thailand's coastal aquaculture regions. All Salmonella (100.0%) and half of V. cholerae (51.3%) isolates harbored their unique virulence gene, invA and ompW, respectively. The majority of isolates of V. parahaemolyticus and E. coli, ~25% of S. enterica subsp. enterica, and ~12% of V. cholerae, exhibited phenotypic AMR to multiple antimicrobials, with 8.9% of all coastal water isolates exhibiting multidrug resistance (MDR). Taken together, we recommend that coastal water quality surveillance programs include monitoring for bacterial AMR for food safety and recreational water exposure to water for Thailand's coastal water resources.
Collapse
Affiliation(s)
- Saharuetai Jeamsripong
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Varangkana Thaotumpitak
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saran Anuntawirun
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nawaphorn Roongrojmongkhon
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Woranich Hinthong
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| |
Collapse
|
14
|
Nguyen KH, Smith S, Roundtree A, Feistel DJ, Kirby AE, Levy K, Mattioli MC. Fecal indicators and antibiotic resistance genes exhibit diurnal trends in the Chattahoochee River: Implications for water quality monitoring. Front Microbiol 2022; 13:1029176. [PMID: 36439800 PMCID: PMC9684717 DOI: 10.3389/fmicb.2022.1029176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Water bodies that serve as sources of drinking or recreational water are routinely monitored for fecal indicator bacteria (FIB) by state and local agencies. Exceedances of monitoring thresholds set by those agencies signal likely elevated human health risk from exposure, but FIB give little information about the potential source of contamination. To improve our understanding of how within-day variation could impact monitoring data interpretation, we conducted a study at two sites along the Chattahoochee River that varied in their recreational usage and adjacent land-use (natural versus urban), collecting samples every 30 min over one 24-h period. We assayed for three types of microbial indicators: FIB (total coliforms and Escherichia coli); human fecal-associated microbial source tracking (MST) markers (crAssphage and HF183/BacR287); and a suite of clinically relevant antibiotic resistance genes (ARGs; blaCTX-M, blaCMY, MCR, KPC, VIM, NDM) and a gene associated with antibiotic resistance (intl1). Mean levels of FIB and clinically relevant ARGs (blaCMY and KPC) were similar across sites, while MST markers and intI1 occurred at higher mean levels at the natural site. The human-associated MST markers positively correlated with antibiotic resistant-associated genes at both sites, but no consistent associations were detected between culturable FIB and any molecular markers. For all microbial indicators, generalized additive mixed models were used to examine diurnal variability and whether this variability was associated with environmental factors (water temperature, turbidity, pH, and sunlight). We found that FIB peaked during morning and early afternoon hours and were not associated with environmental factors. With the exception of HF183/BacR287 at the urban site, molecular MST markers and intI1 exhibited diurnal variability, and water temperature, pH, and turbidity were significantly associated with this variability. For blaCMY and KPC, diurnal variability was present but was not correlated with environmental factors. These results suggest that differences in land use (natural or urban) both adjacent and upstream may impact overall levels of microbial contamination. Monitoring agencies should consider matching sample collection times with peak levels of target microbial indicators, which would be in the morning or early afternoon for the fecal associated indicators. Measuring multiple microbial indicators can lead to clearer interpretations of human health risk associated with exposure to contaminated water.
Collapse
Affiliation(s)
| | - Shanon Smith
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Alexis Roundtree
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Dorian J. Feistel
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Amy E. Kirby
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Karen Levy
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Mia Catharine Mattioli
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- *Correspondence: Mia Catharine Mattioli,
| |
Collapse
|
15
|
Zhao Y, Lin H, Liu Y, Jiang Y, Zhang W. Abundant bacteria shaped by deterministic processes have a high abundance of potential antibiotic resistance genes in a plateau river sediment. Front Microbiol 2022; 13:977037. [DOI: 10.3389/fmicb.2022.977037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Recent research on abundant and rare bacteria has expanded our understanding of bacterial community assembly. However, the relationships of abundant and rare bacteria with antibiotic resistance genes (ARGs) remain largely unclear. Here, we investigated the biogeographical patterns and assembly processes of the abundant and rare bacteria from river sediment at high altitudes (Lhasa River, China) and their potential association with the ARGs. The results showed that the abundant bacteria were dominated by Proteobacteria (55.4%) and Cyanobacteria (13.9%), while the Proteobacteria (33.6%) and Bacteroidetes (18.8%) were the main components of rare bacteria. Rare bacteria with a large taxonomic pool can provide function insurance in bacterial communities. Spatial distribution of persistent abundant and rare bacteria also exhibited striking differences. Strong selection of environmental heterogeneity may lead to deterministic processes, which were the main assembly processes of abundant bacteria. In contrast, the assembly processes of rare bacteria affected by latitude were dominated by stochastic processes. Abundant bacteria had the highest abundance of metabolic pathways of potential drug resistance in all predicted functional genes and a high abundance of potential ARGs. There was a strong potential connection between these ARGs and mobile genetic elements, which could increase the ecological risk of abundant taxa and human disease. These results provide insights into sedimental bacterial communities and ARGs in river ecosystems.
Collapse
|
16
|
Liu L, Zhang Y, Chen H, Teng Y. Fate of resistome components and characteristics of microbial communities in constructed wetlands and their receiving river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157226. [PMID: 35809723 DOI: 10.1016/j.scitotenv.2022.157226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Currently, most researches focus on that constructed wetlands (CWs) achieve desirable removal of antibiotics, antibiotic resistance genes (ARGs) and human pathogens. However, few studies have assessed the fate of resistome components, especially the behavior and cooccurrence of ARGs, mobile genetic elements (MGEs) and virulence factors (VFs). Therefore, characteristics of microbial communities (MCs) in CWs and their receiving rivers also deserve attention. These factors are critical to water ecological security. This study used two CWs to explore the fate of resistome components and characteristics of MCs in the CWs and their receiving river. Eleven samples were collected from the two CWs and their receiving river. High-throughput profiles of ARGs and microbial taxa in the samples were characterized. 31 ARG types consisting of 400 subtypes with total relative abundance 42.63-84.94× /Gb of sequence were detected in CWs, and 62.07-88.08× /Gb of sequence in river, evidencing that ARG pollution covered CWs and the river, and implying huge potential risks from ARGs. MGEs and VFs were detected, and tnpA, IS91 and intI1 were the three dominant MGEs, while Flagella. Type IV pili and peritrichous flagella were main VFs. Both CWs can remove ARGs, MGEs and VFs efficiently. However, some ARGs were difficult to remove, such as sul1 and sul2, and certain ARGs remained in the effluent of the CWs. The co-occurrence of ARGs, MGEs, and VFs implies the risk of antibiotic resistance and dissemination of ARGs. Eighty-five types of human pathogen were detected in the river samples, particularly Pseudomonas aeruginosa, Bordetella bronchiseptica, Aeromonas hydrophila and Helicobacter pylori. Correlation analysis indicated that MCs had significant effects on the profiles of ARGs in the water environment. This study reveals potential risks of the reuse of reclaimed water, and illustrates the removal ability of ARGs and related elements by CWs. This study will be helpful for monitoring and managing resistomes in water environments.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuxin Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
17
|
Pariente MI, Segura Y, Álvarez-Torrellas S, Casas JA, de Pedro ZM, Diaz E, García J, López-Muñoz MJ, Marugán J, Mohedano AF, Molina R, Munoz M, Pablos C, Perdigón-Melón JA, Petre AL, Rodríguez JJ, Tobajas M, Martínez F. Critical review of technologies for the on-site treatment of hospital wastewater: From conventional to combined advanced processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115769. [PMID: 35944316 DOI: 10.1016/j.jenvman.2022.115769] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
This review aims to assess different technologies for the on-site treatment of hospital wastewater (HWW) to remove pharmaceutical compounds (PhCs) as sustances of emerging concern at a bench, pilot, and full scales from 2014 to 2020. Moreover, a rough characterisation of hospital effluents is presented. The main detected PhCs are antibiotics and psychiatric drugs, with concentrations up to 1.1 mg/L. On the one hand, regarding the presented technologies, membrane bioreactors (MBRs) are a good alternative for treating HWW with PhCs removal values higher than 80% in removing analgesics, anti-inflammatories, cardiovascular drugs, and some antibiotics. Moreover, this system has been scaled up to the pilot plant scale. However, some target compounds are still present in the treated effluent, such as psychiatric and contrast media drugs and recalcitrant antibiotics (erythromycin and sulfamethoxazole). On the other hand, ozonation effectively removes antibiotics found in the HWW (>93%), and some studies are carried out at the pilot plant scale. Even though, some families, such as the X-ray contrast media, are recalcitrant to ozone. Other advanced oxidation processes (AOPs), such as Fenton-like or UV treatments, seem very effective for removing pharmaceuticals, Antibiotic Resistance Bacteria (ARBs) and Antibiotic Resistance Genes (ARGs). However, they are not implanted at pilot plant or full scale as they usually consider extra reactants such as ozone, iron, or UV-light, making the scale-up of the processes a challenging task to treat high-loading wastewater. Thus, several examples of biological wastewater treatment methods combined with AOPs have been proposed as the better strategy to treat HWW with high removal of PhCs (generally over 98%) and ARGs/ARBs (below the detection limit) and lower spending on reactants. However, it still requires further development and optimisation of the integrated processes.
