1
|
Bittencourt AA, Faustino VL, Batista PDM, Leonel LP, de Paula MDN, Polis TJ. Activity of ceftolozane/tazobactam and comparators against gram-negative bacilli: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART - Brazil), 2018‒2021. Braz J Infect Dis 2025; 29:104497. [PMID: 39667188 PMCID: PMC11699052 DOI: 10.1016/j.bjid.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Increased spread of antimicrobial resistance by Gram-Negative Bacilli (GNB) poses a global challenge, with exacerbated burden post-pandemic. The aim of this study was to investigate the in vitro activity of ceftolozane/tazobactam and its comparators against the frequently identified GNB isolated from patients admitted to Brazilian medical sites between the year 2018‒2019 and 2020‒2021. The impact of pandemic on antimicrobial resistance and presence of β-lactamase genes were also evaluated. Antimicrobial susceptibility testing and molecular characterization of ß-lactamase encoding genes using Polymerase Chain Reaction (PCR) and DNA sequencing were carried out from GNB isolated mostly from intra-abdominal, respiratory, and urinary tract infections and interpreted following BrCAST/EUCAST guidelines. A total of 3994 GNB isolates were evaluated which mostly included E. coli, K. pneumoniae and P. aeruginosa. Ceftolozane/tazobactam remained highly active against E. coli isolates during both 2018‒2019 (96.0 %) and 2020‒2021 (98.5 %). Among K. pneumoniae, ceftolozane/tazobactam (47.6 % and 43.0 % susceptible during 2018‒2019 and 2020‒2021, respectively) showed poor activity due to blaKPC-2. Colistin and ceftolozane/tazobactam were the most active β-lactam agents tested against P. aeruginosa in 2018‒2019 (99.3 % and 88.8 %) and 2020‒2021 (100 % and 92.8 %), including ceftazidime and meropenem resistant isolates. β-lactamase encoding gene characterization was carried out and both carbapenemases and Extended-Spectrum β-Lactamase (ESBL) producers were found in E. coli, K. pneumoniae and P. aeruginosa isolates. Ceftolozane/tazobactam documented remarkable in vitro activity against E. coli and P. aeruginosa isolates in Brazil, both pre- and post-pandemic periods and could constitute an effective therapeutic option for the treatment of urinary tract infections, intra-abdominal infections, and respiratory tract infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Thales José Polis
- Global Medical & Scientific Affairs (GMSA), MSD Brazil, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Rodrigues SH, Nunes GD, Soares GG, Ferreira RL, Damas MSF, Laprega PM, Shilling RE, Campos LC, da Costa AS, Malavazi I, da Cunha AF, Pranchevicius MCDS. First report of coexistence of blaKPC-2 and blaNDM-1 in carbapenem-resistant clinical isolates of Klebsiella aerogenes in Brazil. Front Microbiol 2024; 15:1352851. [PMID: 38426065 PMCID: PMC10903355 DOI: 10.3389/fmicb.2024.1352851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Klebsiella aerogenes is an important opportunistic pathogen with the potential to develop resistance against last-line antibiotics, such as carbapenems, limiting the treatment options. Here, we investigated the antibiotic resistance profiles of 10 K. aerogenes strains isolated from patient samples in the intensive-care unit of a Brazilian tertiary hospital using conventional PCR and a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. All isolates were completely resistant to β-lactam antibiotics, including ertapenem, imipenem, and meropenem with differencing levels of resistance to aminoglycosides, quinolones, and tigecycline also observed. Half of the strains studied were classified as multidrug-resistant. The carbapenemase-producing isolates carried many genes of interest including: β-lactams (blaNDM-1, blaKPC-2, blaTEM-1, blaCTX-M-1 group, blaOXA-1 group and blaSHVvariants in 20-80% of the strains), aminoglycoside resistance genes [aac(6')-Ib and aph(3')-VI, 70 and 80%], a fluoroquinolone resistance gene (qnrS, 80%), a sulfonamide resistance gene (sul-2, 80%) and a multidrug efflux system transporter (mdtK, 70%) while all strains carried the efflux pumps Acr (subunit A) and tolC. Moreover, we performed a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. The draft genome assembly of the CRK317 had a total length of 5,462,831 bp and a GC content of 54.8%. The chromosome was found to contain many essential genes. In silico analysis identified many genes associated with resistance phenotypes, including β-lactamases (blaOXA-9, blaTEM-1, blaNDM-1, blaCTX-M-15, blaAmpC-1, blaAmpC-2), the bleomycin resistance gene (bleMBL), an erythromycin resistance methylase (ermC), aminoglycoside-modifying enzymes [aac(6')-Ib, aadA/ant(3")-Ia, aph(3')-VI], a sulfonamide resistance enzyme (sul-2), a chloramphenicol acetyltransferase (catA-like), a plasmid-mediated quinolone resistance protein (qnrS1), a glutathione transferase (fosA), PEtN transferases (eptA, eptB) and a glycosyltransferase (arnT). We also detected 22 genomic islands, eight families of insertion sequences, two putative integrative and conjugative elements with a type IV secretion system, and eight prophage regions. This suggests the significant involvement of these genetic structures in the dissemination of antibiotic resistance. The results of our study show that the emergence of carbapenemase-producing K. aerogenes, co-harboring blaKPC-2 and blaNDM-1, is a worrying phenomenon which highlights the importance of developing strategies to detect, prevent, and control the spread of these microorganisms.
