1
|
Zhang Q, Zhu Q, Xiao Y, Yu Q, Shi S. Co-housing with Tibetan chickens improved the resistance of Arbor Acres chickens to Salmonella enterica serovar Enteritidis infection by altering their gut microbiota composition. J Anim Sci Biotechnol 2025; 16:2. [PMID: 39748400 PMCID: PMC11697627 DOI: 10.1186/s40104-024-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (S. Enteritidis) is a global foodborne pathogen that poses a significant threat to human health, with poultry being the primary reservoir host. Therefore, addressing S. Enteritidis infections in poultry is crucial to protect human health and the poultry industry. In this study, we investigated the effect of co-housing Arbor Acres (AA) chickens, a commercial breed susceptible to S. Enteritidis, with Tibetan chickens, a local breed resistant to S. Enteritidis infection, on the resistance of the latter to the pathogen. RESULTS Ninety-six 1-day-old Tibetan chickens and 96 1-day-old AA chickens were divided into a Tibetan chicken housed alone group (n = 48), an AA chicken housed alone group (n = 48), and a co-housed group (48 birds from each breed for 2 cages). All birds were provided the same diet, and the experimental period lasted 14 d. At d 7, all chickens were infected with S. Enteritidis, and samples were collected at 1-, 3-, and 7-day-post-infection. We found that the body weight of AA chickens significantly increased when co-housed with Tibetan chickens at 1- and 3-day-post-infection (P < 0.05). In addition, the cecal S. Enteritidis load in AA chickens was significantly reduced at 1-, 3-, and 7-day-post-infection (P < 0.05). Furthermore, the inflammatory response in AA chickens decreased, as evidenced by the decreased expression of pro-inflammatory cytokines NOS2, TNF-α, IL-8, IL-1β, and IFN-γ in their cecal tonsils (P < 0.05). Co-housing with Tibetan chickens significantly increased the height of villi and number of goblet cells (P < 0.05), as well as the expression of claudin-1 (P < 0.05), a tight junction protein, in the jejunum of AA chickens. Further analysis revealed that co-housing altered the gut microbiota composition in AA chickens; specifically, the relative abundances of harmful microbes, such as Intestinimonas, Oscillibacter, Tuzzerella, Anaerotruncus, Paludicola, and Anaerofilum were reduced (P < 0.05). CONCLUSIONS Our findings indicate that co-housing with Tibetan chickens enhanced the resistance of AA chickens to S. Enteritidis infection without compromising the resistance of Tibetan chickens. This study provides a novel approach for Salmonella control in practical poultry production.
Collapse
Affiliation(s)
- Qianyun Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Qidong Zhu
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Yunqi Xiao
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Qinghua Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Shourong Shi
- Jiangsu Institute of Poultry Sciences, Yangzhou, China.
| |
Collapse
|
2
|
Gonçalves C, Silveira L, Rodrigues J, Furtado R, Ramos S, Nunes A, Pista Â. Phenotypic and Genotypic Characterization of Escherichia coli and Salmonella spp. Isolates from Pigs at Slaughterhouse and from Commercial Pork Meat in Portugal. Antibiotics (Basel) 2024; 13:957. [PMID: 39452223 PMCID: PMC11505151 DOI: 10.3390/antibiotics13100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Foodborne diseases are a serious public health concern, and food-producing animals are a major source of contamination. Methods: The present study analysed Escherichia coli and Salmonella spp. isolated from faecal samples of 100 fattening pigs and from 52 samples of pork meat. Results: The results showed that the majority of the analysed meat samples were considered satisfactory in terms of microbiological quality (92.3% for E. coli and 94.2% for Salmonella spp.). Salmonella spp. was identified in 5.8% of the meat samples, whereas E. coli was detected in 89.5% of all samples (69.2% in meat and 100% in faecal samples). Furthermore, 1.9% of the faecal samples contained Shiga-toxin-producing E. coli and 3.9% contained enterotoxigenic E. coli. All sequenced isolates presented virulence genes for extraintestinal pathogenic E. coli. Moreover, 75.0% of E. coli isolates from meat and 71.8% from faeces samples showed antibiotic resistance, with 40.7% and 51.4%, respectively, being multidrug-resistant (MDR). The most prevalent resistances were to tetracycline, ampicillin, and sulfamethoxazole, and one E. coli isolate showed resistance to extended-spectrum β-lactamase. Conclusions: This study highlights the role of pigs as a potential source of human contamination and the importance of a One Health approach to ensure food safety and to promote public health.