Collapse
Affiliation(s)
- M I Pariente
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| | - Y Segura
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - S Álvarez-Torrellas
- Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, Av/ Complutense s/n, 28040, Madrid, Spain
| | - J A Casas
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - Z M de Pedro
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - E Diaz
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - J García
- Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, Av/ Complutense s/n, 28040, Madrid, Spain
| | - M J López-Muñoz
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - J Marugán
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - A F Mohedano
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - R Molina
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - M Munoz
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - C Pablos
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - J A Perdigón-Melón
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering. University of Alcalá, Ctra Madrid-Barcelona, 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - A L Petre
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering. University of Alcalá, Ctra Madrid-Barcelona, 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - J J Rodríguez
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - M Tobajas
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - F Martínez
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| |
Collapse
|
18
|
Zhang M, Hou L, Zhu Y, Zhang C, Li W, Lai X, Yang J, Li S, Shu H. Composition and distribution of bacterial communities and antibiotic resistance genes in fish of four mariculture systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119934. [PMID: 35973451 DOI: 10.1016/j.envpol.2022.119934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Fish-related antibiotic resistance genes (ARGs) have attracted attention for their potentially harmful effects on food safety and human health through the food chain transfer. However, the potential factors affecting these ARGs have not been fully explored. In this study, ARGs and bacterial communities in the fish gut, mucosal skin, and gill filaments in fish were comprehensively evaluated in four different mariculture systems formed by hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂), Gracilaria bailinae, and Litopenaeus vannamei using different combinations. The results showed that 9 ARGs were detected in the gut and mucosal skin and 6 ARGs in the gill filaments. The detection rate of aphA1 was the highest, and the abundance was 1.91 × 10-3 - 6.30 × 10-2 copies per 16 S rRNA gene. Transposase gene (tnpA-04) was detected in all samples with the abundance of 3.57 × 10-3 - 3.59 × 10-2 copies per 16 S rRNA gene, and was strongly correlated with multiple ARGs (e.g., aphA1, tet(34), mphA-02). Proteobacteria, Deinococcus-Thermus, Firmicutes, and Bacteroidetes were the dominant phyla in the four mariculture systems, accounting for 65.1%-96.2% of the total bacterial community. Notably, the high relative abundance of Stenotrophomonas, a potential human pathogen, was elevated by 20.5% in the hybrid grouper gut in the monoculture system. In addition, variation partitioning analysis (VPA) showed that the difference in bacterial communities between mariculture systems was the main driving factor of ARGs distribution differences in hybrid groupers. This study provides a new comprehensive understanding of the characterization of fish-related ARGs contamination in different mariculture systems and facilitates the assessment of potential risks of ARGs and pathogen taxa to human health.
Collapse
Affiliation(s)
- Mingqing Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yating Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Cuiping Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Wen Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xingxing Lai
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jinlin Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Aristizabal-Hoyos A, Rodríguez EA, Torres-Palma RA, Jiménez JN. Concern levels of beta-lactamase-producing Gram-negative bacilli in hospital wastewater: hotspot of antimicrobial resistance in Latin-America. Diagn Microbiol Infect Dis 2022; 105:115819. [DOI: 10.1016/j.diagmicrobio.2022.115819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
|
20
|
Jang J, Park J, Hwang CY, Choi J, Shin J, Kim YM, Cho KH, Kim JH, Lee YM, Lee BY. Abundance and diversity of antibiotic resistance genes and bacterial communities in the western Pacific and Southern Oceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153360. [PMID: 35085628 DOI: 10.1016/j.scitotenv.2022.153360] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the abundance and diversity of antibiotic resistance genes (ARGs) and the composition of bacterial communities along a transect covering the western Pacific Ocean (36°N) to the Southern Ocean (74°S) using the Korean icebreaker R/V Araon (total cruise distance: 14,942 km). The relative abundances of ARGs and bacteria were assessed with quantitative PCR and next generation sequencing, respectively. The absolute abundance of ARGs was 3.0 × 106 ± 1.6 × 106 copies/mL in the western Pacific Ocean, with the highest value (7.8 × 106 copies/mL) recorded at a station in the Tasman Sea (37°S). The absolute abundance of ARGs in the Southern Ocean was 1.8-fold lower than that in the western Pacific Ocean, and slightly increased (0.7-fold) toward Terra Nova Bay in Antarctica, possibly resulting from natural terrestrial sources or human activity. β-Lactam and tetracycline resistance genes were dominant in all samples (88-99%), indicating that they are likely the key ARGs in the ocean. Correlation and network analysis showed that Bdellovibrionota, Bacteroidetes, Cyanobacteria, Margulisbacteria, and Proteobacteria were positively correlated with ARGs, suggesting that these bacteria are the most likely ARG carriers. This study highlights the latitudinal profile of ARG distribution in the open ocean system and provides insights that will help in monitoring emerging pollutants on a global scale.
Collapse
Affiliation(s)
- Jiyi Jang
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea; Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Jiyeon Park
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea.
| | - Chung Yeon Hwang
- Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinhee Choi
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Jingyeong Shin
- Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Young Mo Kim
- Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kyung Hwa Cho
- Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Jung-Hyun Kim
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Yung Mi Lee
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Bang Yong Lee
- Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| |
Collapse
|
21
|
Puljko A, Milaković M, Križanović S, Kosić-Vukšić J, Babić I, Petrić I, Maravić A, Jelić M, Udiković-Kolić N. Prevalence of enteric opportunistic pathogens and extended-spectrum cephalosporin- and carbapenem-resistant coliforms and genes in wastewater from municipal wastewater treatment plants in Croatia. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128155. [PMID: 34991006 DOI: 10.1016/j.jhazmat.2021.128155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Extended-spectrum β-lactamase (ESBL)- and carbapenemase-producing Enterobacterales are a critical global health problem and wastewater treatment plants (WWTPs) can promote their spread into the environment; yet their efficacy is not well characterized. Here, we have used conventional culturing to monitor coliform bacteria and quantitative PCR to monitor 2 ESBL and 5 carbapenemase (CP) genes and 4 enteric opportunistic pathogens (EOPs) in the influent and effluent of 7 Croatian WWTPs in two seasons. In general, levels of total, cefotaxime- and carbapenem-resistant coliforms were significantly reduced but not eliminated by conventional treatment in most WWTPs. Most WWTPs efficiently removed EOPs such as K. pneumoniae and A. baumannii, while E. coli and Enterococcus spp. were reduced but still present in relatively high concentrations in the effluent. ESBL genes (blaTEM and blaCTX-M-32) were only slightly reduced or enriched after treatment. CP genes, blaKPC-3, blaNDM and blaOXA-48-like, were sporadically detected, while blaIMP and blaVIM were frequently enriched during treatment and correlated with plant size, number or size of hospitals in the catchment area, and COD effluent concentration. Our results suggest that improvements in wastewater treatment technologies are needed to minimize the risk of environmental contamination with top priority EOPs and ARGs and the resulting public health.
Collapse
Affiliation(s)
- Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 000 Zagreb, Croatia
| | - Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 000 Zagreb, Croatia
| | - Stela Križanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 000 Zagreb, Croatia
| | - Josipa Kosić-Vukšić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska cesta 16, 10 000 Zagreb, Croatia
| | - Ivana Babić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 000 Zagreb, Croatia
| | - Ines Petrić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 000 Zagreb, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 000 Zagreb, Croatia.
| |
Collapse
|
22
|
Morales Medina WR, Eramo A, Fahrenfeld NL. Metabolically Active Prokaryotes and Actively Transcribed Antibiotic Resistance Genes in Sewer Systems: Implications for Public Health and Microbially Induced Corrosion. MICROBIAL ECOLOGY 2022; 83:583-595. [PMID: 34117524 PMCID: PMC8195243 DOI: 10.1007/s00248-021-01775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/13/2021] [Indexed: 05/11/2023]
Abstract
Sewer systems are reservoirs of pathogens and bacteria carrying antibiotic resistance genes (ARGs). However, most recent high-throughput studies rely on DNA-based techniques that cannot provide information on the physiological state of the cells nor expression of ARGs. In this study, wastewater and sewer sediment samples were collected from combined and separate sanitary sewer systems. The metabolically active prokaryote community was evaluated using 16S rRNA amplicon sequencing and actively transcribed ARG abundance was measured using mRNA RT-qPCR. Three (sul1, blaTEM, tet(G)) of the eight tested ARGs were quantifiable in select samples. Sewer sediment samples had greater abundance of actively transcribed ARGs compared to wastewater. Microbiome analysis showed the presence of metabolically active family taxa that contain clinically relevant pathogens (Pseudomonadaceae, Enterobacteraceae, Streptococcaceae, Arcobacteraceae, and Clostridiaceae) and corrosion-causing prokaryotes (Desulfobulbaceae and Desulfovibrionaceae) in both matrices. Spirochaetaceae and methanogens were more common in the sediment matrix while Mycobacteraceae were more common in wastewater. The microbiome obtained from 16S rRNA sequencing had a significantly different structure from the 16S rRNA gene microbiome. Overall, this study demonstrates active transcription of ARGs in sewer systems and provides insight into the abundance and physiological state of taxa of interest in the different sewer matrices and sewer types relevant for wastewater-based epidemiology, corrosion, and understanding the hazard posed by different matrices during sewer overflows.