Collapse
Affiliation(s)
- Saulo Henrique Rodrigues
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Dantas Nunes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gabriela Guerrera Soares
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | |
Collapse
|
3
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|
4
|
Forero-Hurtado D, Corredor-Rozo ZL, Ruiz-Castellanos JS, Márquez-Ortiz RA, Abril D, Vanegas N, Lafaurie GI, Chambrone L, Escobar-Pérez J. Worldwide Dissemination of blaKPC Gene by Novel Mobilization Platforms in Pseudomonas aeruginosa: A Systematic Review. Antibiotics (Basel) 2023; 12:antibiotics12040658. [PMID: 37107020 PMCID: PMC10134989 DOI: 10.3390/antibiotics12040658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
The dissemination of blaKPC-harboring Pseudomonas aeruginosa (KPC-Pa) is considered a serious public health problem. This study provides an overview of the epidemiology of these isolates to try to elucidate novel mobilization platforms that could contribute to their worldwide spread. A systematic review in PubMed and EMBASE was performed to find articles published up to June 2022. In addition, a search algorithm using NCBI databases was developed to identify sequences that contain possible mobilization platforms. After that, the sequences were filtered and pair-aligned to describe the blaKPC genetic environment. We found 691 KPC-Pa isolates belonging to 41 different sequence types and recovered from 14 countries. Although the blaKPC gene is still mobilized by the transposon Tn4401, the non-Tn4401 elements (NTEKPC) were the most frequent. Our analysis allowed us to identify 25 different NTEKPC, mainly belonging to the NTEKPC-I, and a new type (proposed as IVa) was also observed. This is the first systematic review that consolidates information about the behavior of the blaKPC acquisition in P. aeruginosa and the genetic platforms implied in its successful worldwide spread. Our results show high NTEKPC prevalence in P. aeruginosa and an accelerated dynamic of unrelated clones. All information collected in this review was used to build an interactive online map.
Collapse
|
5
|
Li Y, Yan M, Xue F, Zhong W, Liu X, Chen X, Wu Y, Zhang J, Wang Q, Zheng B, Lv Y. In vitro and in vivo activities of a novel β-lactamase inhibitor combination imipenem/XNW4107 against recent clinical Gram-negative bacilli from China. J Glob Antimicrob Resist 2022; 31:1-9. [PMID: 35820591 DOI: 10.1016/j.jgar.2022.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/22/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES XNW4107 is a novel β-lactamase inhibitor that possesses broad activity against serine-β-lactamases. XNW4107 in combination with imipenem exhibited potent in vitro activity against carbapenem-resistant bacteria and particularly against carbapenem-resistant Acinetobacter baumannii. This study aimed to evaluate the in vitro and in vivo antibacterial activities of imipenem/XNW4107. METHODS The minimum inhibitory concentrations, minimum bactericidal concentrations, time-kill curves, post-antibiotic effects, and spontaneous frequency of resistance were used to investigate the imipenem/XNW4107 in vitro activity. A mouse systemic infection model was used to evaluate the imipenem/XNW4107 in vivo efficacy. RESULTS MIC90 of imipenem/XNW4107 against imipenem-nonsusceptible A. baumannii (n = 106) was 8 mg/L, which was 16-fold lower than the MIC90 of imipenem; the resistance rate decreased from 90% to 20% applying the CLSI imipenem breakpoint. MIC90 of imipenem/XNW4107 against imipenem-resistant Klebsiella pneumoniae (n = 54) was 2 mg/L, which was 128-fold lower than the MIC90 of imipenem; 80% imipenem-nonsusceptible Pseudomonas aeruginosa (n = 101) exhibited MICs of imipenem/XNW4107 from 2 to 8 mg/L, which were 4- to 8-fold lower than the MICs of imipenem. Imipenem/XNW4107 was bactericidal against A. baumannii, K. pneumoniae, and Escherichia coli. The time-kill curves showed that increasing concentrations did not result in progressively increased killing at concentrations >4 × MIC. Imipenem/XNW4107 has a low potential for resistance development in tested strains except for K. pneumoniae. Imipenem/XNW4107 provided good protection against imipenem-resistant A. baumannii and K. pneumoniae in vivo. CONCLUSIONS The broad-spectrum profile and potent in vitro and in vivo antibacterial activities support imipenem/XNW4107 as a promising investigational candidate.