Collapse
Affiliation(s)
- Carlota Gonçalves
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
- Department of Chemistry, Nova School of Science & Technology, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Leonor Silveira
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - João Rodrigues
- Laboratory of Microbiology, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Rosália Furtado
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Sónia Ramos
- Animal and Veterinary Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, 1749-024 Lisbon, Portugal;
| | - Alexandra Nunes
- Animal and Veterinary Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University—Lisbon University Centre, 1749-024 Lisbon, Portugal;
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Ângela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
| |
Collapse
|
3
|
Kabeta T, Tolosa T, Duchateau L, Van Immerseel F, Antonissen G. Prevalence and serotype of poultry salmonellosis in Africa: a systematic review and meta-analysis. Avian Pathol 2024; 53:325-349. [PMID: 38639048 DOI: 10.1080/03079457.2024.2344549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/26/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Salmonellosis represents a significant economic and public health concern for the poultry industry in Africa, leading to substantial economic losses due to mortality, reduced productivity, and food safety problems. However, comprehensive information on the burden of poultry salmonellosis at the continental level is scarce. To address this gap, a systematic review and meta-analysis were conducted to consolidate information on the prevalence and circulating serotypes of poultry salmonellosis in African countries. This involved the selection and review of 130 articles published between 1984 and 2021. A detailed systematic review protocol was structured according to Cochrane STROBE and PRISMA statement guideline. From the 130 selected articles from 23 different African countries, the overall pooled prevalence estimate (PPE) of poultry salmonellosis in Africa was found to be 14.4% (95% CI = 0.145-0.151). Cameroon reported the highest PPE at 71.9%. The PPE was notably high in meat and meat products at 23%. The number of research papers reporting poultry salmonellosis in Africa has shown a threefold increase from 1984 to 2021. Salmonella Enteritidis and Typhimurium were the two most prevalent serotypes reported in 18 African countries. Besides, Salmonella Kentucky, Virchow, Gallinarum, and Pullorum were also widely reported. Western Africa had the highest diversity of reported Salmonella serotypes (141), in contrast to southern Africa, which reported only 27 different serotypes. In conclusion, poultry salmonellosis is highly prevalent across Africa, with a variety of known serotypes circulating throughout the continent. Consequently, it is crucial to implement strategic plans for the prevention and control of Salmonella in Africa.RESEARCH HIGHLIGHTS The pooled sample prevalence of poultry salmonellosis in Africa is high (14.4%).The highest PPE was recorded in meat and meat products.Salmonella serotypes of zoonotic importance were found in all sample types.Salmonella Enteritidis and Typhimurium are common serotypes spreading in Africa.
Collapse
Affiliation(s)
- Tadele Kabeta
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology, and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Tadele Tolosa
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Luc Duchateau
- Faculty of Veterinary Medicine, Biometrics Research Group, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology, and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Gunther Antonissen
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology, and Zoological Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
El-Saeed BA, Elshebrawy HA, Zakaria AI, Abdelkhalek A, Sallam KI. Colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars isolated from Egyptian chicken carcasses. Ann Clin Microbiol Antimicrob 2024; 23:61. [PMID: 38965586 PMCID: PMC11229489 DOI: 10.1186/s12941-024-00713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/02/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVES The emergence of multidrug-resistant (MDR) Salmonella strains, especially resistant ones toward critically important antimicrobial classes such as fluoroquinolones and third- and fourth-generation cephalosporins, is a growing public health concern. The current study, therefore, aimed to determine the prevalence, and existence of virulence genes (invA, stn, and spvC genes), antimicrobial resistance profiles, and the presence of β-lactamase resistance genes (blaOXA, blaCTX-M1, blaSHV, and blaTEM) in Salmonella strains isolated from native chicken carcasses in Egypt marketed in Mansoura, Egypt, as well as spotlight the risk of isolated MDR, colistin-, cefepime-, and levofloxacin-resistant Salmonella enterica serovars to public health. METHODS One hundred fifty freshly dressed native chicken carcasses were collected from different poultry shops in Mansoura City, Egypt between July 2022 and November 2022. Salmonella isolation was performed using standard bacteriological techniques, including pre-enrichment in buffered peptone water (BPW), selective enrichment in Rappaport Vassiliadis broth (RVS), and cultivating on the surface of xylose-lysine-desoxycholate (XLD) agar. All suspected Salmonella colonies were subjected to biochemical tests, serological identification using slide agglutination test, and Polymerase Chain Reaction (PCR) targeting the invasion A gene (invA; Salmonella marker gene). Afterward, all molecularly verified isolates were screened for the presence of virulence genes (stn and spvC). The antimicrobial susceptibility testing for isolated Salmonella strains towards the 16 antimicrobial agents tested was analyzed by Kirby-Bauer disc diffusion method, except for colistin, in which the minimum inhibition concentration (MIC) was determined by broth microdilution technique. Furthermore, 82 cefotaxime-resistant Salmonella isolates were tested using multiplex PCR targeting the β-lactamase resistance genes, including blaOXA, blaCTX-M1, blaSHV, and blaTEM genes. RESULTS Salmonella enterica species were molecularly confirmed via the invA Salmonella marker gene in 18% (27/150) of the freshly dressed native chicken carcasses. Twelve Salmonella serotypes were identified among 129 confirmed Salmonella isolates with the most predominant serotypes were S. Kentucky, S. Enteritidis, S. Typhimurium, and S. Molade with an incidence of 19.4% (25/129), 17.1% (22/129), 17.1% (22/129), and 10.9% (14/129), respectively. All the identified Salmonella isolates (n = 129) were positive for both invA and stn genes, while only 31.8% (41/129) of isolates were positive for the spvC gene. One hundred twenty-one (93.8%) of the 129 Salmonella-verified isolates were resistant to at least three antibiotics. Interestingly, 3.9%, 14.7%, and 75.2% of isolates were categorized into pan-drug-resistant, extensively drug-resistant, and multidrug-resistant, respectively. The average MAR index for the 129 isolates tested was 0.505. Exactly, 82.2%, 82.2%, 63.6%, 51.9%, 50.4%, 48.8%, 11.6%, and 10.1% of isolated Salmonella strains were resistant to cefepime, colistin, cefotaxime, ceftazidime/clavulanic acid, levofloxacin, ciprofloxacin, azithromycin, and meropenem, respectively. Thirty-one out (37.8%) of the 82 cefotaxime-resistant Salmonella isolates were β-lactamase producers with the blaTEM as the most predominant β-lactamase resistance gene, followed by blaCTX-M1 and blaOXA genes, which were detected in 21, 16, and 14 isolates respectively). CONCLUSION The high prevalence of MDR-, colistin-, cefepime-, and levofloxacin-resistant Salmonella serovars among Salmonella isolates from native chicken is alarming as these antimicrobials are critically important in treating severe salmonellosis cases and boost the urgent need for controlling antibiotic usage in veterinary and human medicine to protect public health.
