1
|
Le Terrier C, Raro OHF, Saad AM, Nordmann P, Poirel L. In-vitro activity of newly-developed β-lactamase inhibitors avibactam, relebactam and vaborbactam in combination with anti-pseudomonal β-lactam antibiotics against AmpC-overproducing clinical Pseudomonas aeruginosa isolates. Eur J Clin Microbiol Infect Dis 2025; 44:277-284. [PMID: 39589655 PMCID: PMC11754317 DOI: 10.1007/s10096-024-04965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE Overproduction of the intrinsic chromosomally-encoded AmpC β-lactamase is one of the main mechanisms responsible for broad-spectrum β-lactam resistance in Pseudomonas aeruginosa. Our study aimed to evaluate the in-vitro activity of anti-pseudomonal β-lactam molecules associated with the recently-developed and commercially-available β-lactamase inhibitors, namely avibactam, relebactam and vaborbactam, against P. aeruginosa isolates overproducing their AmpC. METHODS MIC values of ceftazidime, cefepime, meropenem, imipenem and ceftolozane with or without β-lactam inhibitor were determined for 50 AmpC-overproducing P. aeruginosa clinical isolates. MIC breakpoints for resistance were retained at 8 mg/L for β-lactams and β-lactam/β-lactamase inhibitor combinations containing ceftazidime, cefepime and meropenem, while 4 mg/L was used for those containing imipenem and ceftolozane. The concentration of all β-lactamases inhibitors was fixed at 4 mg/L, except for vaborbactam (8 mg/L). RESULTS The rates of isolates not being resistant to ceftazidime, cefepime, meropenem, imipenem and ceftolozane were found at 12%, 22%, 34%, 8% and 74%, respectively. When combined with avibactam, those rates increased to 60%, 62%, 60%, 46%, and 80%, respectively. The highest rates were found with relebactam-based combinations, being 76%, 64%, 66%, 76% and 84%, respectively. By contrast, associations with vaborbactam did not lead to significantly increased "non-resistance" rates. CONCLUSION Our results showed that all combinations including relebactam led to higher "non-resistance" rates against AmpC-overproducing P. aeruginosa clinical isolates. The best activity was achieved by combining ceftolozane and relebactam, that might therefore be considered as an excellent clinical alternative against AmpC overproducers.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Division of Intensive Care Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Otávio Hallal Ferreira Raro
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
| | - Alaaeldin Mohamed Saad
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland.
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland.
| |
Collapse
|
2
|
Ofosu Appiah F, Mahazu S, Prah I, Kawamura T, Ota Y, Nishikawa Y, Yoshida M, Suzuki M, Hoshino Y, Suzuki T, Ishino T, Ablordey A, Saito R. Emergence of Carbapenem-Resistant blaPOM-1 Harboring Pseudomonas otitidis Isolated from River Water in Ghana. Antibiotics (Basel) 2025; 14:50. [PMID: 39858336 PMCID: PMC11761616 DOI: 10.3390/antibiotics14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Introduction:Pseudomonas otitidis, known for carrying the blaPOM-1 gene and linked to various diseases, is widely distributed. However, its prevalence in Ghana is unknown, mainly due to misidentification or inadequate research. In this study, for the first time, we characterized P. otitidis from Densu river water in Ghana. Methods: The antimicrobial susceptibility and whole genome characteristics of two strains (Tg_9B and BC12) were determined. The resistance and virulence features were determined using ResFinder and the VFDB database, respectively. Maximum-likelihood phylogeny was conducted based on amino acid sequences of blaPOM-1 and P. otitidis core genomes. Results: The strains carried blaPOM-1 on the chromosome, with only Tg_9B showing intermediate resistance to meropenem. Tg_9B had a unique genetic make-up downstream of blaPOM-1, compared with BC12 and other reference strains. Both strains harbored virulence factors able to induce pathogenicity through immune evasion. The efflux pump genes (adeF, rsmA, and qacG) were present in the genomes of all the strains used in this study. The amino acid sequences of POM-1 in the strains shared a sequence homology with seven other sequences from different countries. Conclusions: This study highlights the emergence of blaPOM-1 harboring P. otitidis in Ghana and affirms the conservation of blaPOM-1 and adeF, rsmA, and qacG in the species.