Collapse
Affiliation(s)
- Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Feng Xue
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Wei Zhong
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Xiao Liu
- Suzhou Sinovent Pharmaceuticals Co., Ltd., Beijing, China
| | - Xi Chen
- Suzhou Sinovent Pharmaceuticals Co., Ltd., Beijing, China
| | - Yuchuan Wu
- Suzhou Sinovent Pharmaceuticals Co., Ltd., Beijing, China
| | - Jia Zhang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Qing Wang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
| | - Yuan Lv
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
6
|
Silveira MC, Albano RM, Rocha-de-Souza CM, Leão RS, Marques EA, Picão RC, Kraychete GB, de Oliveira Santos IC, Oliveira TRTE, Tavares-Teixeira CB, Carvalho-Assef APD. Description of a novel IncP plasmid harboring bla KPC-2 recovered from a SPM-1-producing Pseudomonas aeruginosa from ST277. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105302. [PMID: 35568335 DOI: 10.1016/j.meegid.2022.105302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
The high rates of carbapenem resistance among Brazilian Pseudomonas aeruginosa isolates are mainly associated with the clone ST277 producing the carbapenemase SPM-1. Here, the complete genetic composition of a IncP plasmid harboring blaKPC-2 in isolates of this endemic clone carrying chromosomal blaSPM-1 was described using whole genome sequencing. These results confirm the association of these two carbapenemases in ST277 and also describe the genetic composition of a novel blaKPC-2-plasmid. Considering the fact that this association occurs in a high-risk clone, monitoring the dissemination of this plasmid should be a public health concern.
Collapse
Affiliation(s)
- Melise Chaves Silveira
- Laboratório de Pesquisa em Infecção Hospitalar (LAPIH), Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Rodolpho Mattos Albano
- Departamento de Bioquímica, Instituto de Biologia Roberto de Alcântara Gomes, Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, Brazil
| | | | - Robson Souza Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, Brazil
| | - Elizabeth Andrade Marques
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro - UERJ, Rio de Janeiro, Brazil
| | - Renata Cristina Picão
- Laboratório de Investigação em Microbiologia Médica (LIMM), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Bergiante Kraychete
- Laboratório de Investigação em Microbiologia Médica (LIMM), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
7
|
Sengeruan LP, van Zwetselaar M, Kumburu H, Aarestrup FM, Kreppel K, Sauli E, Sonda T. Plasmid characterization in bacterial isolates of public health relevance in a tertiary healthcare facility in Kilimanjaro, Tanzania. J Glob Antimicrob Resist 2022; 30:384-389. [DOI: 10.1016/j.jgar.2022.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022] Open
|
8
|
Tartari DC, Zamparette CP, Martini G, Christakis S, Costa LH, Silveira ACDO, Sincero TCM. Genomic analysis of an extensively drug-resistant Pseudomonas aeruginosa ST312 harbouring IncU plasmid-mediated bla KPC-2 isolated from ascitic fluid. J Glob Antimicrob Resist 2021; 25:151-153. [PMID: 33789205 DOI: 10.1016/j.jgar.2021.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/17/2020] [Accepted: 03/13/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The Klebsiella pneumoniae carbapenemase (KPC) is disseminated worldwide mostly by plasmids. However, in Pseudomonas aeruginosa chromosomal mutations are more frequently responsible for resistance to carbapenems than the acquisition of mobile elements harbouring carbapenemases genes. Indeed, although uncommon, KPC-2-producing P. aeruginosa has appeared more frequently, including in Brazil. Here we report the first genomic analysis of a plasmid-mediated KPC-2 in an extensively drug-resistant (XDR) P. aeruginosa isolated in Santa Catarina, Brazil. METHODS Antimicrobial susceptibility testing was performed according to CLSI 2020 guidelines. The genome was sequenced using an Illumina MiSeq platform and the data were analysed using SPAdes and Prokka. In silico predictions were fulfilled using curated bioinformatics