Collapse
Affiliation(s)
- Bassant Ashraf El-Saeed
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hend Ali Elshebrawy
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amira Ibrahim Zakaria
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Khalid Ibrahim Sallam
- Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Gharaibeh MH, Lafi SQ, Allah AMH, Qudsi FRA. Occurrence, virulence, and resistance genes in Salmonella enterica isolated from an integrated poultry company in Jordan. Poult Sci 2024; 103:103733. [PMID: 38631233 PMCID: PMC11040170 DOI: 10.1016/j.psj.2024.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Salmonella is considered one of the most common foodborne pathogens worldwide. The annual number of hospitalizations and deaths related to zoonotic salmonellosis, which is transmitted from animals to humans and infects poultry and meat, is expected to be significant. Hence, the primary aims of this research were to isolate and characterize Salmonella species obtained from an integrated poultry company and identify some virulence, and antimicrobial resistance, with a specific concern about colistin resistance genes. A total of 635 samples collected from various sources in an integrated company in Jordan were screened for Salmonella species accompanying their virulence and antimicrobial resistance genes. Samples were collected from parent stock house drag swabs, broiler farms, premix, cecum at the slaughterhouse level, prechilling and postchilling stages, and the final product. Salmonella species were detected in 3% (6/200) of investigated parent stock house drag swabs, 13.8% (11/80) from cloacal swabs from broiler farms, 16.9% (11/65) from boiler farms premix, 24.4% (11/45) from the cecum at slaughterhouse level, 16.4% (9/55) from the prechilling stage, 37.8% (17/45) from the postchilling stage and 53.3% (24/45) from the final product stage. No isolates were detected in feed mills (0/20), parents' premix (0/40), or hatcheries (0/40). Salmonella isolates were resistant to ciprofloxacin (91.0%), nalidixic acid (86.5%), doxycycline (83.1%), tetracycline (83.1%), sulphamethoxazole-trimethoprim (79.8%) and ampicillin (76.4%). Serotyping shows that S. Infantis was the predominant serovar, with 56.2%. Based on the minimum inhibitory concentration (MIC) test, 39.3% (35/89) of the isolates were resistant to colistin; however, no mcr genes were detected. Among antimicrobial-resistant genes, blaTEM was the most prevalent (88.8%). Furthermore, the spvC, ompA, and ompF virulence genes showed the highest percentages (97.8%, 97.8%, and 96.6%, respectively). In conclusion, Salmonella isolates were found at various stages in the integrated company. S. Infantis was the most prevalent serotype. No mcr genes were detected. Cross-contamination between poultry production stages highlights the importance of good hygiene practices. Furthermore, the presence of virulence genes and the patterns of antimicrobial resistance present significant challenges for public health.
Collapse
Affiliation(s)
- Mohammad H Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, 22110, Jordan.
| | - Shawkat Q Lafi
- Department of Pathology and Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed M Habib Allah
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, 22110, Jordan
| | - Farah R Al Qudsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 21121, Jordan
| |
Collapse
|
6
|
Benevides VP, Saraiva MMS, Nascimento CF, Delgado-Suárez EJ, Oliveira CJB, Silva SR, Miranda VFO, Christensen H, Olsen JE, Berchieri Junior A. Genomic Features and Phylogenetic Analysis of Antimicrobial-Resistant Salmonella Mbandaka ST413 Strains. Microorganisms 2024; 12:312. [PMID: 38399716 PMCID: PMC10893270 DOI: 10.3390/microorganisms12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, Salmonella enterica subsp. enterica serovar Mbandaka (S. Mbandaka) has been increasingly isolated from laying hens and shell eggs around the world. Moreover, this serovar has been identified as the causative agent of several salmonellosis outbreaks in humans. Surprisingly, little is known about the characteristics of this emerging serovar, and therefore, we investigated antimicrobial resistance, virulence, and prophage genes of six selected Brazilian strains of Salmonella Mbandaka using Whole Genome Sequencing (WGS). Multi-locus sequence typing revealed that the tested strains belong to Sequence Type 413 (ST413), which has been linked to recent multi-country salmonellosis outbreaks in Europe. A total of nine resistance genes were detected, and the most frequent ones were aac(6')-Iaa, sul1, qacE, blaOXA-129, tet(B), and aadA1. A point mutation in ParC at the 57th position (threonine → serine) associated with quinolone resistance was present in all investigated genomes. A 112,960 bp IncHI2A plasmid was mapped in 4/6 strains. This plasmid harboured tetracycline (tetACDR) and mercury (mer) resistance genes, genes contributing to conjugative transfer, and genes involved in plasmid maintenance. Most strains (four/six) carried Salmonella genomic island 1 (SGI1). All S. Mbandaka genomes carried seven pathogenicity islands (SPIs) involved in intracellular survival and virulence: SPIs 1-5, 9, and C63PI. The virulence genes csgC, fimY, tcfA, sscA, (two/six), and ssaS (one/six) were absent in some of the genomes; conversely, fimA, prgH, and mgtC were present in all of them. Five Salmonella bacteriophage sequences (with homology to Escherichia phage phiV10, Enterobacteria phage Fels-2, Enterobacteria phage HK542, Enterobacteria phage ST64T, Salmonella phage SW9) were identified, with protein counts between 31 and 54, genome lengths of 24.7 bp and 47.7 bp, and average GC content of 51.25%. In the phylogenetic analysis, the genomes of strains isolated from poultry in Brazil clustered into well-supported clades with a heterogeneous distribution, primarily associated with strains isolated from humans and food. The phylogenetic relationship of Brazilian S. Mbandaka suggests the presence of strains with high epidemiological significance and the potential to be linked to foodborne outbreaks. Overall, our results show that isolated strains of S. Mbandaka are multidrug-resistant and encode a rather conserved virulence machinery, which is an epidemiological hallmark of Salmonella strains that have successfully disseminated both regionally and globally.