Collapse
Affiliation(s)
- William R Morales Medina
- Microbiology & Molecular Genetics, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ, 08854, USA
| | - Alessia Eramo
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ, 08854, USA
| | - N L Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ, 08854, USA.
| |
Collapse
|
23
|
Rajasekar A, Qiu M, Wang B, Murava RT, Norgbey E. Relationship between water quality, heavy metals and antibiotic resistance genes among three freshwater lakes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:64. [PMID: 34993654 DOI: 10.1007/s10661-021-09704-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Urban recreational lakes are impacted by consistent anthropogenic activities and are significant sources of heavy metals and antibiotic resistance genes (ARGs). In this study, three urban lakes of varying size and anthropogenic impact in Nanjing, China, were investigated for the abundance of ten ARGs, six physicochemical factors and four heavy metals. Correlations between heavy metals and physicochemical parameters against ARGs were performed to investigate the presence of ARGs in the lakes. The water quality data indicated that the lakes were on par with levels 3 and 4 of the Chinese surface water environmental standards, signifying disturbing pollution levels in the lakes. The lakes were dominant with high amounts of sul1, sul2 and strA genes, and the sum of these three genes appropriated over 38.9-84.4% in all three lakes, while the sum of tetM, tetQ and ermB genes occupied a minor proportion (0.1-1.4%). High levels of vancomycin resistance genes were found in the three lakes. Spearman analysis indicated that Chlα, cadmium, lead and copper had a significant positive correlation with sul2 and strB. The results of redundancy analysis displayed that Chlα and co-selection with certain heavy metals were the major factors driving the propagation of specific genes in three lakes. We believe our study contributes by adding further knowledge to existing antibiotic resistance gene abundance studies in recreational urban lakes with significant anthropogenic impacts.
Collapse
Affiliation(s)
- Adharsh Rajasekar
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Mengru Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Bangguo Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Raphinos Tackmore Murava
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Eyram Norgbey
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
24
|
Release of Antibiotic-Resistance Genes from Hospitals and a Wastewater Treatment Plant in the Kathmandu Valley, Nepal. WATER 2021. [DOI: 10.3390/w13192733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hospitals and wastewater treatment plants (WWTPs) are high-risk point sources of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria. This study investigates the occurrence of clinically relevant ARGs (sul1, tet(B), blaCTX-M, blaNDM-1, qnrS) and a class one integron (intI1) gene in urban rivers, hospitals, and municipal wastewater in the Kathmandu Valley, Nepal. Twenty-five water samples were collected from three rivers, six hospitals, and a wastewater treatment plant to determine the concentrations of ARGs and intI1 using quantitative polymerase chain reactions. From the results, all tested ARGs were detected in the river water; also, concentrations of ARGs in WWTP and hospital effluents varied from 6.2 to 12.5 log10 copies/L, highlighting the role of a WWTP and hospitals in the dissemination of ARGs. Except for blaNDM-1, significant positive correlations were found between intI1 and other individual ARGs (r = 0.71–0.96, p < 0.05), indicating the probable implications of intI1 in the transfer of ARGs. Furthermore, this study supports the statement that the blaNDM-1 gene is most likely to be spread in the environment through untreated hospital wastewater. Due to the interaction of surface water and groundwater, future research should focus on ARGs and factors associated with the increase/decrease in their concentration levels in drinking water sources of the Kathmandu Valley.
Collapse
|
25
|
Majlander J, Anttila VJ, Nurmi W, Seppälä A, Tiedje J, Muziasari W. Routine wastewater-based monitoring of antibiotic resistance in two Finnish hospitals: focus on carbapenem resistance genes and genes associated with bacteria causing hospital-acquired infections. J Hosp Infect 2021; 117:157-164. [PMID: 34537275 DOI: 10.1016/j.jhin.2021.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Wastewater-based monitoring represents a useful tool for antibiotic resistance surveillance. AIM To investigate the prevalence and abundance of antibiotic resistance genes (ARGs) in hospital wastewater over time. METHODS Wastewater from two hospitals in Finland (HUS1 and HUS2) was monitored weekly for nine weeks (weeks 25-33) in summer 2020. A high-throughput real-time polymerization chain reaction (HT-qPCR) system was used to detect and quantify 216 ARGs and genes associated with mobile genetic elements (MGEs), integrons, and bacteria causing hospital-acquired infections (HAIs), as well as the 16S rRNA gene. Data from HT-qPCR were analysed and visualized using a novel digital platform, ResistApp. Eight carbapenem resistance genes (blaGES, blaKPC, blaVIM, blaNDM, blaCMY, blaMOX, blaOXA48, and blaOXA51) and three genes associated with bacteria causing HAIs (Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were studied. FINDINGS There was a significantly higher number of ARGs at both hospitals in weeks 27-30 (174-191 genes) compared to other sampling weeks (151-171 genes). Our analyses also indicated that the two hospitals, which used different amounts of antibiotics, had significantly different resistance gene profiles. Carbapenem resistance genes were more prevalent and abundant in HUS1 than HUS2. Across both hospitals, blaGES and blaVIM were the most prevalent and abundant. There was also a strong positive association between blaKPC and K. pneumoniae in HUS1 wastewater. CONCLUSION Routine wastewater-based monitoring using ResistApp can provide valuable information on the prevalence and abundance of ARGs in hospitals. This helps hospitals understand the spread of antibiotic resistance in hospitals and identify potential areas for intervention.
Collapse
Affiliation(s)
| | - V-J Anttila
- Helsinki University Hospital and University of Helsinki, Meilahti, Helsinki, Finland
| | - W Nurmi
- Resistomap Oy, Helsinki, Finland
| | | | - J Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, USA
| | | |
Collapse
|
26
|
Czatzkowska M, Harnisz M, Korzeniewska E, Rusanowska P, Bajkacz S, Felis E, Jastrzębski JP, Paukszto Ł, Koniuszewska I. The impact of antimicrobials on the efficiency of methane fermentation of sewage sludge, changes in microbial biodiversity and the spread of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125773. [PMID: 33831706 DOI: 10.1016/j.jhazmat.2021.125773] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 05/23/2023]
Abstract
The study was designed to simultaneously evaluate the influence of high doses (512-1024 µg/g) the most commonly prescribed antimicrobials on the efficiency of anaerobic digestion of sewage sludge, qualitative and quantitative changes in microbial consortia responsible for the fermentation process, the presence of methanogenic microorganisms, and the fate of antibiotic resistance genes (ARGs). The efficiency of antibiotic degradation during anaerobic treatment was also determined. Metronidazole, amoxicillin and ciprofloxacin exerted the greatest effect on methane fermentation by decreasing its efficiency. Metronidazole, amoxicillin, cefuroxime and sulfamethoxazole were degraded in 100%, whereas ciprofloxacin and nalidixic acid were least susceptible to degradation. The most extensive changes in the structure of digestate microbiota were observed in sewage sludge exposed to metronidazole, where a decrease in the percentage of bacteria of the phylum Bacteroidetes led to an increase in the proportions of bacteria of the phyla Firmicutes and Proteobacteria. The results of the analysis examining changes in the concentration of the functional methanogen gene (mcrA) did not reflect the actual efficiency of methane fermentation. In sewage sludge exposed to antimicrobials, a significant increase was noted in the concentrations of β-lactam, tetracycline and fluoroquinolone ARGs and integrase genes, but selective pressure was not specific to the corresponding ARGs.
Collapse
Affiliation(s)
- Małgorzata Czatzkowska
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland.