tools. RESULTS Pseudomonas aeruginosa strain MIMA_PA2.1 (JACGTM000000000) was classified as XDR, belongs to sequence type 312 (ST312) and harbours the blaKPC-2 gene located on a small (7975 bp) IncU plasmid. This plasmid showed 86.3% identity with a non-conjugative plasmid (KC609322) carrying the blaKPC-2 gene from a multidrug-resistant P. aeruginosa (ST1006) from Colombia isolated in 2006. Besides the blaKPC-2 gene, other resistance genes to β-lactams, aminoglycosides, phenicol, fosfomycin and quinolones were detected, the last two also associated with mobile genetic elements other than the IncU plasmid described here. CONCLUSION This is the first genomic report of the presence of the blaKPC-2 gene carried by Pseudomonas in Southern Brazil and highlights the adaptability of blaKPC-2 to different mobile elements. This draft genome might be useful for comparative genomic analyses to monitor the spread of plasmid-mediated blaKPC in P. aeruginosa in Latin America.
Collapse
Affiliation(s)
- Daniela Cristina Tartari
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Setor E, Bloco K, Florianópolis, Santa Catarina 88040-970, Brazil
| | - Caetana Paes Zamparette
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Setor E, Bloco K, Florianópolis, Santa Catarina 88040-970, Brazil
| | - Graciele Martini
- Laboratório Central de Saúde Pública de Santa Catarina (LACEN/SC), Florianópolis, Santa Catarina, Brazil
| | - Sandra Christakis
- Laboratório Central de Saúde Pública de Santa Catarina (LACEN/SC), Florianópolis, Santa Catarina, Brazil
| | - Luiz Henrique Costa
- Departamento de Ciências Farmacêuticas, Universidade Regional de Blumenau (FURB), Blumenau, Santa Catarina, Brazil
| | | | - Thaís Cristine Marques Sincero
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina (UFSC), Setor E, Bloco K, Florianópolis, Santa Catarina 88040-970, Brazil.
| |
Collapse
|
9
|
Fuga B, Cerdeira L, Moura Q, Fontana H, Fuentes-Castillo D, Carvalho AC, Lincopan N. Genomic data reveals the emergence of an IncQ1 small plasmid carrying bla KPC-2 in Escherichia coli of the pandemic sequence type 648. J Glob Antimicrob Resist 2021; 25:8-13. [PMID: 33662640 PMCID: PMC8213540 DOI: 10.1016/j.jgar.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Epidemiological success of KPC has been linked to plasmids carrying blaKPC genes. An IncQ1 small plasmid carrying blaKPC-2 was found in pandemic Escherichia coli ST648. Plasmid analysis revealed blaKPC-2 on an NTEKPC-IId element with the aph(3')-VIa gene. Plasmid phylogeny confirmed >99% identity with IncQ/blaKPC-2 from Klebsiella pneumoniae. The emergence and rapid expansion of IncQ1/blaKPC-2 to novel hosts is discussed.
Objectives The global success of carbapenem-resistant pathogens has been attributed to large plasmids carrying blaKPC genes circulating among high-risk clones. In this study, we sequenced the genome of a carbapenem-resistant Escherichia coli strain (Ec351) isolated from a human infection. Phylogenomic analysis based on single nucleotide polymorphisms (SNPs) as well as the comparative resistome and plasmidome of globally disseminated blaKPC-2-positive E. coli strains with identical sequence type (ST) were further investigated. Methods Total DNA was sequenced using an Illumina NextSeq 500 platform and was assembled using Unicycler. Genomic data were evaluated through bioinformatics tools available from the Center of Genomic Epidemiology and by in silico analysis. Results Genomic analysis revealed the convergence of a wide resistome and virulome in E. coli ST648, showing a high-level phylogenetic relationship with a KPC-2-positive ST648 cluster identified in the USA and association with international clade 2. Additionally, the emergence of an IncQ1 small plasmid (pEc351) carrying blaKPC-2 (on an NTEKPC-IId element), aph(3')-VIa, and plasmid regulatory and replication genes in the pandemic clone ST648 is reported. Conclusion Identification of a blaKPC-2-positive IncQ1 plasmid in a high-risk E. coli clone represents rapid adaptation and expansion of these small plasmids encoding carbapenemases to novel bacterial hosts with global distribution, which deserves continued monitoring.