Collapse
Affiliation(s)
- Valdinete P Benevides
- Postgraduate Program in Agricultural Microbiology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Mauro M S Saraiva
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Camila F Nascimento
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Enrique J Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Celso J B Oliveira
- Center for Agricultural Sciences, Department of Animal Science, Federal University of Paraiba (CCA/UFPB), Areia 58051-900, Brazil
- Global One Health Initiative (GOHi), The Ohio State University, Columbus, OH 43210, USA
| | - Saura R Silva
- Laboratory of Plant Systematics, Department of Biology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Vitor F O Miranda
- Laboratory of Plant Systematics, Department of Biology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, Brazil
| |
Collapse
|
7
|
Wu S, Zhang Q, Cong G, Xiao Y, Shen Y, Zhang S, Zhao W, Shi S. Probiotic Escherichia coli Nissle 1917 protect chicks from damage caused by Salmonella enterica serovar Enteritidis colonization. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:450-460. [PMID: 37649679 PMCID: PMC10463197 DOI: 10.1016/j.aninu.2023.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 09/01/2023]
Abstract
As a foodborne pathogen of global importance, Salmonella enterica serovar Enteritidis (S. Enteritidis) is a threat to public health that is mainly spread by poultry products. Intestinal Enterobacteriaceae can inhibit the colonization of S. Enteritidis and are regarded as a potential antibiotic substitute. We investigated, in chicks, the anti-S. Enteritidis effects of Escherichia coli (E. coli) Nissle 1917, the most well-known probiotic member of Enterobacteriaceae. Eighty 1-d-old healthy female AA broilers were randomly divided into 4 groups, with 20 in each group, namely the negative control (group P), the E. coli Nissle 1917-treated group (group N), the S. Enteritidis-infected group (group S) and the E. coli Nissle 1917-treated and S. Enteritidis-infected group (group NS). From d 5 to 7, chicks in groups N and NS were orally gavaged once a day with E. coli Nissle 1917 and in groups P and S were administered the same volume of sterile PBS. At d 8, the chicks in groups S and NS were orally gavaged with S. Enteritidis and in groups P and N were administered the same volume of sterile PBS. Sampling was conducted 24 h after challenge. Results showed that gavage of E. coli Nissle 1917 reduced the spleen index, Salmonella loads, and inflammation (P < 0.05). It improved intestinal morphology and intestinal barrier function (P < 0.05). S. Enteritidis infection significantly reduced mRNA expression of angiotensin-converting enzyme 2 (ACE2) and solute carrier family 6-member 19 (SLC6A19) in the cecum and the content of Gly, Ser, Gln, and Trp in the serum (P < 0.05). Pretreatment with E. coli Nissle 1917 yielded mRNA expression of ACE2 and SLC6A19 in the cecum and levels of Gly, Ser, Gln, and Trp in the serum similar to that of uninfected chicks (P < 0.05). Additionally, E. coli Nissle 1917 altered cecum microbiota composition and enriched the abundance of E. coli, Lactobacillales, and Lachnospiraceae. These findings reveal that the probiotic E. coli Nissle 1917 reduced S. Enteritidis infection and shows enormous potential as an alternative to antibiotics.
Collapse
Affiliation(s)
| | | | - Guanglei Cong
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Yunqi Xiao
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Yiru Shen
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Shan Zhang
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Wenchang Zhao
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Shourong Shi
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| |
Collapse
|
8
|
Shu G, Qiu J, Zheng Y, Chang L, Li H, Xu F, Zhang W, Yin L, Fu H, Yan Q, Gan T, Lin J. Association between Phenotypes of Antimicrobial Resistance, ESBL Resistance Genes, and Virulence Genes of Salmonella Isolated from Chickens in Sichuan, China. Animals (Basel) 2023; 13:2770. [PMID: 37685034 PMCID: PMC10486400 DOI: 10.3390/ani13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to explore the association between antimicrobial resistance, ESBL genes, and virulence genes of Salmonella isolates. From 2019 to 2021, a total of 117 Salmonella isolates were obtained from symptomatic chickens in Sichuan Province, China. The strains were tested for antimicrobial resistance and the presence of ESBL according to the Clinical and Laboratory Standards Institute (CLSI) instructions. The presence of ESBL genes and genes for virulence was determined using Polymerase Chain Reaction (PCR). In addition, Multilocus Sequence Typing (MLST) was applied to confirm the molecular genotyping. Moreover, the mechanism of ESBL and virulence gene transfer and the relationships between the resistance phenotype, ESBL genes, and virulence genes were explored. The isolates exhibited different frequencies of resistance to antibiotics (resistance rates ranged from 21.37% to 97.44%), whereas 68.38% and 41.03% of isolates were multi-drug resistance (MDR) and ESBL-producers, respectively. In the PCR analysis, blaCTX-M was the most prevalent ESBL genotype (73.42%, 58/79), and blaCTX-M-55 showed the most significant effect on the resistance to cephalosporins as tested by logistic regression analysis. Isolates showed a high carriage rate of invA, avrA, sopB, sopE, ssaQ, spvR, spvB, spvC, stn, and bcfC (ranged from 51.28% to 100%). MLST analysis revealed that the 117 isolates were divided into 11 types, mainly ST92, ST11, and ST3717. Of 48 ESBL-producers, 21 transconjugants were successfully obtained by conjugation. Furthermore, ESBL and spv virulence genes were obtained simultaneously in 15 transconjugants. These results highlighted that Salmonella isolates were common carriers of ESBLs and multiple virulence genes. Horizontal transfer played a key role in disseminating antimicrobial resistance and pathogenesis. Therefore, it is necessary to continuously monitor the use of antimicrobials and the prevalence of AMR and virulence in Salmonella from food animals and to improve the antibiotic stewardship for salmonellosis.