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| | - Paulina Rusanowska
- Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117a, 10-720 Olsztyn, Poland
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland; Centre for Biotechnology, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Felis
- Department of Environmental Biotechnology, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland; Centre for Biotechnology, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Jan P Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Izabela Koniuszewska
- Department of Water Protection Engineering and Environmental Microbiology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720 Olsztyn, Poland
| |
Collapse
|
27
|
UV-C Peroxymonosulfate Activation for Wastewater Regeneration: Simultaneous Inactivation of Pathogens and Degradation of Contaminants of Emerging Concern. Molecules 2021; 26:molecules26164890. [PMID: 34443481 PMCID: PMC8398486 DOI: 10.3390/molecules26164890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022] Open
Abstract
This study explores the capability of Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) for the simultaneous disinfection and decontamination of urban wastewater. Sulfate and hydroxyl radicals in solution were generated activating peroxymonosulfate (PMS) under UV-C irradiation at pilot plant scale. The efficiency of the process was assessed toward the removal of three CECs (Trimethoprim (TMP), Sulfamethoxazole (SMX), and Diclofenac (DCF)) and three bacteria (Escherichia coli, Enterococcus spp., and Pseudomonas spp.) in actual urban wastewater (UWW), obtaining the optimal value of PMS at 0.5 mmol/L. Under such experimental conditions, bacterial concentration ≤ 10 CFU/100 mL was reached after 15 min of UV-C treatment (0.03 kJ/L of accumulative UV-C radiation) for natural occurring bacteria, no bacterial regrowth was observed after 24 and 48 h, and 80% removal of total CECs was achieved after 12 min (0.03 kJ/L), with a release of sulfate ions far from the limit established in wastewater discharge. Moreover, the inactivation of Ampicillin (AMP), Ciprofloxacin (CPX), and Trimethoprim (TMP) antibiotic-resistant bacteria (ARB) and reduction of target genes (ARGs) were successfully achieved. Finally, a harmful effect toward the receiving aquatic environment was not observed according to Aliivibrio fischeri toxicity tests, while a slightly toxic effect toward plant growth (phytotoxicity tests) was detected. As a conclusion, a cost analysis demonstrated that the process could be feasible and a promising alternative to successfully address wastewater reuse challenges.
Collapse
|
28
|
Chaturvedi P, Chowdhary P, Singh A, Chaurasia D, Pandey A, Chandra R, Gupta P. Dissemination of antibiotic resistance genes, mobile genetic elements, and efflux genes in anthropogenically impacted riverine environments. CHEMOSPHERE 2021; 273:129693. [PMID: 33524742 DOI: 10.1016/j.chemosphere.2021.129693] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenically impacted surface waters are an important reservoir for multidrug-resistant bacteria and antibiotic-resistant genes. The present study aimed at MDR, ESBL, AmpC, efflux genes, and heavy metals resistance genes (HMRGs) in bacterial isolates from four Indian rivers belonging to different geo-climatic zones, by estimating the mode of resistance transmission exhibited by the resistant isolates. A total 71.27% isolates exhibited MDR trait, showing maximum resistance towards β-lactams (P = 66.49%; AMX = 59.04%), lincosamides (CD = 65.96%), glycopeptides (VAN = 25.19%; TEI = 56.91%), cephalosporins (CF = 53.72%; CXM = 30.32%) sulphonamide (COT = 43.62%; TRIM = 12.77%), followed by macrolide and tetracycline. The dfrA1 and dfrB genes were detected in total 37.5% isolates whereas; dfrA1 genes were detected in 33.34%. The sul1 gene was detected in 9.76% and sul2 gene was detected in 2.44% isolates. A total of 69.40% MDR integron positive isolates were detected with intI1and intI2 detected at 89.25% and 1.07%, respectively; encoding class 1 and class 2 integron-integrase. ESBL production was confirmed in 73.13% isolates that harboured the genes blaTEM (96.84%), blaSHV (27.37%), blaOXA (13.68%) and blaCTXM (18.95%) while the frequency of HMRGs; 52.24% (zntB), 33.58% (chrA), and 6.72% (cadD). Efflux activity was confirmed in 96.26% isolates that harbored the genes acrA (93.02%), tolC (88.37%), and acrB (86.04%). AmpC (plasmid-mediated) was detected in 20.9% of the riverine isolates. Detection of such hidden molecular modes of antibiotic resistance in the rivers is alarming that requires urgent and stringent measures to control the resistance threats.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology, Raipur, 492 010, India.
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Transnational Research, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ram Chandra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, 492 010, India.
| |
Collapse
|
29
|
Bombaywala S, Mandpe A, Paliya S, Kumar S. Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24889-24916. [PMID: 33765260 DOI: 10.1007/s11356-021-13143-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The overuse, misuse, and underuse of antibiotics tend to increase the antibiotic burden in the environment resulting into the evolution in microbial community to possess resistance that renders antibiotics ineffective against them. The current review recapitulates the present state of knowledge about the occurrence and fate of antibiotics in various environmental matrices. Also, the prevalence of antibiotic-resistant bacteria/antibiotic-resistant genes (ARB/ARGs) in various biological and non-biological systems, eco-toxicity of antibiotics on non-target organisms, and remediation methods for antibiotics and ARB/ARGs removal were critically reviewed. Furthermore, a comparison of various technologies for their efficiency to eliminate antibiotic residues and ARB/ARGs is made. The study identified gaps in the investigation of toxic effects of low concentration of antibiotics and the mixture of multiple antibiotics on non-target organisms. The study of antibiotics' phytotoxicity and toxicity towards sediment and soil-dwelling organisms are also recognized as a knowledge gap. The review also details policies implemented across the globe to fight against antibiotic resistance, and the scarcity of data on lab to land transferred remediation technology was identified. The present study entails a critical review of literature providing guidelines for the articulation of policies for prudent use of antibiotics, limits on the amount of antibiotics in pharmaceutical formulations, and regular surveillance in the Indian context.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Ashootosh Mandpe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sonam Paliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India.
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
30
|
Govender R, Amoah ID, Adegoke AA, Singh G, Kumari S, Swalaha FM, Bux F, Stenström TA. Identification, antibiotic resistance, and virulence profiling of Aeromonas and Pseudomonas species from wastewater and surface water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:294. [PMID: 33893564 DOI: 10.1007/s10661-021-09046-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Aquatic environments are hotspots for the spread of antibiotic-resistant bacteria and genes due to pollution caused mainly by anthropogenic activities. The aim of this study was to evaluate the impact of wastewater effluents, informal settlements, hospital, and veterinary clinic discharges on the occurrence, antibiotic resistance profile and virulence signatures of Aeromonas spp. and Pseudomonas spp. isolated from surface water and wastewater. High counts of Aeromonas spp. (2.5 (± 0.8) - 3.3 (± 0.4) log10 CFU mL-1) and Pseudomonas spp. (0.6 (± 1.0) - 1.8 (± 1.0) log10 CFU mL-1) were obtained. Polymerase chain reaction (PCR) and MALDI-TOF characterization identified four species of Aeromonas and five of Pseudomonas. The isolates displayed resistance to 3 or more antibiotics (71% of Aeromonas and 94% of Pseudomonas). Aeromonas spp. showed significant association with the antibiotic meropenem (χ2 = 3.993, P < 0.05). The virulence gene aer in Aeromonas was found to be positively associated with the antibiotic resistance gene blaOXA (χ2 = 6.657, P < 0.05) and the antibiotic ceftazidime (χ2 = 7.537, P < 0.05). Aeromonas recovered from both wastewater and surface water displayed high resistance to ampicillin and had higher multiple antibiotic resistance (MAR) indices close to the hospital. Pseudomonas isolates on the other hand exhibited low resistance to carbapenems but very high resistance to the third-generation cephalosporins and cefixime. The results showed that some of the Pseudomonas spp. and Aeromonas spp. isolates were extended-spectrum β-lactamase producing bacteria. In conclusion, the strong association between virulence genes and antibiotic resistance in the isolates shows the potential health risk to communities through direct and indirect exposure to the water.
Collapse
Affiliation(s)
- Reshme Govender
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Anthony Ayodeji Adegoke
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Gulshan Singh
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa.
| | - Feroz Mahomed Swalaha
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| | - Thor Axel Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Kwa-Zulu Natal 4001, Durban, South Africa
| |
Collapse
|
31
|
Makowska N, Bresa K, Koczura R, Philips A, Nowis K, Mokracka J. Urban wastewater as a conduit for pathogenic Gram-positive bacteria and genes encoding resistance to β-lactams and glycopeptides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144176. [PMID: 33385807 DOI: 10.1016/j.scitotenv.2020.144176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The emergence and spread of clinical pathogens, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment pose a direct threat to human and animal health worldwide. In this study, we analyzed qualitatively and quantitatively urban sewage resistome for the occurrence of genes encoding resistance to β-lactams and glycopeptides in the genomes of culturable bacteria, as well as in the wastewater metagenome of the Central Wastewater Treatment Plant in Koziegłowy (Poland). Moreover, we estimated the presence of pathogenic Gram-positive bacteria in wastewater based on analysis of species-specific virulence genes in the wastewater metagenome. The results show that the final effluent contains alarm pathogens with particularly dangerous mechanisms of antibiotic resistance, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). We also noticed that during the wastewater treatment, there is an increase in the frequency of MRSA and VRE. Furthermore, the results prove the effective removal of vanA, but at the same time show that wastewater treatment increases the relative abundance of mecA and virulence genes (groES and sec), indicating the presence of clinical pathogens E. faecalis and S. aureus in the effluent released to surface waters. We also observed an increase in the relative abundance of mecA and vanA genes already in the aeration tank, which suggests accumulation of contaminants affecting enhanced selection and HGT processes in the activated sludge. Moreover, we found a relation between the taxonomic composition and the copy number of ARGs as well as the presence of pathogens at various stages of wastewater treatment. The presence of clinically relevant pathogens, ARB, including multi-resistant bacteria, and ARGs in the effluent indicates that wastewater treatment plant play a key role in the existence of pathogens and antimicrobial resistance spreading pathway in the environment and human communities, which is a direct threat to public health and environmental protection.