Collapse
Affiliation(s)
- Bruna Fuga
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil.
| | - Louise Cerdeira
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Quézia Moura
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Faculty of Health Sciences, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Pathology, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Albalúcia C Carvalho
- Clinical Laboratory, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Nilton Lincopan
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil.
| |
Collapse
|
10
|
Almeida MM, Freitas MT, Folescu TW, Firmida MC, Carvalho-Assef APD, Marques EA, Leão RS. Carbapenem-Resistant Pseudomonas aeruginosa in Chronic Lung Infection: Current Resistance Profile and Hypermutability in Patients with Cystic Fibrosis. Curr Microbiol 2021; 78:696-704. [PMID: 33404752 DOI: 10.1007/s00284-020-02337-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa is associated with chronic and progressive lung disease and is closely related to increased morbidity and mortality in cystic fibrosis (CF) patients. Hypermutable (HPM) P. aeruginosa isolates have been described in these patients and are usually associated with antibiotic resistance. This study aimed to investigate the occurrence of carbapenem resistance and hypermutable phenotype in 179 P. aeruginosa isolates from 8 chronically CF patients assisted at two reference centers in Rio de Janeiro, Brazil. Using disk diffusion test, non-susceptible (NS) rates higher than 40% were observed for imipenem, amikacin, and gentamicin. A total of 79 isolates (44.1%), 71 (39.6%), and 8 (4.4%) were classified as carbapenem-resistant (CR resistance to at least one carbapenem), multidrug-resistant (MDR), and extensively drug-resistant (XDR), respectively. Minimal inhibitory concentration was determined for 79 CR P. aeruginosa and showed the following variations: 4 and 128 μg/mL to imipenem, 4 and 64 µg/mL to meropenem, and 4 and ≥ 32 µg/mL to doripenem. We have found only four (2.23%) HPM isolates from 4 patients. Analyzing the genetic relationship among the HPM isolates, 3 pulsed-field gel electrophoresis/pulsotypes (D, M, and J) were observed. Only M pulsotype was recovered from two patients in different years. Polymerase chain reaction screening for blaGES, blaIMP, blaKPC, blaNDM, blaOXA-48, blaSPM, and blaVIM genes was performed for all CR isolates and none of them were positive. Our results demonstrate a high occurrence of CR and MDR P. aeruginosa of CF patients follow-up in both centers studied, while the presence of HPM is still unusual.
Collapse
Affiliation(s)
- Mila M Almeida
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Meyvianne T Freitas
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania W Folescu
- Instituto Nacional de Saúde da Mulher, Criança e do Adolescente Fernandes Figueira, Centro de Referência para Crianças e Adolescentes com Fibrose Cística - Ministério da Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Monica C Firmida
- Departamento de Doenças do Tórax, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula D'A Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Elizabeth A Marques
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson S Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Clinical and Molecular Description of a High-Copy IncQ1 KPC-2 Plasmid Harbored by the International ST15 Klebsiella pneumoniae Clone. mSphere 2020; 5:5/5/e00756-20. [PMID: 33028683 PMCID: PMC7568653 DOI: 10.1128/msphere.00756-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In many parts of the world, carbapenem resistance is a serious public health concern. In Brazil, carbapenem resistance in Enterobacterales is mostly driven by the dissemination of KPC-2-producing K. pneumoniae clones. Despite being endemic in this country, only a few reports providing both clinical and genomic data are available in Brazil, which limit the understanding of the real clinical impact caused by the dissemination of different clones carrying blaKPC-2 in Brazilian hospitals. Although several of these KPC-2-producer K. pneumoniae isolates belong to the clonal complex 258 and carry Tn4401 transposons located on large plasmids, a concomitant emergence and silent dissemination of small high-copy-number blaKPC-2 plasmids are of importance, as