Collapse
Grants
- JP24wm0225022, JP24fk0108665, JP24fk0108683, JP24fk0108712, JP24fk0108642, JP24wm0225029, JP24wm0225022, JP24wm0125012, JP24gm1610003 JP24fk0108673, JP24fk0108701, JP24wm0125007, JP24wm0225022, JP24wm0325054, JP24gm1610003, JP24gm1610007 Japan Agency for Medical Research and Development
- N/A Kajima Foundation
Collapse
Affiliation(s)
- Frederick Ofosu Appiah
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
- Department of Parasitology and Tropical Medicine, Institute of Science Tokyo, Tokyo 113-8510, Japan;
| | - Samiratu Mahazu
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
| | - Isaac Prah
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
| | - Taira Kawamura
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
| | - Yusuke Ota
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
| | - Yohei Nishikawa
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Tokyo 169-0082, Japan;
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-8644, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (M.Y.); (Y.H.)
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (M.Y.); (Y.H.)
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Institute of Science Tokyo, Tokyo 113-8510, Japan;
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra P.O. Box LG43, Ghana;
| | - Ryoichi Saito
- Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan; (F.O.A.); (S.M.); (I.P.); (T.K.); (Y.O.)
| |
Collapse
|
3
|
Somda NS, Nyarkoh R, Kotey FCN, Tetteh-Quarcoo PB, Donkor ES. A systematic review and meta-analysis of carbapenem-resistant Enterobacteriaceae in West Africa. BMC Med Genomics 2024; 17:267. [PMID: 39533268 PMCID: PMC11555847 DOI: 10.1186/s12920-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In Africa, the problem of carbapenem-resistant Enterobacteriaceae (CRE) is aggravated by many factors. This systematic review attempted to describe the current status of the molecular epidemiology of carbapenem resistance in West Africa (WA). METHODS Articles published from 16 West African countries on the molecular epidemiology of carbapenem resistance were reviewed. An extensive literature search was carried out in PubMed, Scopus, Web of Science, and African Journals Online (AJOL) using specific keywords. The meta-analysis and forest plots of major pathogens and carbapenem resistance genes were done using the Open Meta-Analyst, Task Order # 2 software. The data were analysed in binary random model effects by the DerSimonian-Laird method at a 95% confidence interval. RESULTS Of the 431 articles found in our initial search, 60 (13.92%) were considered suitable for inclusion. Only seven of the 16 West African countries formed part of the analysis, Nigeria (23/60), Ghana (19/60), Burkina Faso (7/60), Senegal (6/60), Benin (2/60), Mali (2/60), and Togo (1/60). Also, 80% (48/60) of the studies used clinical samples, 16.67% (10/60) used environmental samples, and 3.33% (2/60) used animal samples. The average prevalence was highest in Acinetobacter baumannii (18.6%; 95% CI = 14.0-24.6, I2 = 97.9%, p < 0.001), followed by Pseudomonas aeruginosa (6.5%; 95% CI = 3.1-13.4, I2 = 96.52%, p < 0.001), Klebsiella pneumoniae (5.8%; 95% CI = 4.2-7.9, I2 = 98.06%, p < 0.001) and Escherichia coli (4.1%; 95% CI = 2.2-7.7, I2 = 96.68%, p < 0.001). The average prevalence of the blaNDM gene was 10.6% (95% CI = 7.9-14.3, I2 = 98.2%, p < 0.001), followed by 3.9% (95% CI: 1.8-8.3, I2 = 96.73%, p < 0.001) for blaVIM and 3.1% (95% CI: 1.7-5.8, I2 = 91.69%, p < 0.001) for blaOXA-48. CONCLUSION In West Africa, K. pneumoniae, E. coli, A. baumannii, and P. aeruginosa are the main CRE with blaNDM, blaVIM, and blaOXA-48 being the predominant carbapenem resistance genes. In view of these results, ongoing CRE surveillance combined with antimicrobial stewardship improved, laboratory detection methods, and adherence to infection control practices will be needed to control the spread of CRE.
Collapse
Affiliation(s)
- Namwin Siourimè Somda
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Rabbi Nyarkoh
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Fleischer C N Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Patience B Tetteh-Quarcoo
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana.