Collapse
Affiliation(s)
- Nicoletta Makowska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland; Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Katarzyna Bresa
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Anna Philips
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Katarzyna Nowis
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.
| |
Collapse
|
32
|
Majumder A, Gupta AK, Ghosal PS, Varma M. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104812. [PMID: 33251108 PMCID: PMC7680650 DOI: 10.1016/j.jece.2020.104812] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 05/05/2023]
Abstract
The hospital wastewater imposes a potent threat to the security of human health concerning its high vulnerability towards the outbreak of several diseases. Furthermore, the outbreak of COVID-19 pandemic demanded a global attention towards monitoring viruses and other infectious pathogens in hospital wastewater and their removal. Apart from that, the presence of various recalcitrant organics, pharmaceutically active compounds (PhACs), etc. imparts a complex pollution load to water resources and ecosystem. In this review, an insight into the occurrence, persistence and removal of drug-resistant microorganisms and infectious viruses as well as other micro-pollutants have been documented. The performance of various pilot/full-scale studies have been evaluated in terms of removal of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), PhACs, pathogens, etc. It was found that many biological processes, such as membrane bioreactor, activated sludge process, constructed wetlands, etc. provided more than 80% removal of BOD, COD, TSS, etc. However, the removal of several recalcitrant organic pollutants are less responsive to those processes and demands the application of tertiary treatments, such as adsorption, ozone treatment, UV treatment, etc. Antibiotic-resistant microorganisms, viruses were found to be persistent even after the treatment of hospital wastewater, and high dose of chlorination or UV treatment was required to inactivate them. This article circumscribes the various emerging technologies, which have been used to treat PhACs and pathogens. The present review also emphasized the global concern of the presence of SARS-CoV-2 RNA in hospital wastewater and its removal by the existing treatment facilities.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahesh Varma
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
33
|
Hou L, Zhang L, Li F, Huang S, Yang J, Ma C, Zhang D, Yu CP, Hu A. Urban ponds as hotspots of antibiotic resistome in the urban environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124008. [PMID: 33265037 DOI: 10.1016/j.jhazmat.2020.124008] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
The occurrence, dissemination and assembly processes of antibiotic resistance genes (ARGs) in urban water ecosystems are far from being understood. Here, we examined the diversity and abundance of ARGs in urban water ecosystems including landscape ponds, drinking water reservoirs, influents (IFs) and effluents (EFs) of wastewater treatment plants of a coastal city, China through high-throughput quantitative PCR. A total of 237 ARGs were identified, where multidrug, aminoglycoside and beta-lactamase resistance genes were the most abundant. Urban ponds had a comparatively high diversity and large numbers of shared ARGs with IFs and EFs. The average absolute abundance of ARGs (1.38 × 107 copies/mL) and mobile genetic elements (MGEs) (4.19 × 106 copies/mL) in ponds were only one order of magnitude lower than those of IFs, but higher than those of EFs and reservoirs. Stochastic processes dominated the ARG community assembly in IFs and ponds due to the random horizontal gene transfer caused by MGEs. These results imply that urban ponds are hotspots of ARGs. We further identified 25, 3, and 11 indicator ARGs for tracing the ARG contamination from IFs, EFs and ponds, respectively. Our study represents the first to highlight the role of urban ponds in the dissemination of ARGs.
Collapse
Affiliation(s)
- Liyuan Hou
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijun Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Cong Ma
- Xiamen Municipal Environment Technology Co., Ltd., Xiamen 361001, China
| | - Duanxin Zhang
- General Water of Xiamen Sewage Co., Ltd., Xiamen 361001, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
34
|
Hassoun-Kheir N, Stabholz Y, Kreft JU, de la Cruz R, Romalde JL, Nesme J, Sørensen SJ, Smets BF, Graham D, Paul M. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140804. [PMID: 32758846 DOI: 10.1016/j.scitotenv.2020.140804] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 05/10/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) are constantly shed into the aquatic environment, with hospital wastewater potentially acting as an important source for resistance spread into the environment. A systematic review was conducted aiming to investigate the role of hospital wastewater on dissemination of antimicrobial resistance in the aquatic environment. Studies included in the review compared the prevalence of ARB and/or ARGs in hospital versus community wastewater. Data were extracted on ARB and/or ARG prevalence. Data on sampling techniques, microbiological methodology and risk of bias of included studies were recorded. Thirty-seven studies were included. Higher frequencies of antibiotic resistance determinants were found in hospital wastewater compared to community sources in 30/37 (81%) of included studies. However, trends for specific multi-drug-resistant bacteria differed. Antibiotic-resistant Gram-negative were more prevalent in hospital compared to community wastewaters, with higher concentrations of extended-spectrum-beta-lactamase-producing pathogens and carbapenemase-producing Enterobacteriaceae in hospital sources in 9/9 studies and 6/7 studies, respectively. Hospitals did not contribute consistently to the abundance of vancomycin-resistant Enterococci (VRE); 5/10 studies found higher abundance of VRE in hospital compared to community wastewaters. Reporting on sampling methods, wastewater treatment processes and statistical analysis were at high risk of bias. Extreme heterogeneity in study methods and outcome reporting precluded meta-analysis. Current evidence concurs that hospital wastewater is an important source for antibiotic resistance in aquatic environments, mainly multidrug-resistant Gram-negative bacteria. Future research is needed to assess the effect of wastewater treatment processes on overall antibiotic resistance in the aquatic environment.
Collapse
Affiliation(s)
- Nasreen Hassoun-Kheir
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel, HaAliya HaShniya St 8, Haifa 3109601, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel.
| | - Yoav Stabholz
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel, HaAliya HaShniya St 8, Haifa 3109601, Israel
| | - Jan-Ulrich Kreft
- Institute of Microbiology and Infection & Centre for Computational Biology & School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roberto de la Cruz
- Institute of Microbiology and Infection & Centre for Computational Biology & School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & Institute CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Joseph Nesme
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - David Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel, HaAliya HaShniya St 8, Haifa 3109601, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| |
Collapse
|
35
|
Sabri NA, van Holst S, Schmitt H, van der Zaan BM, Gerritsen HW, Rijnaarts HHM, Langenhoff AAM. Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140199. [PMID: 32615424 DOI: 10.1016/j.scitotenv.2020.140199] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 05/23/2023]
Abstract
Information on the removal of antibiotics and ARGs in full-scale WWTPs (with or without additional treatment technology) is limited. However, it is important to understand the efficiency of full-scale treatment technologies in removing antibiotics and ARGs under a variety of conditions relevant for practice to reduce their environmental spreading. Therefore, this study was performed to evaluate the removal of antibiotics and ARGs in a conventional wastewater treatment plant (WWTP A) and two full-scale combined with additional treatment technologies. WWTP B, a conventional activated sludge treatment followed by an activated carbon filtration step (1-STEP® filter) as a final treatment step. WWTP C, a treatment plant using aerobic granular sludge (NEREDA®) as an alternative to activated sludge treatment. Water and sludge were collected and analysed for 52 antibiotics from four target antibiotic groups (macrolides, sulfonamides, quinolones, tetracyclines) and four target ARGs (ermB, sul 1, sul 2 and tetW) and integrase gene class 1 (intI1). Despite the high removal percentages (79-88%) of the total load of antibiotics in all WWTPs, some antibiotics were detected in the various effluents. Additional treatment technology (WWTP C) showed antibiotics removal up to 99% (tetracyclines). For ARGs, WWTP C reduced 2.3 log followed by WWTP A with 2.0 log, and WWTP B with 1.3 log. This shows that full-scale WWTP with an additional treatment technology are promising solutions for reducing emissions of antibiotics and ARGs from wastewater treatment plants. However, total removal of the antibiotics and ARGS cannot be achieved for all types of antibiotics and ARGs. In addition, the ARGs were more abundant in the sludge compared to the wastewater effluent suggesting that sludge is an important reservoir representing a source for later ARG emissions upon reuse, i.e. as fertilizer in agriculture or as resource for bioplastics or bioflocculants. These aspects require further research.
