1
|
O’Grady K, Hong S, Putsathit P, George N, Hemphill C, Huntington PG, Korman TM, Kotsanas D, Lahra M, McDougall R, McGlinchey A, Levy A, Moore CV, Nimmo G, Prendergast L, Robson J, Speers DJ, Waring L, Wehrhahn MC, Weldhagen GF, Wilson RM, Riley TV, Knight DR. Defining the phylogenetics and resistome of the major Clostridioides difficile ribotypes circulating in Australia. Microb Genom 2024; 10:001232. [PMID: 38717815 PMCID: PMC11165652 DOI: 10.1099/mgen.0.001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 06/13/2024] Open
Abstract
Clostridioides difficile infection (CDI) remains a significant public health threat globally. New interventions to treat CDI rely on an understanding of the evolution and epidemiology of circulating strains. Here we provide longitudinal genomic data on strain diversity, transmission dynamics and antimicrobial resistance (AMR) of C. difficile ribotypes (RTs) 014/020 (n=169), 002 (n=77) and 056 (n=36), the three most prominent C. difficile strains causing CDI in Australia. Genome scrutiny showed that AMR was uncommon in these lineages, with resistance-conferring alleles present in only 15/169 RT014/020 strains (8.9 %), 1/36 RT056 strains (2.78 %) and none of 77 RT002 strains. Notably, ~90 % of strains were resistant to MLSB agents in vitro, but only ~5.9 % harboured known resistance alleles, highlighting an incongruence between AMR genotype and phenotype. Core genome analyses revealed all three RTs contained genetically heterogeneous strain populations with limited evidence of clonal transmission between CDI cases. The average number of pairwise core genome SNP (cgSNP) differences within each RT group ranged from 23.3 (RT056, ST34, n=36) to 115.6 (RT002, ST8, n=77) and 315.9 (RT014/020, STs 2, 13, 14, 49, n=169). Just 19 clonal groups (encompassing 40 isolates), defined as isolates differing by ≤2 cgSNPs, were identified across all three RTs (RT014/020, n=14; RT002, n=3; RT056, n=2). Of these clonal groups, 63 % (12/19) comprised isolates from the same Australian State and 37 % (7/19) comprised isolates from different States. The low number of plausible transmission events found for these major RTs (and previously documented populations in animal and environmental sources/reservoirs) points to widespread and persistent community sources of diverse C. difficile strains as opposed to ongoing nationwide healthcare outbreaks dominated by a single clone. Together, these data provide new insights into the evolution of major lineages causing CDI in Australia and highlight the urgent need for enhanced surveillance, and for public health interventions to move beyond the healthcare setting and into a One Health paradigm to effectively combat this complex pathogen.
Collapse
Affiliation(s)
- Keeley O’Grady
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Stacey Hong
- Communicable Disease Control Directorate, WA Department of Health, East Perth, Western Australia, Australia
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Narelle George
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | | | - Peter G. Huntington
- Department of Microbiology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Tony M. Korman
- Monash University, Monash Health, Clayton, Victoria, Australia
| | - Despina Kotsanas
- Monash Infectious Diseases, Monash Health, Monash Medical Centre, Clayton, Victoria, Australia
| | - Monica Lahra
- Department of Microbiology, The Prince of Wales Hospital, Randwick, New South Wales, Australia
| | | | | | - Avram Levy
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Casey V. Moore
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide, South Australia, Australia
| | - Graeme Nimmo
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | | | - Jennifer Robson
- Sullivan Nicolaides Pathology, Taringa, Queensland, Australia
| | - David J. Speers
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| | | | | | - Gerhard F. Weldhagen
- Microbiology and Infectious Diseases Laboratories, SA Pathology, Adelaide, South Australia, Australia
| | - Richard M. Wilson
- Australian Clinical Labs, Microbiology Department, Wayville, South Australia, Australia
| | - Thomas V. Riley
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Daniel R. Knight
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
2
|
Scicchitano D, Babbi G, Palladino G, Turroni S, Mekonnen YT, Laczny C, Wilmes P, Leekitcharoenphon P, Castagnetti A, D'Amico F, Brigidi P, Savojardo C, Manfreda G, Martelli P, De Cesare A, Aarestrup FM, Candela M, Rampelli S. Routes of dispersion of antibiotic resistance genes from the poultry farm system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169086. [PMID: 38056648 DOI: 10.1016/j.scitotenv.2023.169086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Poultry farms are hotspots for the development and spread of antibiotic resistance genes (ARGs), due to high stocking densities and extensive use of antibiotics, posing a threat of spread and contagion to workers and the external environment. Here, we applied shotgun metagenome sequencing to characterize the gut microbiome and resistome of poultry, workers and their households - also including microbiomes from the internal and external farm environment - in three different farms in Italy during a complete rearing cycle. Our results highlighted a relevant overlap among the microbiomes of poultry, workers, and their families (gut and skin), with clinically relevant ARGs and associated mobile elements shared in both poultry and human samples. On a finer scale, the reconstruction of species-level genome bins (SGBs) allowed us to delineate the dynamics of microorganism and ARGs dispersion from farm systems. We found the associations with worker microbiomes representing the main route of ARGs dispersion from poultry to human populations. Collectively, our findings clearly demonstrate the urgent need to implement more effective procedures to counteract ARGs dispersion from poultry food systems and the relevance of metagenomics-based metacommunity approaches to monitor the ARGs dispersion process for the safety of the working environment on farms.