described in this study. Our data identify a small high-copy-number IncQ1 KPC plasmid, its clinical relevance, and the potential for conjugative transfer into several K. pneumoniae isolates, belonging to different international lineages, such as ST258, ST101, and ST15. This study provides the genomic characterization and clinical description of bloodstream infections (BSI) cases due to ST15 KPC-2 producer Klebsiella pneumoniae. Six KPC-K. pneumoniae isolates were recovered in 2015 in a tertiary Brazilian hospital and were analyzed by whole-genome sequencing (WGS) (Illumina MiSeq short reads). Of these, two isolates were further analyzed by Nanopore MinION sequencing, allowing complete chromosome and plasmid circularization (hybrid assembly), using Unicycler software. The clinical analysis showed that the 30-day overall mortality for these BSI cases was high (83%). The isolates exhibited meropenem resistance (MICs, 32 to 128 mg/liter), with 3/6 isolates resistant to polymyxin B. The conjugative properties of the blaKPC-2 plasmid and its copy number were assessed by standard conjugation experiments and sequence copy number analysis. We identified in all six isolates a small (8.3-kb), high-copy-number (20 copies/cell) non-self-conjugative IncQ plasmid harboring blaKPC-2 in a non-Tn4401 transposon. This plasmid backbone was previously reported to harbor blaKPC-2 only in Brazil, and it could be comobilized at a high frequency (10−4) into Escherichia coli J53 and into several high-risk K. pneumoniae clones (ST258, ST15, and ST101) by a common IncL/M helper plasmid, suggesting the potential of international spread. This study thus identified the international K. pneumoniae ST15 clone as a carrier of blaKPC-2 in a high-copy-number IncQ1 plasmid that is easily transmissible among other common Klebsiella strains. This finding is of concern since IncQ1 plasmids are efficient antimicrobial resistance determinant carriers across Gram-negative species. The spread of such carbapenemase-encoding IncQ1 plasmids should therefore be closely monitored. IMPORTANCE In many parts of the world, carbapenem resistance is a serious public health concern. In Brazil, carbapenem resistance in Enterobacterales is mostly driven by the dissemination of KPC-2-producing K. pneumoniae clones. Despite being endemic in this country, only a few reports providing both clinical and genomic data are available in Brazil, which limit the understanding of the real clinical impact caused by the dissemination of different clones carrying blaKPC-2 in Brazilian hospitals. Although several of these KPC-2-producer K. pneumoniae isolates belong to the clonal complex 258 and carry Tn4401 transposons located on large plasmids, a concomitant emergence and silent dissemination of small high-copy-number blaKPC-2 plasmids are of importance, as described in this study. Our data identify a small high-copy-number IncQ1 KPC plasmid, its clinical relevance, and the potential for conjugative transfer into several K. pneumoniae isolates, belonging to different international lineages, such as ST258, ST101, and ST15.
Collapse
|
12
|
García-Betancur JC, Appel TM, Esparza G, Gales AC, Levy-Hara G, Cornistein W, Vega S, Nuñez D, Cuellar L, Bavestrello L, Castañeda-Méndez PF, Villalobos-Vindas JM, Villegas MV. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2020; 19:197-213. [PMID: 32813566 DOI: 10.1080/14787210.2020.1813023] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Carbapenemases are β-lactamases able to hydrolyze a wide range of β-lactam antibiotics, including carbapenems. Carbapenemase production in Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp., with and without the co-expression of other β-lactamases is a serious public health threat. Carbapenemases belong to three main classes according to the Ambler classification: class A, class B, and class D. AREAS COVERED Carbapenemase-bearing pathogens are endemic in Latin America. In this review, we update the status of carbapenemases in Latin America and the Caribbean. EXPERT OPINION Understanding the current epidemiology of carbapenemases in Latin America and the Caribbean is of critical importance to improve infection control policies limiting the dissemination of multi-drug-resistant pathogens and in implementing appropriate antimicrobial therapy.