Collapse
Affiliation(s)
- Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Jianyu Qiu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Yilei Zheng
- Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Lijen Chang
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| | - Haohuan Li
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Funeng Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Wei Zhang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Lizi Yin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Hualin Fu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Qigui Yan
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Ting Gan
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| | - Juchun Lin
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (J.Q.); (H.L.); (F.X.); (W.Z.); (L.Y.); (H.F.); (Q.Y.); (T.G.)
| |
Collapse
|
9
|
Diab MS, Thabet AS, Elsalam MA, Ewida RM, Sotohy SA. Detection of Virulence and β-lactamase resistance genes of non-typhoidal Salmonella isolates from human and animal origin in Egypt "one health concern". Gut Pathog 2023; 15:16. [PMID: 36998086 PMCID: PMC10061834 DOI: 10.1186/s13099-023-00542-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) is a major foodborne zoonotic pathogen worldwide. In the current study, Various NTS strains were isolated from (cows, milk and dairy products in addition to humans) in New Valley and Assiut Governorate, Egypt. NTS were firstly serotyped and tested by antibiotic sensitivity test. Secondly, some virulence genes and Antibiotic resistance genes have been identified by using PCR. Finally, Phylogenesis was performed depending on the invA gene, for two S. typhimurium isolates (one of animal origin and the other of human origin for evaluating zoonotic potential). RESULTS Out of 800 examined samples, the total number of isolates was 87 (10.88%), which were classified into 13 serotypes, with the most prevalent being S. Typhimurium and S. enteritidis. Both bovine and human isolates showed the highest resistance to clindamycin and streptomycin, with 90.80% of the tested isolates exhibiting MDR. The occurrence of the invA gene was 100%, while 72.22%, 30.56%, and 94.44% of the examined strains were positive for stn, spvC, and hilA genes, respectively. Additionally, blaOXA-2 was detected in 16.67% (6/ 36) of the tested isolates, while blaCMY-1 was detected in 30.56% (11of 36) of the tested isolates. Phylogenesis revealed a high degree of similarity between the two isolates. CONCLUSIONS The high occurrence of MDR strains of NTS in both human and animal samples with high degree of genetic similarity, shows that cows, milk and milk product may be a valuable source of human infection with NTS and interfere with treatment procedures.
Collapse
Affiliation(s)
- Mohamed S. Diab
- grid.252487.e0000 0000 8632 679XDepartment of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Asmaa S. Thabet
- Assiut Lab., Animal Health Research Institute, ARC, Asyut, Egypt
| | | | - Rania M. Ewida
- grid.252487.e0000 0000 8632 679XDepartment of Food Hygiene (Milk Hygiene), Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Sotohy A. Sotohy
- grid.252487.e0000 0000 8632 679XDepartment of Animal, Poultry and Environmental Hygiene, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| |
Collapse
|
10
|
Effects of Lactobacillus fermentum Administration on Intestinal Morphometry and Antibody Serum Levels in Salmonella-Infantis-Challenged Chickens. Microorganisms 2023; 11:microorganisms11020256. [PMID: 36838221 PMCID: PMC9963312 DOI: 10.3390/microorganisms11020256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
There are no studies reporting the effects of Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) on intestinal architecture and immunoglobulin serum levels in chickens. Here, we measured these parameters and hypothesized whether probiotic administration could modulate the observed outcomes. Two-hundred 1-day-old COBB 500 male chicks were allocated into four groups: (I) the control, (II) the group treated with L. fermentum, (III) the group exposed to S. Infantis, and (IV) the group inoculated with both bacteria. At 11 days post infection, blood was gathered from animals which were then euthanized, and samples from the small intestine were collected. Intestinal conditions, as well as IgA and IgM serum levels, were assessed. S. Infantis reduced villus-height-to-crypt-depth (VH:CD) ratios in duodenal, jejunal, and ileal sections compared to control conditions, although no differences were found regarding the number of goblet cells, muc-2 expression, and immunoglobulin concentration. L. fermentum improved intestinal measurements compared to the control; this effect was also evidenced in birds infected with S. Infantis. IgM serum levels augmented in response to the probiotic in infected animals. Certainly, the application of L. fermentum elicited positive outcomes in S. Infantis-challenged chickens and thus must be considered for developing novel treatments designed to reduce unwanted infections.