Collapse
Affiliation(s)
- N A Sabri
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - S van Holst
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - H Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - B M van der Zaan
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 KB Utrecht, the Netherlands
| | - H W Gerritsen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - H H M Rijnaarts
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - A A M Langenhoff
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
36
|
Zhang S, Huang J, Zhao Z, Cao Y, Li B. Hospital Wastewater as a Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. Front Public Health 2020; 8:574968. [PMID: 33194975 PMCID: PMC7655780 DOI: 10.3389/fpubh.2020.574968] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/01/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The emergence and dissemination of antibiotic resistance genes (ARGs) in the environment poses a huge global health hazard. Hospital wastewater (HWW), in which a high density of antibiotic residues and antibiotic-resistant bacteria are present, may be a reservoir of ARGs dissemination into the environment. Our meta-analysis comprehensively analyzes the prevalence of ARGs in HWW, as well as the influencing factors in ARGs distribution. Methods: Online databases were used to search for literature using the subject terms: “Drug Resistance” AND “Genes” AND “Hospitals” AND “Wastewater.” Two reviewers independently applied predefined criteria to assess the literature and extract data including “relative abundance of ARGs,” “title,” “authors,” “country,” “location,” “sampling year,” and “sampling seasons.” The median values and 95% confidence intervals of ARGs abundance were calculated by Wilcox.test function in R. Temporal trends, spatial differences, seasonal variations and removal efficiency of ARGs were analyzed by Pearson correlation analysis and Kruskal-Wallis H test. Results: Resistance genes to carbapenems, sulfonamides, tetracyclines and mobile genetic elements were found at high relative abundance (>10−4 gene copies/16S rRNA gene copies) in HWW. The abundance of resistance genes to extended-spectrum β-lactams, carbapenems, sulfonamides and glycopeptide significantly decreased, while tetracycline resistance genes abundance increased from 2014 to 2018. The abundance of ARGs was significantly different by country but not by season. ARGs could not be completely removed by on-site HWW treatments and the removal efficiency varies for different ARGs. Conclusions: HWW presents more types of ARGs, and their abundance is higher than those in most wastewater systems. HWW may be a reservoir of ARGs and play an important role in the dissemination of ARGs.
Collapse
Affiliation(s)
- Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
37
|
Hospital Wastewater-Important Source of Multidrug Resistant Coliform Bacteria with ESBL-Production. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17217827. [PMID: 33114613 PMCID: PMC7663260 DOI: 10.3390/ijerph17217827] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
This work compares the prevalence of antibiotic resistant coliform bacteria in hospital wastewater effluents in Slovak (SR) and Czech Republic (ČR). It also describes selected antibiotic resistant isolates in view of resistance mechanism and virulence factor. The highest number of multidrug resistant bacteria was detected in samples from the hospital in Valašské Meziříčí (ČR). More than half of resistant isolates showed multidrug resistance phenotype as well as strong ability to form biofilm. In 42% of isolates efflux pump overproduction was detected together with tetA and tetE genes. The production of extended-spectrum β-lactamases in coliform isolates was encoded mainly by blaTEM, blaCTX-M-2 and blaCTX-M-8/25 genes. About 62% of resistants contained a combination of two or more extended spectrum beta-lactamases (ESBL) genes. Our results strengthen the fact that hospital effluents are a source of multidrug resistant bacteria which can spread their resistance genes to other bacteria in wastewater treatment plants (WWTPs). Accordingly, hospital wastewater should be better treated before it enters urban sewerage.
Collapse
|
38
|
Zieliński W, Korzeniewska E, Harnisz M, Hubeny J, Buta M, Rolbiecki D. The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. ENVIRONMENT INTERNATIONAL 2020; 143:105914. [PMID: 32615351 DOI: 10.1016/j.envint.2020.105914] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Drug-resistant and pathogenic Staphylococcus spp. strains can reach surface waters and air with wastewater evacuated to the environment. These strains increase the environmental pool of genetic determinants conferring antibiotic resistance and virulence, and constitute a health risk for the employees of wastewater treatment plants (WWTP) who come into daily contact with bioaerosols. The aim of this study was to identify the genetic determinants of drug resistance and virulence in Staphylococcus spp. strains isolated from untreated (UWW) and treated wastewater (TWW), an activated sludge (AS) bioreactor, river water collected upstream and downstream from the wastewater discharge point (URW and DRW), and WWTP employees. All isolates were analysed for the presence of the rpoB gene, and were subjected to clonal analysis by ERIC fingerprinting. As a result, 249 of the 455 analysed isolates were selected for PCR. The presence of the gene encoding nuclease activity in S. aureus (nuc), the methicillin resistance gene (mecA), vancomycin resistance gene (vanA), antiseptic resistance gene (qacA/B) and virulence genes (sasX, pvl, tst1, hla, sec) was determined. The prevalence of nuc, mecA, vanA and qacA/B genes in wastewater and river water was determined by quantitative PCR (qPCR). In the group of strains isolated from wastewater and water samples, 63% were identified as S. aureus, and 20% of the strains carried the vanA gene. The hla virulence gene was present in 80% of the isolates, and the pvl gene was detected in 27% of the isolates. In the group of strains isolated from the employees, 82% were identified as S. aureus, and the presence of vanA and mecA genes was confirmed in 14% and 16% of the isolates, respectively. The most prevalent virulence gene was hla (74%), whereas pvl was observed in 43% of the isolates. The quantitative analysis revealed the highest concentrations of the studied genes in UWW samples, at 2.56x104 gene copies/ml for nuc, 1.18x103 gene copies /ml for mecA, 8.28x105 gene copies /ml for vanA and 3.83x105 gene copies /ml for qacA/B. Some of analysed genes were identified in the isolates from both URW and DRW samples, as well as in genomic DNA of these samples. These results indicate that wastewater is not effectively treated in the analysed WWTP, which could contribute to the dissemination of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) to the environment. An analysis of the genetic relatedness of selected isolates revealed clusters of strains originating from UWW samples, AS samples and the employees. These observations suggest that ARGs and ARB are transmitted by wastewater bioaerosols to the upper respiratory tract mucosa of the plant's employees, thus increasing their exposure to infectious factors.
Collapse
Affiliation(s)
- Wiktor Zieliński
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Martyna Buta
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Damian Rolbiecki
- Department of Engineering of Water Protection and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| |
Collapse
|
39
|
Medina WRM, Eramo A, Tu M, Fahrenfeld N. Sewer biofilm microbiome and antibiotic resistance genes as function of pipe material, source of microbes, and disinfection: field and laboratory studies. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2020; 6:2122-2137. [PMID: 33033618 PMCID: PMC7537146 DOI: 10.1039/d0ew00265h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Wastewater systems are recognized pathways for the spread of antibiotic resistant bacteria, but relatively little is known about the microbial ecology of the sewer environment. Sewer biofilm colonization by antibiotic resistance gene (ARG) carrying bacteria may impact interpretations of sewage epidemiology data, water quality during sewer overflows, and hazard to utility workers. The objectives of this research were to evaluate the (1) microbiome of real and simulated sewer biofilms and their potential to accumulate ARGs and (2) susceptibility of simulated sewer biofilms to bleach disinfection. First, biofilm samples were collected from sewer municipal systems. Next, an annular biofilm reactor was used to simulate the sewer environment while controlling the pipe material (concrete vs. PVC). The reactor was operated either as fed semi-batch with sewer sediment and synthetic wastewater (Sed-SB) or fed with a continuous flow of raw sewage (WW-CF). The abundance of ARGs, human fecal marker HF183, and 16S rRNA gene copies in these biofilm samples was measured with qPCR. Amplicon sequencing was performed to compare the prokaryotic diversity between samples. Finally, the susceptibility of reactor biofilm to a 4.6% bleach disnfection protocol was evaluated using viability qPCR and amplicon sequencing. Field and WW-CF biofilms contained the most ARG copies and the microbial community compositions varied between the different biofilm samples (field, Sed-SB, and WW-CF). Pipe material did not affect the abundance of ARGs in the reactor samples. However, log removal following bleach treatment suggested that the biofilm grown on PVC surface was primarily dislodged from the surface by the bleach treatment whereas more bacteria were lysed within the biofilm that remained on the concrete surface. Viable bacteria carrying ARGs were observed following 10 minutes of treatment. This study showed that sewer biofilms can accumulate bacteria carrying ARGs and that while bleach can reduce sewer biofilm density, the protocol tested here will not completely remove the biofilms.