| |
Collapse
|
4
|
Furlan JPR, da Silva Rosa R, Ramos MS, Dos Santos LDR, Savazzi EA, Stehling EG. Emergence of carbapenem-resistant Klebsiella pneumoniae species complex from agrifood systems: detection of ST6326 co-producing KPC-2 and NDM-1. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7347-7354. [PMID: 38651793 DOI: 10.1002/jsfa.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Klebsiella pneumoniae species complex (KpSC) is an important disseminator of carbapenemase-encoding genes, mainly blaKPC-2 and blaNDM-1, from hospitals to the environment. Consequently, carbapenem-resistant strains can be spread through the agrifood system, raising concerns about food safety. This study therefore aimed to isolate carbapenem-resistant KpSC strains from the agricultural and environmental sectors and characterize them using phenotypic, molecular, and genomic analyses. RESULTS Klebsiella pneumoniae and Klebsiella quasipneumoniae strains isolated from soils used for lemon, guava, and fig cultivation, and from surface waters, displayed an extensive drug-resistance profile and carried blaKPC-2, blaNDM-1, or both. In addition to carbapenemase-encoding genes, KpSC strains harbor a broad resistome (antimicrobial resistance and metal tolerance) and present putative hypervirulence. Soil-derived K. pneumoniae strains were assigned as high-risk clones (ST11 and ST307) and harbored the blaKPC-2 gene associated with Tn4401b and Tn3-like elements on IncN-pST15 and IncX5 plasmids. In surface waters, the coexistence of blaKPC-2 and blaNDM-1 genes was identified in K. pneumoniae ST6326, a new carbapenem-resistant regional Brazilian clone. In this case, blaKPC-2 with Tn4401a isoform and blaNDM-1 associated with a Tn125-like transposon were located on different plasmids. Klebsiella quasipneumoniae ST526 also presented the blaNDM-1 gene associated with a Tn3000 transposon on an IncX3 plasmid. CONCLUSION These findings provide a warning regarding the transmission of carbapenemase-positive KpSC across the agricultural and environmental sectors, raising critical food safety and environmental issues. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Viviers SA, Richter L, du Plessis EM, Korsten L. Microbiological quality of irrigation water on highly diverse fresh produce smallholder farms: elucidating environmental routes of contamination. J Appl Microbiol 2024; 135:lxae091. [PMID: 38632044 DOI: 10.1093/jambio/lxae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/12/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
AIM To evaluate the microbiological safety, potential multidrug-resistant bacterial presence and genetic relatedness (DNA fingerprints) of Escherichia coli isolated from the water-soil-plant nexus on highly diverse fresh produce smallholder farms. METHODS AND RESULTS Irrigation water (n = 44), soil (n = 85), and fresh produce (n = 95) samples from six smallholder farms with different production systems were analysed for hygiene indicator bacterial counts and the presence of shigatoxigenic E. coli and Salmonella spp. using standard microbiological methods. Identities of isolates were confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and the genetic relatedness of the E. coli isolates determined using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) analysis. Irrigation water E. coli levels ranged between 0 and 3.45 log MPN/100 ml-1 with five farms having acceptable levels according to the World Health Organization limit (3 log MPN/100 ml-1). Fresh produce samples on four farms (n = 65) harboured E. coli at low levels (<1 log CFU/g-1) except for one sample from kale, spring onion, green pepper, onion, and two tomato samples, which exceeded international acceptable limits (100 CFU/g-1). Only one baby carrot fresh produce sample tested positive for Salmonella spp. Of the 224 samples, E. coli isolates were identified in 40% (n = 90) of all water, soil, and fresh produce types after enrichment. Additionally, the DNA fingerprints of E. coli isolates from the water-soil-plant nexus of each respective farm clustered together at high similarity values (>90%), with all phenotypically characterized as multidrug-resistant. CONCLUSIONS The clustering of E. coli isolated throughout the water-soil-plant nexus, implicated irrigation water in fresh produce contamination. Highlighting the importance of complying with irrigation water microbiological quality guidelines to limit the spread of potential foodborne pathogens throughout the fresh produce supply chain.
Collapse
Affiliation(s)
- Sheldon A Viviers
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Erika M du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
6
|
Mori T, Yoshizawa S, Yamada K, Sato T, Sasaki M, Nakamura Y, Gen U, Murakami H, Kashiwagi K, Maeda T, Miyazaki T, Yamaguchi T, Urita Y, Ishii Y, Tateda K. Pseudomonas otitidis bacteremia in an immunocompromised patient with cellulitis: case report and literature review. BMC Infect Dis 2023; 23:883. [PMID: 38110897 PMCID: PMC10726493 DOI: 10.1186/s12879-023-08919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Pseudomonas otitidis belongs to the genus Pseudomonas and causes various infections, including ear, skin, and soft tissue infections. P. otitidis has a unique susceptibility profile, being susceptible to penicillins and cephalosporins but resistant to carbapenems, due to the production of the metallo-β-lactamase called POM-1. This revealed genetic similarities with Pseudomonas aeruginosa, which can sometimes lead to misidentification. CASE PRESENTATION We report the case of a 70-year-old Japanese male who developed cellulitis and bacteremia during chemotherapy for multiple myeloma. He was initially treated with meropenem, but blood culture later revealed gram-negative bacilli identified as P. otitidis using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Carbapenem resistance was predicted from previous reports; therefore, we switched to dual therapy with levofloxacin and cefepime, and favorable treatment results were obtained. CONCLUSION This is the first reported case of P. otitidis cellulitis and bacteremia in an immunocompromised patient. Carbapenems are typically used in immunocompromised patients and P. otitidis is often resistant to it. However, its biochemical properties are similar to those of Pseudomonas aeruginosa; therefore, its accurate identification is critical. In the present study, we rapidly identified P. otitidis using MALDI-TOF MS and switched from carbapenems to an appropriate antimicrobial therapy, resulting in a successful outcome.