Collapse
|
11
|
Wójcicki M, Chmielarczyk A, Świder O, Średnicka P, Strus M, Kasperski T, Shymialevich D, Cieślak H, Emanowicz P, Kowalczyk M, Sokołowska B, Juszczuk-Kubiak E. Bacterial Pathogens in the Food Industry: Antibiotic Resistance and Virulence Factors of Salmonella enterica Strains Isolated from Food Chain Links. Pathogens 2022; 11:1323. [PMID: 36365074 PMCID: PMC9692263 DOI: 10.3390/pathogens11111323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 10/13/2023] Open
Abstract
Salmonella is one of the most important foodborne pathogens. Fifty-three strains of Salmonella deposited in the Culture Collection of Industrial Microorganisms-Microbiological Resources Center (IAFB) were identified using molecular and proteomic analyses. Moreover, the genetic similarity of the tested strains was determined using the PFGE method. Main virulence genes were identified, and phenotypical antibiotic susceptibility profiles and prevalence of resistance genes were analyzed. Subsequently, the occurrence of the main mechanisms of β-lactam resistance was determined. Virulence genes, invA, fimA, and stn were identified in all tested strains. Phenotypic tests, including 28 antibiotics, showed that 50.9% of the strains were MDR. The tet genes associated with tetracyclines resistance were the most frequently identified genes. Concerning the genes associated with ESBL-producing Salmonella, no resistance to the TEM and CTX-M type was identified, and only two strains (KKP 1597 and KKP 1610) showed resistance to SHV. No strains exhibited AmpC-type resistance but for six Salmonella strains, the efflux-related resistance of PSE-1 was presented. The high number of resistant strains in combination with multiple ARGs in Salmonella indicates the possible overuse of antibiotics. Our results showed that it is necessary to monitor antimicrobial resistance profiles in all food chain links constantly and to implement a policy of proper antibiotic stewardship to contain or at least significantly limit the further acquisition of antibiotic resistance among Salmonella strains.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Agnieszka Chmielarczyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Tomasz Kasperski
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
12
|
Hawwas HAEH, Aboueisha AKM, Fadel HM, El-Mahallawy HS. Salmonella serovars in sheep and goats and their probable zoonotic potential to humans in Suez Canal Area, Egypt. Acta Vet Scand 2022; 64:17. [PMID: 35906669 PMCID: PMC9336019 DOI: 10.1186/s13028-022-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Salmonella is one of the most common and economically important zoonotic pathogens. This study aimed to determine the occurrence of Salmonella serovars in sheep and goats and their probable zoonotic risk to humans in Suez Canal area in Egypt. A total of 320 fecal samples from sheep (n = 120), goats (n = 100), and humans (n = 100) were collected and examined for the presence of Salmonella based on cultural and biochemical characteristics, and serological analysis. Moreover, the virulence of the identified Salmonella isolates was assessed by molecular screening for invA, stn, spvC, and sopB virulence genes using PCR. RESULTS Overall, the occurrence of Salmonella in sheep feces (23.3%) was higher than that in goat feces (7%) and human stool (13%) in the study area. The identified isolates belonged to 12 serotypes; ten, five, and eight from sheep, goats, and humans, respectively. The most frequently identified serotypes were S. Typhimurium from sheep feces, and S. Enteritidis from both goat feces and human stool, with four serotypes; S. Typhimurium, S. Enteritidis, S. Dublin and S. Saintpaul, were mutually shared between all of them. Demographic data revealed that diarrheic sheep (85.7%) and goats (25%) had a higher risk for Salmonella fecal carriage than non-diarrheic ones (19.5% and 6.25%, respectively). The prevalence of Salmonella infection in humans in contact with sheep and goats (28%) was significantly higher than its prevalence in people having a history of contact with animals other than sheep and goats (10%) and those having no history of animal contact (7.3%) (χ2 = 6.728, P ˂ 0.05). The stn, spvC, and sopB genes were detected in 98.1% of the isolates, with a significant, very strong positive correlation for their mutual presence (P < 0.05). Approximately 40.7% of isolates that carried the invA gene had a non-significant, very weak positive correlation with other virulence genes. The most common genotypic virulence profile for all isolates was stn, spvC, and sopB; however, invA, stn, spvC, and sopB was the frequent virulotype for S. Typhimurium, S. Tsevie, S. Apeyeme, and S. Infantis. CONCLUSIONS The present study highlights the role of apparently healthy and diarrheic sheep and goats as reservoirs and sources of human infection with virulent Salmonella serovars in the Suez Canal area.
Collapse
Affiliation(s)
- Hanan Abd El-Halim Hawwas
- Department of Hygiene, Zoonoses and Animal Behaviour, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Kilo Ring Road St., Ismailia, 41522 Egypt
| | - Abdel-Karim Mahmoud Aboueisha
- Department of Hygiene, Zoonoses and Animal Behaviour, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Kilo Ring Road St., Ismailia, 41522 Egypt
| | - Hanaa Mohamed Fadel
- Department of Hygiene, Zoonoses and Animal Behaviour, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Kilo Ring Road St., Ismailia, 41522 Egypt
| | - Heba Sayed El-Mahallawy
- Department of Hygiene, Zoonoses and Animal Behaviour, Faculty of Veterinary Medicine, Suez Canal University, 4.5 Kilo Ring Road St., Ismailia, 41522 Egypt
| |
Collapse
|
13
|
Md. Jasmine SK, Reddy G. VS, Gorityala N, Sagurthi SR, Mungapati S, Manikanta KN, Allam US. In Silico Modeling and Docking Analysis of CTX-M-5, Cefotaxime-Hydrolyzing β-Lactamase from Human-Associated Salmonella Typhimurium. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: CTX-M-type enzymes represent a novel and rapidly evolving group of extended-spectrum β-lactamases, which confer resistance to advance generation cephalosporins. Despite the interaction of CTX-M-5 with drugs and inhibitors, its structure is not reported till date. The present study aimed to computationally model the CTX-M-5 β-lactamase and establish its structure, which is exclusively present in human-associated Salmonella. Methods: The CTX-M-5 aminoacid sequence (Uniprot ID:O65975) of Salmonella enterica subsp. enterica serovar typhimurium was retrieved from UniProt database and subjected to homology modeling using MODELLER 9v7. The homology models were duly validated using RAMPAGE tool by generating Ramachandran plots, ERRAT graphs, and ProSA score. DoGSiteScorer server and ConSurf server were used to detect the cavities, pockets, and clefts to identify conserved amino acid sites in the predicted model. Subsequently, the modeled structure was docked using CLC Drug Discovery Workbench against proven drugs and known inhibitors. Results: Obtained high-quality homology model with 91.7% of the residues in favorable regions in Ramachandran plot and qualified in other quality parameters. Docking studies resulted in a higher dock score for PNK (D-benzylpenicilloic acid) molecule when compared to other reported inhibitors. Conclusion: This in silico study suggests that the compound PNK could be an efficient ligand for CTX-M-5 β-lactamase and serve as a potent inhibitor of CTX-M-5.