Collapse
Affiliation(s)
- William R. Morales Medina
- Microbiology & Molecular Genetics, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, USA
| | - Alessia Eramo
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, USA
| | - Melissa Tu
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, USA
| | - N.L. Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, USA
| |
Collapse
|
40
|
Removal of Antibiotic Resistance Genes at Two Conventional Wastewater Treatment Plants of Louisiana, USA. WATER 2020. [DOI: 10.3390/w12061729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wastewater treatment plants (WWTPs) represent all known types of antibiotic resistance mechanisms and are considered as the critical points for the spread of antibiotic resistance genes (ARGs). The purpose of this study is to investigate the removal of a Class 1 integrase gene (intI1) and a selected set of ARGs (blaTEM, ermF, mecA, and tetA) at two conventional WWTPs by using chlorination in Louisiana, USA. We collected 69 wastewater samples (23 each from influent, secondary effluent, and final effluent) and determined the concentrations of ARGs by using quantitative polymerase chain reaction. All tested ARGs, except for mecA, were detected in 83–96% and 30–65% of influent and final effluent samples, respectively. Although the ARGs underwent approximately 3-log10 reduction, two WWTPs on an average still released 3.3 ± 1.7 log10 copies/mL of total ARGs studied in the effluents. Chlorination was found to be critical in the significant reduction of total ARGs (p < 0.05). Correlation analysis and the ability of intI1 to persist through the treatment processes recommend the use of intI1 as a marker of ARGs in effluents to monitor the spread of antibiotic resistance in effluents. Our study suggests that conventional WWTPs using chlorination do not favor the proliferation of antibiotic resistance bacteria and ARGs during wastewater treatment.
Collapse
|
41
|
Paulus GK, Hornstra LM, Medema G. International tempo-spatial study of antibiotic resistance genes across the Rhine river using newly developed multiplex qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135733. [PMID: 31818563 DOI: 10.1016/j.scitotenv.2019.135733] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/09/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to capture and explain changes in antibiotic resistance gene (ARG) presence and concentration internationally across the Rhine river. Intl1 concentrations and national antibiotic usage were investigated as proxies to predict anthropogenic ARG pollution. Newly-developed multiplex qPCR assays were employed to investigate ARG profiles across 8 locations (L1-L8) in three countries (Switzerland, Germany, the Netherlands) and to detect potential regional causes for variation. Two of these locations were further monitored, over the duration of one month. A total of 13 ARGs, Intl1 and 16S rRNA were quantified. ARG presence and concentrations initially increased from L1(Diepoldsau) to L3(Darmstadt). A continuous increase could not be observed at subsequent locations, with the large river volume likely being a major contributing factor for stability. ARG presence and concentrations fluctuated widely across different locations. L2(Basel) and L3 were the two most polluted locations, coinciding with these locations being well-developed pharmaceutical production locations. We draw attention to the characteristic, clearly distinct ARG profiles, with gene presence being consistent and gene concentrations varying significantly less over time than across different locations. Five genes were Rhine-typical (ermB, ermF, Intl1, sul1 and tetM). Intl1 and sul1 were the genes with highest and second-highest concentration, respectively. Aph(III)a and blaOXA were permanently introduced downstream of L1, indicating no source of these genes prior to L1. We highlight that correlations between Intl1 and ARG concentrations (R2 = 0.72) were driven by correlations to sul1 and disappeared when excluding sul1 from the analysis (R2 = 0.05). Intl1 therefore seems to be a good proxy for sul1 concentrations but not necessarily for overall (anthropogenic) ARG pollution. Aminoglycoside usage per country correlated with concentrations of aph(III)a and several unrelated antibiotic resistance genes (blaOXA,ermB, ermF and tetM). This correlation can be explained by co-resistance caused by mobile genetic elements (MGEs), such as Tn1545.
Collapse
Affiliation(s)
- Gabriela K Paulus
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Delft University of Technology, Faculty of Civil Engineering & Geosciences, Department of Water Management, Stevinweg 1, 2628CN Delft, The Netherlands.
| | - Luc M Hornstra
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Gertjan Medema
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Delft University of Technology, Faculty of Civil Engineering & Geosciences, Department of Water Management, Stevinweg 1, 2628CN Delft, The Netherlands
| |
Collapse
|
42
|
Alves J, Dias L, Mateus J, Marques J, Graças D, Ramos R, Seldin L, Henriques I, Silva A, Folador A. Resistome in Lake Bolonha, Brazilian Amazon: Identification of Genes Related to Resistance to Broad-Spectrum Antibiotics. Front Microbiol 2020; 11:67. [PMID: 32117110 PMCID: PMC7010645 DOI: 10.3389/fmicb.2020.00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/14/2020] [Indexed: 01/02/2023] Open
Abstract
Resistance to antibiotics is one of the most relevant public health concerns in the world. Aquatic environments play an important role because they are reservoirs for antibiotic resistance genes and antibiotic-resistant strains, contributing to the spread of resistance. The present study investigated the resistome in Lake Bolonha (three sampling sites) in the Amazon region using a metagenomics approach and culture-dependent methods. Whole-metagenome-based results showed that the most abundant phyla were Protobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. The composition of the resistome demonstrated that the genes that confer resistance to β-lactams were prevalent at all sampling sites, followed by genes conferring resistance to aminoglycosides and tetracycline. Acquired genes encoding extended-spectrum β-lactamases (e.g., blaCTX–M) and resistance to carbapenems (e.g., blaIMP and blaVIM) were detected through metagenome analysis. Bacteria were isolated from culture medium supplemented with cefotaxime or imipenem, and isolates were identified and analyzed for their antibiotic susceptibility profiles and resistance genes. In total, 98 bacterial isolates belonging to the genera Pseudomonas (37), Acinetobacter (32), Klebsiella (13), Enterobacter (9), Pantoe (3), Stenotrophomonas (3), and Methylobacterium (1) were obtained. Among isolates, the most abundant genes were blaCTX–M (28.3%), blaSHV (22.6%) and blaTEM (18.8%) in isolates from cefotaxime-supplemented medium and blaVIM (28.8%) and blaIMP (22.2%) in isolates recovered from imipenem-supplemented medium. The genes intl1 and intl2 were detected in 19.3% and 7.1% of isolates. Antibiograms showed that 94.9% (from cefotaxime-supplemented medium) and 85.7% (from imipenem-supplemented medium) of the isolates were multidrug resistant. Besides cefotaxime and imipenem, isolates were mostly resistant to aztreonam (91.8%), amoxicillin (98.8%), ampicillin (82.6%), and nalidixic acid (77.5%). Hence, the present study demonstrates that Lake Bolonha is a reservoir of bacteria resistant to antibiotics and resistance genes, some of which are of critical importance to human health.
Collapse
Affiliation(s)
- Jorianne Alves
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Larissa Dias
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Jackeline Mateus
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joana Marques
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Diego Graças
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Rommel Ramos
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabel Henriques
- Center for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Artur Silva
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| | - Adriana Folador
- Laboratório de Genômica e Bioinformática, Centro De Genômica e Biologia de Sistemas, Universidade Federal Do Pará, Belém, Brazil
| |
Collapse
|
43
|
Zhao Z, Zhang K, Wu N, Li W, Xu W, Zhang Y, Niu Z. Estuarine sediments are key hotspots of intracellular and extracellular antibiotic resistance genes: A high-throughput analysis in Haihe Estuary in China. ENVIRONMENT INTERNATIONAL 2020; 135:105385. [PMID: 31855802 DOI: 10.1016/j.envint.2019.105385] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/17/2019] [Accepted: 12/02/2019] [Indexed: 05/25/2023]
Abstract
Estuaries lie between terrestrial/freshwater and marine ecosystems, receive considerable pollutant input from land-based sources, and are considerably influenced by human activities. However, little attention has been paid to combined research on extracellular antibiotic resistance genes (eARGs) and intracellular ARGs (iARGs) in the estuarine environment. In this study, we profiled eARGs and iARGs in sediments from Haihe Estuary, China by adopting high-throughput quantitative PCR and investigated their relationship with mobile genetic elements (MGEs), the bacterial community and environmental factors. The results showed that the abundance of eARGs ranged from 9.06 × 106 to 1.32 × 108 copies/g and that of iARGs ranged from 3.31 × 107 to 2.93 × 108 copies/g, indicating that estuarine sediments were key hotspots of eARGs and iARGs. Additionally, multidrug resistance genes were both highly diverse and abundant in Haihe Estuary, especially in coastal samples. The high abundance of vancomycin and carbapenemase resistance genes may pose a potential health risk to human. Salinity altered the composition and structure of the bacterial community. Partial redundancy analysis showed that the bacterial community and MGEs appeared to be the major drivers of ARG variance in estuarine sediment. This study provides an overview of the distribution of eARG and iARG along the Haihe Estuary and draws attention to the need to control pollutants in estuary ecosystems.