Collapse
Affiliation(s)
| | - Tobias Manuel Appel
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque . Bogotá, Colombia
| | - German Esparza
- Programa de Aseguramiento de Calidad. PROASECAL SAS, Bogotá, Colombia
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP , São Paulo, Brazil
| | | | | | - Silvio Vega
- Complejo Hospitalario Metropolitano , Ciudad de Panamá, Panama
| | - Duilio Nuñez
- Infectious Diseases División, IPS Hospital Central , Asunción, Paraguay
| | - Luis Cuellar
- Servicio de Infectologia, Instituto Nacional de Enfermedades Neoplasicas , Lima, Peru
| | | | - Paulo F Castañeda-Méndez
- Department of Infectious Diseases, Hospital San Angel Inn Universidad , Ciudad de México, Mexico
| | | | - María Virginia Villegas
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque . Bogotá, Colombia.,Centro Médico Imbanaco . Cali, Colombia
| |
Collapse
|
13
|
Activity of ceftolozane-tazobactam and comparators against gram-negative bacilli: Results from the study for monitoring antimicrobial resistance trends (SMART - Brazil; 2016-2017). Braz J Infect Dis 2020; 24:310-321. [PMID: 32663440 PMCID: PMC9392090 DOI: 10.1016/j.bjid.2020.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022] Open
Abstract
Multi-drug resistant Gram-negative bacilli (GNB) have been reported as cause of serious hospital-acquired infections worldwide. The aim of this study was to investigate the in vitro activity of ceftolozane-tazobactam compared to other agents against GNB isolated from patients admitted to Brazilian medical centers between the years 2016 and 2017. Presence of β-lactamase encoding genes was also evaluated. Methods Antimicrobial susceptibility testing of GNB isolated from intra-abdominal (IAI), respiratory (RTI), and urinary tract infections (UTI) was performed according to ISO 227-1 guidelines and interpreted following CLSI and BrCAST/EUCAST guidelines. Qualifying Enterobacteriaceae isolates were screened for the presence of β-lactamase genes by PCR followed by DNA sequencing. Results 1748 GNB collected from UTI (45.2%), IAI (25.7%) and RTI (29.1%) were evaluated. Ceftolozane-tazobactam remained highly active (94.7%) against E. coli isolates. Among K. pneumoniae, susceptibility rates were 85.9% and 85.4% for amikacin and colistin, whereas ceftolozane-tazobactam (44.1% susceptible) and carbapenems (55.2-62.2% susceptible) showed poor activity due to blaKPC-2. Against E. cloacae amikacin, imipenem, and meropenem retained good activity (>90%). Ceftolozane-tazobactam was the most potent β-lactam agent tested against P. aeruginosa (90.9% susceptible), including ceftazidime and imipenem resistant isolates. β-lactamase encoding genes testing was carried out in 433 isolates. blaCTX-M variants were predominant in E. coli, P. mirabilis and E. cloacae. Among the K. pneumoniae molecularly tested, most carried blaKPC (68.5%), with all harboring blaKPC-2, except two isolates carrying blaKPC-3 or blaKPC-30. ESBL encoding genes, mainly CTX-M family, were frequently detected in K. pneumoniae, plasmid-mediated AmpC were rare. A variety of PDC encoding genes were detected in P. aeruginosa isolates with five isolates harboring MBL and one KPC encoding genes. Conclusion Ceftolozane-tazobactam was very active against E. coli, P. mirabilis and P. aeruginosa isolates and could constitute an excellent therapeutic option including for those isolates resistant to extended-spectrum cephalosporins and carbapenems but not producers of carbapenemases.
Collapse
|
14
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|
15
|
Abstract
β-Lactam antibiotics have been widely used as therapeutic agents for the past 70 years, resulting in emergence of an abundance of β-lactam-inactivating β-lactamases. Although penicillinases in Staphylococcus aureus challenged the initial uses of penicillin, β-lactamases are most important in Gram-negative bacteria, particularly in enteric and nonfermentative pathogens, where collectively they confer resistance to all β-lactam-containing antibiotics. Critical β-lactamases are those enzymes whose genes are encoded on mobile elements that are transferable among species. Major β-lactamase families include plasmid-mediated extended-spectrum β-lactamases (ESBLs), AmpC cephalosporinases, and carbapenemases now appearing globally, with geographic preferences for specific variants. CTX-M enzymes include the most common ESBLs that are prevalent in all areas of the world. In contrast, KPC serine carbapenemases are present more frequently in the Americas, the Mediterranean countries, and China, whereas NDM metallo-β-lactamases are more prevalent in the Indian subcontinent and Eastern Europe. As selective pressure from β-lactam use continues, multiple β-lactamases per organism are increasingly common, including pathogens carrying three different carbapenemase genes. These organisms may be spread throughout health care facilities as well as in the community, warranting close attention to increased infection control measures and stewardship of the β-lactam-containing drugs in an effort to control selection of even more deleterious pathogens.