Collapse
Affiliation(s)
- S. K. Md. Jasmine
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | - Vidya Sagar Reddy G.
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | - Neelima Gorityala
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Someswar Rao Sagurthi
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Sandhya Mungapati
- Department of Crop Production, DAATTC Center, Acharya N G Ranga Agricultural University, Nellore, Andhra Pradesh, India
| | - Kota Neela Manikanta
- Department of Travel and Tourism, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| | - Uday Sankar Allam
- Department of Biotechnology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India
| |
Collapse
|
14
|
Ramtahal MA, Amoako DG, Akebe ALK, Somboro AM, Bester LA, Essack SY. A Public Health Insight into Salmonella in Poultry in Africa: A Review of the Past Decade: 2010-2020. Microb Drug Resist 2022; 28:710-733. [PMID: 35696336 DOI: 10.1089/mdr.2021.0384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Poultry is a cheap source of animal protein and constituent of diets in Africa. Poultry can serve as a reservoir for Salmonella and cause food-borne infections in humans. This review describes Salmonella contamination of food, poultry, and the farming environment, antimicrobial resistance profiles, and serotypes of Salmonella, as well as the farming systems, antimicrobial use (AMU), hygiene, and husbandry conditions used to rear poultry in Africa. Using the PRISMA (preferred reporting items for systematic reviews and meta-analysis) guidelines, PubMed, Science Direct, and Web of Science databases were searched using a set of predefined keywords. Full-length research articles in English were examined for the period 2010-2020 and relevant information extracted for the narrative synthesis. Of the articles that met the inclusion criteria, 63.1% were conducted on farms and among households, while 36.9% were undertaken at government-controlled laboratories, which quarantine imported birds, processing plants, and retail outlets. The farming systems were intensive, semi-intensive, and extensive. AMU was described in 11.5% of the studies and varied within and across countries. Multidrug-resistant (MDR) Salmonella isolates were detected in 30 studies and the prevalence ranged from 12.1% in Zimbabwe to 100% in Egypt, Ethiopia, Nigeria, Senegal, and South Africa. A total of 226 different Salmonella serotypes were reported. Twenty-four (19.7%) of the studies reported food-borne Salmonella contamination in eggs, poultry, and poultry products at retail outlets and processing plants. The apparent extensive use of antimicrobials and circulation of MDR Salmonella isolates of various serotypes in Africa is a concern. It is important to implement stricter biosecurity measures on farms, regulate the use of antimicrobials and implement surveillance systems, in addition to food safety measures to monitor the quality of poultry and poultry products for human consumption.
Collapse
Affiliation(s)
- Melissa A Ramtahal
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Abia L K Akebe
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anou M Somboro
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Abdel-Kader F, Hamza E, Abdel-Moein KA, Sabry MA. Retail chicken giblets contaminated with extended-spectrum cephalosporin- and carbapenem-resistant Salmonella enterica carrying blaCMY-2. Vet World 2022; 15:1297-1304. [PMID: 35765473 PMCID: PMC9210848 DOI: 10.14202/vetworld.2022.1297-1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Aim: Chickens are considered as the main source of Salmonella, with infection potentially spreading to the public through outlets. The study aimed to investigate poultry shops for Salmonella enterica resistant to extended-spectrum cephalosporins-resistant (ESCR) and carbapenems-resistant (CR). Materials and Methods: Samples were collected from chicken giblets, water tanks, and workers at retail shops. Salmonella was isolated and serotyped; the presence of invA, stn, ompA, and ompF was determined using polymerase chain reaction (PCR). The isolates were tested for ESCR and CR by a disk-diffusion test; a confirmatory extended-spectrum β-lactamase (ESBL) test was performed by combinational disk-diffusion test with clavulanic acid. The resistant isolates were screened for ESBL (blaTEM, blaSHV, blaCTX-M, and blaOXA-1), AmpC blaCMY-2, and carbapenemase (blaKPC, blaNDM, and blaOXA-48) genes using PCR. Results: S. enterica was isolated from chicken giblets (13/129) and the 13 isolates were ESCR. Based on the confirmatory ESBL test and CR, the 13 isolates were classified into the following resistance phenotypes: ESBL-producing and CR (n=4), ESBL-producing (n=1), non-ESBL-producing and CR (n=6), and non-ESBL-producing (n=2). All the five isolates with ESBL-producing phenotype carried predominantly blaTEM, blaSHV, and blaCMY-2. Regardless of being phenotypically CR, none of these isolates carried any of the tested carbapenemase genes. Surprisingly, the isolates with non-ESBL phenotype were found to carry blaTEM, blaSHV, and blaCMY-2. The blaKPC was present mainly in the isolates with non-ESBL and CR phenotypes. Interestingly, two isolates of the non-ESBL and CR phenotype showed resistance to cefepime, the fourth generation cephalosporins. Salmonella was also recovered from the water tanks (2/7) and the workers (2/16). The four isolates were ESCR and showed a non-ESBL-producing and CR phenotype; they harbored blaTEM, blaSHV, blaOXA-1, and blaKPC. The blaCMY-2 was found in one isolate from water and one from humans. All Salmonella isolates carried invA, stn, ompA, and ompF. Conclusion: Virulent ESCR S. enterica were identified in retail shops. The isolates carried blaCMY-2 and ESBL-genes, with a high proportion showing CR. Transmission of such strains to humans through food leads us to recommend regular inspection of retail outlets for antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Fatma Abdel-Kader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Eman Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Khaled A. Abdel-Moein