Collapse
|
3
|
Spigaglia P, Mastrantonio P, Barbanti F. Antibiotic Resistances of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:169-198. [PMID: 38175476 DOI: 10.1007/978-3-031-42108-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rapid evolution of antibiotic resistance in Clostridioides difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are a matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances, and most of the epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways or biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Paola Mastrantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Dost I, Abdel-Glil M, Schmoock G, Menge C, Berens C, González-Santamarina B, Wiegand E, Neubauer H, Schwarz S, Seyboldt C. Clostridioides difficile in South American Camelids in Germany: First Insights into Molecular and Genetic Characteristics and Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010086. [PMID: 36671289 PMCID: PMC9854998 DOI: 10.3390/antibiotics12010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Little is known about zoonotic pathogens and their antimicrobial resistance in South American camelids (SAC) in Germany including Clostridioides (C.) difficile. The aim of this study was to investigate prevalence, molecular characteristics and antimicrobial resistance of C. difficile in SAC. Composite SAC faecal samples were collected in 43 husbandries in Central Germany and cultured for C. difficile. Toxinotyping and ribotyping was done by PCR. Whole genome sequencing was performed with Illumina® Miseq™. The genomes were screened for antimicrobial resistance determinants. Genetic relatedness of the isolates was investigated using core genome multi locus sequence typing (cgMLST) and single nucleotide polymorphism analysis. Antimicrobial susceptibility testing was done using the Etest® method. Eight C. difficile isolates were recovered from seven farms. The isolates belonged to different PCR ribotypes. All isolates were toxinogenic. cgMLST revealed a cluster containing isolates recovered from different farms. Seven isolates showed similar resistance gene patterns. Different phenotypic resistance patterns were found. Agreement between phenotypic and genotypic resistance was identified only in some cases. Consequently, SAC may act as a reservoir for C. difficile. Thus, SAC may pose a risk regarding zoonotic transmission of toxinogenic, potentially human-pathogenic and resistant C. difficile isolates.
Collapse
Affiliation(s)
- Ines Dost
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-3641-804-2488
| | - Mostafa Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Gernot Schmoock
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Christian Berens
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Belén González-Santamarina
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Elisabeth Wiegand
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Straße 96a, 07743 Jena, Germany
| |
Collapse
|
5
|
O’Grady K, Knight DR, Riley TV. Antimicrobial resistance in Clostridioides difficile. Eur J Clin Microbiol Infect Dis 2021; 40:2459-2478. [DOI: 10.1007/s10096-021-04311-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023]
|
6
|
Badilla-Lobo A, Rodríguez C. Microbiological features, epidemiology, and clinical presentation of Clostridioidesdifficile strains from MLST Clade 2: A narrative review. Anaerobe 2021; 69:102355. [PMID: 33711422 DOI: 10.1016/j.anaerobe.2021.102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile is an emerging One Health pathogen and a common etiologic agent of diarrhea, both in healthcare settings and the community. This bacterial species is highly diverse, and its global population has been classified in eight clades by multilocus sequence typing (MLST). The C. difficile MLST Clade 2 includes the NAP1/RT027/ST01 strain, which is highly recognized due to its epidemicity and association with severe disease presentation and mortality. By contrast, the remaining 83 sequence types (STs) that compose this clade have received much less attention. In response to this shortcoming, we reviewed articles published in English between 1999 and 2020 and collected information for 27 Clade 2 STs, with an emphasis on STs 01, 67, 41 and 188/231/365. Our analysis provides evidence of large phenotypic differences that preclude support of the rather widespread notion that ST01 and Clade 2 strains are "hypervirulent". Moreover, it revealed a profound lack of (meta)data for nearly 70% of the Clade 2 STs that have been identified in surveillance efforts. Targeted studies aiming to relate wet-lab and bioinformatics results to patient and clinical parameters should be performed to gain a more in-depth insight into the biology of this intriguing group of C. difficile isolates.