Collapse
|
16
|
Lima R, Del Fiol FS, Balcão VM. Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria. Front Pharmacol 2019; 10:692. [PMID: 31293420 PMCID: PMC6598392 DOI: 10.3389/fphar.2019.00692] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
The increasing use of antibiotics is being driven by factors such as the aging of the population, increased occurrence of infections, and greater prevalence of chronic diseases that require antimicrobial treatment. The excessive and unnecessary use of antibiotics in humans has led to the emergence of bacteria resistant to the antibiotics currently available, as well as to the selective development of other microorganisms, hence contributing to the widespread dissemination of resistance genes at the environmental level. Due to this, attempts are being made to develop new techniques to combat resistant bacteria, among them the use of strictly lytic bacteriophage particles, CRISPR-Cas, and nanotechnology. The use of these technologies, alone or in combination, is promising for solving a problem that humanity faces today and that could lead to human extinction: the domination of pathogenic bacteria resistant to artificial drugs. This prospective paper discusses the potential of bacteriophage particles, CRISPR-Cas, and nanotechnology for use in combating human (bacterial) infections.
Collapse
Affiliation(s)
- Renata Lima
- LABiToN-Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, Brazil
| | - Fernando Sá Del Fiol
- CRIA-Antibiotic Reference and Information Center, University of Sorocaba, Sorocaba, Brazil
| | - Victor M Balcão
- PhageLab-Laboratory of Biofilms and Bacteriophages, i(bs)2-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba, Brazil.,Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
17
|
de Oliveira Santos IC, Pereira de Andrade NF, da Conceição Neto OC, da Costa BS, de Andrade Marques E, Rocha-de-Souza CM, Asensi MD, D'Alincourt Carvalho-Assef AP. Epidemiology and antibiotic resistance trends in clinical isolates of Pseudomonas aeruginosa from Rio de janeiro - Brazil: Importance of mutational mechanisms over the years (1995-2015). INFECTION GENETICS AND EVOLUTION 2019; 73:411-415. [PMID: 31121306 DOI: 10.1016/j.meegid.2019.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is a major health concern globally and treating infections caused by MDR-isolates unarguably a humongous challenge that remains an unmet need in modern medicine. To determine patterns and mechanisms of antimicrobial resistance and its spread over the years in Rio de Janeiro, Brazil, 88 P. aeruginosa isolates were selected from 1995 to 2015. Phenotypic and genotypic characterization of antimicrobial resistance was evaluated and isolates were submitted to clonality by PFGE and MLST. PFGE analysis showed a great variability of clonal groups mainly over the past 10 years of this study. STs predominant in the early years (ST804, ST1860, ST487 and ST1602) associated to multidrug resistance (MDR) phenotype were replaced by ST277, ST244, ST1945, ST1791 with extensive drug resistance (XDR) in last years, with significant increase in resistance to carbapenems, fluoroquinolones and aminoglycosides. Colistin resistance was detected in 3.5%. The main mechanisms of antimicrobial resistance were mutational mechanisms (mutations in oprD, mexT and gyrA genes). We found the ESBL genes blaTEM (n = 2), blaSHV (n = 3) and blaCTX (n = 1).The carbapenemases genes was present in ST277 (blaSPM, n = 3), ST1560 (blaKPC, n = 3) and ST1944 (blaKPC, n = 2). The 16S RNA methylase gene (rmtD) was found in five isolates belonged to ST277. In conclusion, molecular epidemiological investigation reveals an increase of antimicrobial resistance in P. aeruginosa over 21 years in Rio de Janeiro with higher population structure and occurrence of high risk clone in the last years. The mutational mechanisms of resistance were present in all XDR isolates.
Collapse
Affiliation(s)
- Ivson Cassiano de Oliveira Santos
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Natacha Ferreira Pereira de Andrade
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Orlando Carlos da Conceição Neto
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Santos da Costa
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizabeth de Andrade Marques
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Boulervard 28 de setembro, 77, Vila Isabel, Rio de Janeiro 20551-030, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marise Dutra Asensi
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Brasil Avenue 4365, Manguinhos, 21040-360, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Small IncQ1 and Col-Like Plasmids Harboring bla KPC-2 and Non-Tn 4401 Elements (NTE KPC-IId) in High-Risk Lineages of Klebsiella pneumoniae CG258. Antimicrob Agents Chemother 2019; 63:AAC.02140-18. [PMID: 30602517 DOI: 10.1128/aac.02140-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|