Collapse
Affiliation(s)
- Takeo Mori
- Department of General Medicine and Emergency Care (Infectious Diseases), Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Sadako Yoshizawa
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan.
- Department of Clinical Laboratory, Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan.
- Department of Laboratory Medicine, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Kageto Yamada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Takahiro Sato
- Department of General Medicine and Emergency Care (Infectious Diseases), Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Masakazu Sasaki
- Department of Clinical Laboratory, Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yusuke Nakamura
- Department of General Medicine and Emergency Care (Infectious Diseases), Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Ukyo Gen
- Department of Orthopaedic Surgery, Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Hinako Murakami
- Department of Clinical Laboratory, Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Katsuhito Kashiwagi
- Department of General Medicine and Emergency Care (Infectious Diseases), Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Tadashi Maeda
- Department of General Medicine and Emergency Care (Infectious Diseases), Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
- Department of General Medicine and Emergency Care, Toho University School of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Taito Miyazaki
- Department of General Medicine and Emergency Care (Infectious Diseases), Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
- Department of General Medicine and Emergency Care, Toho University School of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshihisa Urita
- Department of General Medicine and Emergency Care, Toho University School of Medicine, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omorinishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
7
|
Le Terrier C, Nordmann P, Buchs C, Di DYW, Rossolini GM, Stephan R, Castanheira M, Poirel L. Wide dissemination of Gram-negative bacteria producing the taniborbactam-resistant NDM-9 variant: a One Health concern. J Antimicrob Chemother 2023; 78:2382-2384. [PMID: 37394537 PMCID: PMC10477121 DOI: 10.1093/jac/dkad210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Affiliation(s)
- Christophe Le Terrier
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
- Division of Intensive Care Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
- Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chloé Buchs
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
| | - Doris Yoong Wen Di
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gian Maria Rossolini
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | | | - Laurent Poirel
- Emerging Antibiotic Resistance, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Chemin du Musée 18, CH-1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| |
Collapse
|
8
|
Richter L, Du Plessis EM, Duvenage S, Korsten L. Prevalence of extended-spectrum β-lactamase producing Enterobacterales in Africa's water-plant-food interface: A meta-analysis (2010–2022). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BackgroundMultidrug-resistant extended-spectrum β-lactamase (ESBL)-producing Enterobacterales is regarded as a critical health issue, yet, surveillance in the water-plant-food interface remains low, especially in Africa.ObjectivesThe objective of the study was to elucidate the distribution and prevalence of antimicrobial resistance in clinically significant members of the Enterobacterales order isolated from the water-plant-food interface in Africa.MethodsA literature search was conducted using six online databases according to the PRISMA guidelines. All available published studies involving phenotypic and genotypic characterization of ESBL-producing Enterobacterales from water, fresh produce or soil in Africa were considered eligible. Identification and characterization methods used as well as a network analysis according to the isolation source and publication year were summarized. Analysis of Escherichia coli, Salmonella spp. and Klebsiella pneumoniae included the calculation of the multiple antibiotic resistance (MAR) index according to isolation sources and statistical analysis was performed using RStudio.ResultsOverall, 51 studies were included for further investigation. Twelve African countries were represented, with environmental AMR surveillance studies predominantly conducted in South Africa. In 76.47% of the studies, occurrence of antimicrobial resistant bacteria was investigated in irrigation water samples, while 50.98% of the studies included fresh produce samples. Analysis of bacterial phenotypic antimicrobial resistance profiles were reported in 94.12% of the studies, with the disk diffusion method predominantly used. When investigating the MAR indexes of the characterized Escherichia coli, Klebsiella pneumoniae and Salmonella spp., from different sources (water, fresh produce or soil), no significant differences were seen across the countries. The only genetic determinant identified using PCR detection in all the studies was the blaCTX − M resistance gene. Only four studies used whole genome sequence analysis for molecular isolate characterization.DiscussionGlobally, AMR surveillance programmes recognize ESBL- and carbapenemase-producing Enterobacterales as vectors of great importance in AMR gene dissemination. However, in low- and middle-income countries, such as those in Africa, challenges to implementing effective and sustainable AMR surveillance programmes remain. This review emphasizes the need for improved surveillance, standardized methods and documentation of resistance gene dissemination across the farm-to-fork continuum in Africa.