Collapse
Affiliation(s)
- Adriana Badilla-Lobo
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, and Master's Program in Microbiology, Parasitology, Clinical Chemistry and Immunology, Universidad de Costa Rica, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, and Master's Program in Microbiology, Parasitology, Clinical Chemistry and Immunology, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
7
|
Aguilar-Zamora E, Weimer BC, Torres RC, Gómez-Delgado A, Ortiz-Olvera N, Aparicio-Ozores G, Barbero-Becerra VJ, Torres J, Camorlinga-Ponce M. Molecular Epidemiology and Antimicrobial Resistance of Clostridioides difficile in Hospitalized Patients From Mexico. Front Microbiol 2021; 12:787451. [PMID: 35360652 PMCID: PMC8960119 DOI: 10.3389/fmicb.2021.787451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a global public health problem, which is a primary cause of antibiotic-associated diarrhea in humans. The emergence of hypervirulent and antibiotic-resistant strains is associated with the increased incidence and severity of the disease. There are limited studies on genomic characterization of C. difficile in Latin America. We aimed to learn about the molecular epidemiology and antimicrobial resistance in C. difficile strains from adults and children in hospitals of México. We studied 94 C. difficile isolates from seven hospitals in Mexico City from 2014 to 2018. Whole-genome sequencing (WGS) was used to determine the genotype and examine the toxigenic profiles. Susceptibility to antibiotics was determined by E-test. Multilocus sequence typing (MLST) was used to determine allelic profiles. Results identified 20 different sequence types (ST) in the 94 isolates, mostly clade 2 and clade 1. ST1 was predominant in isolates from adult and children. Toxigenic strains comprised 87.2% of the isolates that were combinations of tcdAB and cdtAB (tcdA+/tcdB+/cdtA+/cdtB+, followed by tcdA+/tcdB+/cdtA-/cdtB-, tcdA-/tcdB+/cdtA-/ cdtB-, and tcdA-/tcdB-/cdtA+/cdtB+). Toxin profiles were more diverse in isolates from children. All 94 isolates were susceptible to metronidazole and vancomycin, whereas a considerable number of isolates were resistant to clindamycin, fluroquinolones, rifampicin, meropenem, and linezolid. Multidrug-resistant isolates (≥3 antibiotics) comprised 65% of the isolates. The correlation between resistant genotypes and phenotypes was evaluated by the kappa test. Mutations in rpoB and rpoC showed moderate concordance with resistance to rifampicin and mutations in fusA substantial concordance with fusidic acid resistance. cfrE, a gene recently described in one Mexican isolate, was present in 65% of strains linezolid resistant, all ST1 organisms. WGS is a powerful tool to genotype and characterize virulence and antibiotic susceptibility patterns.
Collapse
Affiliation(s)
- Emmanuel Aguilar-Zamora
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | - Roberto C. Torres
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
| | - Alejandro Gómez-Delgado
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
| | - Nayeli Ortiz-Olvera
- Departamento de Gastroenterología, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | | | - Javier Torres
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- *Correspondence: Javier Torres,
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- Margarita Camorlinga-Ponce,
| |
Collapse
|
8
|
Antonopoulos DA, Assaf R, Aziz RK, Brettin T, Bun C, Conrad N, Davis JJ, Dietrich EM, Disz T, Gerdes S, Kenyon RW, Machi D, Mao C, Murphy-Olson DE, Nordberg EK, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Santerre J, Shukla M, Stevens RL, VanOeffelen M, Vonstein V, Warren AS, Wattam AR, Xia F, Yoo H. PATRIC as a unique resource for studying antimicrobial resistance. Brief Bioinform 2020; 20:1094-1102. [PMID: 28968762 PMCID: PMC6781570 DOI: 10.1093/bib/bbx083] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
The Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org) is designed to provide researchers with the tools and services that they need to perform genomic and other ‘omic’ data analyses. In response to mounting concern over antimicrobial resistance (AMR), the PATRIC team has been developing new tools that help researchers understand AMR and its genetic determinants. To support comparative analyses, we have added AMR phenotype data to over 15 000 genomes in the PATRIC database, often assembling genomes from reads in public archives and collecting their associated AMR panel data from the literature to augment the collection. We have also been using this collection of AMR metadata to build machine learning-based classifiers that can predict the AMR phenotypes and the genomic regions associated with resistance for genomes being submitted to the annotation service. Likewise, we have undertaken a large AMR protein annotation effort by manually curating data from the literature and public repositories. This collection of 7370 AMR reference proteins, which contains many protein annotations (functional roles) that are unique to PATRIC and RAST, has been manually curated so that it projects stably across genomes. The collection currently projects to 1 610 744 proteins in the PATRIC database. Finally, the PATRIC Web site has been expanded to enable AMR-based custom page views so that researchers can easily explore AMR data and design experiments based on whole genomes or individual genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Alice R Wattam