Collapse
Affiliation(s)
- Ze Zhao
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kai Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Nan Wu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenjie Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Weian Xu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
44
|
Young S, Rohr JR, Harwood VJ. Vancomycin resistance plasmids affect persistence of Enterococcus faecium in water. WATER RESEARCH 2019; 166:115069. [PMID: 31536887 DOI: 10.1016/j.watres.2019.115069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/21/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Vancomycin resistant enterococci (VRE) cause 20,000 infections annually in the United States, most of which are nosocomial. Recent findings of VRE in sewage-contaminated surface waters demonstrate an alternate route of human exposure, and a possible setting for horizontal gene exchange facilitated by plasmids and other mobile genetic elements. Maintenance of antibiotic resistance genes and proteins may, however, present a fitness cost in the absence of selective pressure, particularly in habitats such as environmental waters that are not optimal for gut-associated bacteria. Nutrient levels, which are transiently elevated following sewage spills, may also affect survival. We tested the hypotheses that nutrients and/or plasmids conferring vancomycin resistance affect Enterococcus faecium survival in river water by measuring decay of strains that differed only by their plasmid, under natural and augmented nutrient conditions. In natural river water, decay rate (log10 reduction) correlated directly with plasmid size; however, plasmid presence and size had no effect on decay rate when nutrients levels were augmented. Under natural nutrient levels, the vancomycin-resistant strain with the largest plasmid (200 kb) decayed significantly more rapidly than the plasmid-less, susceptible parent strain, in contrast to similar decay rates among strains under augmented nutrient conditions. This work is among the first to show that plasmids conferring antibiotic resistance affect fitness of Enterococcus species in secondary habitats such as surface water. The nutrient-dependent nature of the fitness cost suggests that conveyance of VRE to environmental waters in nutrient-rich sewage may prolong survival of these pathogens, providing greater opportunity for host infection and/or horizontal gene transfer.
Collapse
Affiliation(s)
- Suzanne Young
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA; Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
45
|
Duan M, Zhang Y, Zhou B, Wang Q, Gu J, Liu G, Qin Z, Li Z. Changes in antibiotic resistance genes and mobile genetic elements during cattle manure composting after inoculation with Bacillus subtilis. BIORESOURCE TECHNOLOGY 2019; 292:122011. [PMID: 31442833 DOI: 10.1016/j.biortech.2019.122011] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
This study explored the effects of Bacillus subtilis at four levels (0, 0.5%, 1%, and 2% w/w compost) on the variations in ARGs, mobile genetic elements (MGEs), and the bacterial community during composting. The composting process had a greater impact on ARGs than Bacillus subtilis. The main ARG detected was sul1. The addition of Bacillus subtilis at 0.5% reduced the relative abundances of ARGs, MGEs, and human pathogenic bacteria (by 2-3 logs) in the mature products. Network and redundancy analyses suggested that intI1, Firmicutes, and pH were mainly responsible for the changes in ARGs, thus controlling these factors might help to inhibit the spread of ARGs.
Collapse
Affiliation(s)
- Manli Duan
- State Key Laboratory of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China
| | - Yuhua Zhang
- State Key Laboratory of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China
| | - Beibei Zhou
- State Key Laboratory of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China.
| | - Quanjiu Wang
- State Key Laboratory of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Guohuan Liu
- State Key Laboratory of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China
| | - Zhenlun Qin
- State Key Laboratory of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China
| | - Zhijian Li
- State Key Laboratory of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
46
|
Duan M, Gu J, Wang X, Li Y, Zhang R, Hu T, Zhou B. Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:114-122. [PMID: 31078018 DOI: 10.1016/j.ecoenv.2019.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 05/21/2023]
Abstract
Livestock manure is generally dumped directly onto open soil or used to enhance the soil fertility. However, there are growing concerns regarding the impact of these practices on the development and dissemination of antibiotic resistance genes (ARGs) in soil. In this study, we sampled soils treated with manure from 10 large-scale farms (pig, beef cattle, and chicken farms) and those from farmland without manure. The results showed that the abundance of ARGs was more than 2.62 times higher in the soil samples treated with livestock manure than the farmland soil without manure. The abundances of ARGs and intI1 in all samples were in the following order: pig farms > chicken farms > beef cattle farms. tetX, sul1, sul2, and tetG were the dominant ARGs in farm soil. The concentrations of tetracycline antibiotics and sulfonamide antibiotics were 0.15-4.76 mg/kg and 0-2.62 mg/kg, respectively, in the soils treated with manure, which were higher than those in farmland soils without manure. Redundancy analysis (P < 0.05) and network analysis (P < 0.01, R > 0.80) demonstrated that copper, zinc, actinomycetes, and tetracycline antibiotics were the main factors that affected the distribution of ARGs in soils treated with livestock manure.
Collapse
Affiliation(s)
- Manli Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Ranran Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Beibei Zhou
- State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
47
|
Shi W, Zhang H, Li J, Liu Y, Shi R, Du H, Chen J. Occurrence and spatial variation of antibiotic resistance genes (ARGs) in the Hetao Irrigation District, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:792-801. [PMID: 31121544 DOI: 10.1016/j.envpol.2019.04.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
The prevalence and proliferation of antibiotic resistance genes (ARGs) has been identified as an emerging contaminant of concern and a crucial threat to public health worldwide. To determine the occurrence and distribution of ARGs in artificial agricultural irrigation systems, we designed eight sample sites of farmland drainage in the Hetao Irrigation District, Inner Mongolia, China. Results indicated that the distribution of ARGs in sub-drainage canals is influenced by the local urban area, agriculture, and animal husbandry structure. The blaTEM gene was predominant in the water samples (up to 8.98 ARG copies/16S rRNA genes). The average ARG abundance in drainage channel sampling sites was significantly higher than the influent water from the Yellow River, which means that the artificial agricultural irrigation system enhances the abundance of resistance genes in the study area. Moreover, the effluent water of the whole irrigation system presented a lower abundance of ARGs than the influent water. This demonstrates that the Wuliangsuhai watershed ecosystem plays an important role in regulating the abundance of ARGs in the area. In our study, the mobile gene elements correlated with trB, emrD, mexF, and vanC (P < 0.001) in the irrigation system. Additionally, different correlations exist between other special subtypes of ARGs. These findings provided deeper insights into mitigating the propagation of ARGs and the associated risks to public health.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Hong Zhang
- College of Environmental Science and Resources, Shanxi University, Taiyuan, 030006, China.
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yong Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Shi
- Institute of Environmental Science of Bayannur, Linhe, 015000, China
| | - Hongyu Du
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
48
|
Zhu L, Zhao Y, Yang K, Chen J, Zhou H, Chen X, Liu Q, Wei Z. Host bacterial community of MGEs determines the risk of horizontal gene transfer during composting of different animal manures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:166-174. [PMID: 30995570 DOI: 10.1016/j.envpol.2019.04.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 05/12/2023]
Abstract
Mobile genetic elements (MGEs) play critical roles in transferring antibiotic resistance genes (ARGs) among different microorganisms in the environment. This study aimed to explore the fate of MGEs during chicken manure (CM) and bovine manure (BM) composting to assess horizontal transfer risks of ARGs. The results showed that the removal efficiency of MGEs during CM composting was significantly higher than that during BM composting, because the potential host bacteria of MGEs were eliminated largely during CM composting. Meanwhile, these potential host bacterial communities are significantly influenced by pH, NH4+, NO3- and total N, which can be used to regulate host bacterial communities to remove MGEs during composting. Projection pursuit regression further confirmed that composting can effectively reduce the horizontal transfer risk of ARGs, especially for CM composting. These results identified the critical roles of host bacterial communities in MGEs removal during composting of different animal manures.
Collapse
Affiliation(s)
- Longji Zhu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Kangjie Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Chen
- Beijing Tongzhou Agriculture Products Quality Inspection & Testing Center, Beijing, 101149, China
| | - Haixuan Zhou
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaomeng Chen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
49
|
Paulus GK, Hornstra LM, Alygizakis N, Slobodnik J, Thomaidis N, Medema G. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int J Hyg Environ Health 2019; 222:635-644. [DOI: 10.1016/j.ijheh.2019.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/21/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023]
|
50
|
Eramo A, Morales Medina WR, Fahrenfeld NL. Viability-based quantification of antibiotic resistance genes and human fecal markers in wastewater effluent and receiving waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:495-502. [PMID: 30522032 PMCID: PMC6526933 DOI: 10.1016/j.scitotenv.2018.11.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 05/25/2023]
Abstract
Antibiotic resistance is a public health issue with links to environmental sources of antibiotic resistance genes (ARGs). ARGs from nonviable sources may pose a hazard given the potential for transformation whereas ARGs in viable sources may proliferate during host growth or conjugation. In this study, ARGs in the effluent from three municipal wastewater treatment plants (WWTPs) and the receiving surface waters were investigated using a viability-based qPCR technique (vPCR) with propidium monoazide (PMA). ARGs sul1, tet(G), and blaTEM, fecal indicator marker BacHum, and 16S rRNA gene copies/mL were found to be significantly lower in viable-cells than in total concentrations for WWTP effluent. Viable-cell and total gene copy concentrations were similar in downstream samples except for tet(G). Differences with respect to season in the prevalence of nonviable ARGs in surface water or WWTP effluent were not observed. The results of this study indicate that qPCR may overestimate viable-cell ARGs and fecal indicator genes in WWTP effluent but not necessarily in the surface water >1.8 km downstream.
Collapse
Affiliation(s)
- Alessia Eramo
- Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, United States
| | - William R Morales Medina
- Department of Microbiology and Molecular Genetics, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, United States
| | - Nicole L Fahrenfeld
- Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Dr, Piscataway, NJ 08854, United States.
| |
Collapse
|