Collapse
|
9
|
Epididymo-Orchitis Caused by POM-1 Metallo-β-Lactamase-Producing Pseudomonas otitidis in an Immunocompetent Patient: Case Report and Molecular Characterization. Pathogens 2022; 11:pathogens11121475. [PMID: 36558809 PMCID: PMC9783037 DOI: 10.3390/pathogens11121475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas otitidis is a rare and unique species among the Pseudomonas genus that has not been previously reported as a cause of male genitourinary tract infection. In this report, we describe a case of a 20-year-old immunocompetent male who presented with recurrent epididymo-orchitis, which was initially misidentified as Vibrio vulnificus and treated successfully. The causative agent could not be identified appropriately using the available routine methods, but a final identification was established using 16S rRNA targeted sequencing followed by whole-genome sequencing.
Collapse
|
10
|
Ranjan R, Thatikonda S. β-Lactam Resistance Gene NDM-1 in the Aquatic Environment: A Review. Curr Microbiol 2021; 78:3634-3643. [PMID: 34410464 DOI: 10.1007/s00284-021-02630-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
New Delhi Metallo-β-lactamase-1 (NDM-1) offers carbapenem antibiotics resistance that creates an evolving challenge in treating bacterial infections. NDM-1-bearing strains were observed in surface waters around New Delhi in 2010 and after then identified globally. The usage of antibiotics may hasten the growth of the NDM-1-producing bacteria, which pose severe hazards to human and animal health. The emergence of the NDM-1 in the aquatic environment is turning out to be a growing concern worldwide. NDM-1 gene conferring resistance to a widespread class of antibiotics has been observed in bacteria disseminated in animal production wastewaters, hospital sewage, domestic sewage, industrial effluents, wastewater treatment plants, drinking water, surface water, and even in groundwater. This review recapitulates the currently published research studies on the prevalence and geographical distribution of the NDM-1 gene in the aquatic environment, its habitats, and healthcare risk associated with NDM-1-producing bacteria, in addition to molecular techniques employed to reveal the occurrence of the NDM-1 in the aquatic environment, including conventional polymerase chain reaction, real-time qPCR, DNA hybridization, and microarray-based methods.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India.
| |
Collapse
|
11
|
Tickler IA, Shettima SA, Dela Cruz CM, Le VM, Dewell S, Sumner J, Tenover FC. Characterization of carbapenem-resistant gram-negative bacterial isolates from Nigeria by whole genome sequencing. Diagn Microbiol Infect Dis 2021; 101:115422. [PMID: 34111650 DOI: 10.1016/j.diagmicrobio.2021.115422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023]
Abstract
This study characterized the mechanisms of carbapenem resistance in gram-negative bacteria isolated from patients in Yola, Nigeria. Whole genome sequencing (WGS) was performed on 66 isolates previously identified phenotypically as carbapenem-non-susceptible. The patterns of beta-lactamase resistance genes identified were primarily species-specific. However, blaNDM-7 and blaCMY-4 were detected in all Escherichia coli and most Providencia rettgeri isolates; blaNDM-7 was also detected in 1 Enterobacter cloacae. The E. coli and E. cloacae isolates also shared blaOXA-1, while blaOXA-10 was found in all P. rettgeri, one Pseudomonas aeruginosa and 1 E. coli. Except for Stenotrophomonas maltophilia isolates, which only contained blaL1, most species carried multiple beta-lactamase genes, including those encoding extended-spectrum beta-lactamases, AmpC and OXA in addition to a carbapenemase gene. Carbapenemase genes were either class B or class D beta-lactamases. No carbapenemase gene was detected by WGS in 13.6% of isolates.
Collapse
|
12
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J Glob Antimicrob Resist 2021; 25:287-309. [PMID: 33895415 DOI: 10.1016/j.jgar.2021.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; and Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
13
|
Olowo-okere A, Ibrahim YKE, Ehinmidu JO, Mohammed Y, Nabti LZ, Olayinka BO. Emergence of VIM metallo-β-lactamase among carbapenem-resistant Pseudomonas species in northwest Nigeria. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|