- Corresponding author: Alice R. Wattam, Biocomplexity Institute of Virginia Tech, 1015 Life Science Circle, Blacksburg, VA 24061 USA. Tel.: 540-231-1263; Fax: 540-231-2606; E-mail:
| | | | | |
Collapse
|
9
|
Cejas D, Ríos Osorio NR, Quirós R, Sadorin R, Berger MA, Gutkind G, Fernández Canigia L, Radice M. Detection and molecular characterization of Clostridium difficile ST 1 in Buenos Aires, Argentina. Anaerobe 2018; 49:14-17. [DOI: 10.1016/j.anaerobe.2017.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023]
|
10
|
Antibiotic Resistances of Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:137-159. [PMID: 29383668 DOI: 10.1007/978-3-319-72799-8_9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rapid evolution of antibiotic resistance in Clostridium difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances and most of epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways and biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, recent data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
|
11
|
Fuzi M, Szabo D, Csercsik R. Double-Serine Fluoroquinolone Resistance Mutations Advance Major International Clones and Lineages of Various Multi-Drug Resistant Bacteria. Front Microbiol 2017; 8:2261. [PMID: 29250038 PMCID: PMC5715326 DOI: 10.3389/fmicb.2017.02261] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023] Open
Abstract
The major international sequence types/lineages of methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae and ESBL-producing E. coli were demonstrated to have been advanced by favorable fitness balance associated with high-level resistance to fluoroquinolones. The paper shows that favorable fitness in the major STs/lineages of these pathogens was principally attained by the capacity of evolving mutations in the fluoroquinolone-binding serine residues of both the DNA gyrase and topoisomerase IV enzymes. The available information on fitness balance incurred by individual and various combinations of mutations in the enzymes is reviewed in multiple species. Moreover, strong circumstantial evidence is presented that major STs/lineages of other multi-drug resistant bacteria, primarily vancomycin-resistant Enterococcus faecium (VRE), emerged by a similar mechanism. The reason(s) why the major ST/lineage strains of various pathogens proved more adept at evolving favorable mutations than most isolates of the same species remains to be elucidated.
Collapse
Affiliation(s)
- Miklos Fuzi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Rita Csercsik
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis 2016; 3:23-42. [PMID: 26862400 DOI: 10.1177/2049936115622891] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile epidemiology has changed in recent years, with the emergence of highly virulent types associated with severe infections, high rates of recurrences and mortality. Antibiotic resistance plays an important role in driving these epidemiological changes and the emergence of new types. While clindamycin resistance was driving historical endemic types, new types are associated with resistance to fluoroquinolones. Furthermore, resistance to multiple antibiotics is a common feature of the newly emergent strains and, in general, of many epidemic isolates. A reduced susceptibility to antibiotics used for C. difficile infection (CDI) treatment, in particular to metronidazole, has recently been described in several studies. Furthermore, an increased number of strains show resistance to rifamycins, used for the treatment of relapsing CDI. Several mechanisms of resistance have been identified in C. difficile, including acquisition of genetic elements and alterations of the antibiotic target sites. The C. difficile genome contains a plethora of mobile genetic elements, many of them involved in antibiotic resistance. Transfer of genetic elements among C. difficile strains or between C. difficile and other bacterial species can occur through different mechanisms that facilitate their spread. Investigations of the fitness cost in C. difficile indicate that both genetic elements and mutations in the molecular targets of antibiotics can be maintained regardless of the burden imposed on fitness, suggesting that resistances may persist in the C. difficile population also in absence of antibiotic selective pressure. The rapid evolution of antibiotic resistance and its composite nature complicate strategies in the treatment and prevention of CDI. The rapid identification of new phenotypic and genotypic traits, the implementation of effective antimicrobial stewardship and infection control programs, and the development of alternative therapies are needed to prevent and contain the spread of resistance and to ensure an efficacious therapy for CDI.
Collapse
|