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha A. Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Antimicrobial Resistance and Virulence of Non-Typhoidal Salmonella from Retail Foods Marketed in Bangkok, Thailand. Foods 2022; 11:foods11050661. [PMID: 35267294 PMCID: PMC8909193 DOI: 10.3390/foods11050661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Nontyphoidal-Salmonella bacteria cause foodborne gastroenteritis that may lead to fatal bacteremia, osteomyelitis, and meningitis if not treated properly. The emergence of multidrug-resistant Salmonella strains is a global public health threat. Regular monitoring of genotypes and phenotypes of Salmonella isolated from humans, animals, foods, and environments is mandatory for effective reduction and control of this food-borne pathogen. In this study, antimicrobial-resistant and virulent genotypes and phenotypes of Salmonella isolated from retail food samples in Bangkok, Thailand, were investigated. From 252 raw food samples, 58 Salmonella strains that belonged only to serotype Enteritidis were isolated. Disc diffusion method showed that all isolates were still sensitive to amikacin and carbapenems. More than 30% of the isolates were resistant to ampicillin, tetracycline, and ciprofloxacin. Twenty isolates resist at least three antibiotic classes. Minimum inhibitory concentration tests showed that 12.07% of the isolates produced extended-spectrum β-Lactamase. Polymerase chain reaction indicated that 32.76, 81.03, 39.66, and 5.17% of the isolates carried blaTEM-1, tetA, sul2, and dfrA7, respectively. All isolates were positive for invasion-associated genes. Effective prevention and control of Salmonella (as well as other food-borne pathogens) is possible by increasing public awareness and applying food hygienic practices. Active and well harmonised “One Health” co-operation is required to effectively control food-borne zoonosis.
Collapse
|
17
|
Molecular Detection of Integrons, Colistin and β-lactamase Resistant Genes in Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Chickens and Rats Inhabiting Poultry Farms. Microorganisms 2022; 10:microorganisms10020313. [PMID: 35208768 PMCID: PMC8876313 DOI: 10.3390/microorganisms10020313] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid growth of multidrug-resistant Salmonella is a global public health concern. The aim of this study was to detect integrons, colistin and β-lactamase resistance genes in Salmonella enteritidis and typhimurium. A total of 63 isolates of S. enteritidis (n = 18) and S. typhimurium (n = 45) from fecal samples of layers and rats at chicken farms were screened for antibiotic resistant genes. Conventional PCR was performed for the detection of integrons (classes 1, 2, and 3), colistin (mcr-1-5) and β-lactamase (blaCTX-M, blaCTX-M-1, blaCTX-M-2, blaCTX-M-9, blaCTX-M-15, blaTEM, blaSHV, and blaOXA) resistant genes. Of these isolates, 77% and 27% of S. typhimurium and S. enteritidis harboured the mcr-4 encoded gene for colistin, respectively. The prevalence of class 1 integrons for S. typhimurium and S. enteritidis was 100% for each serovar, while for class 2 integrons of S. typhimurium and S. enteritidis it was 49% and 33% respectively, while class 3 integron genes was not detected. Our study also detected high levels of β-lactamase encoding genes (bla gene), namely blaCTX-M, blaCTX-M-1, blaCTX-M-9 and blaTEM from both S. typhimurium and S. enteritidis. This, to our knowledge, is the first report of mcr-4 resistance gene detection in Salmonella serovars in South Africa. This study also highlights the importance of controlling rats at poultry farms in order to reduce the risk of transmission of antibiotic resistance to chickens and eventually to humans.
Collapse
|
18
|
Sobhy H, Soliman EA, Abd El-Tawab AA, Elhofy FI, Askora A, El-Nahas EM, Wareth G, Ahmed W. Isolation, Characterization, and Efficacy of Three Lytic Phages Infecting Multidrug-Resistant Salmonella Serovars from Poultry Farms in Egypt. ARCHIVES OF RAZI INSTITUTE 2021; 76:507-519. [PMID: 34824744 DOI: 10.22092/ari.2021.355760.1719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023]
Abstract
Multidrug-resistant (MDR) Salmonella serovars are considered a significant threat to veterinary and public health. Developing new antimicrobial compounds that can treat the infection caused by these notorious pathogens is a big challenge. Bacteriophages can be adsorbed on and inhibit the growth of bacteria, providing optimal and promising alternatives to chemical antimicrobial compounds against foodborne pathogens due to their abundance in nature and high host specificity. The objective of the current study was to isolate and characterize new phages from poultry farms and sewage and to evaluate their efficacy against S. Enteritidis isolates. The study reports three lytic phages designated as ϕSET1, ϕSET2, and ϕSET3 isolated from poultry carcasses and sewage samples in Qalubiya governorate Egypt. The effectiveness of phages was evaluated against multidrug-resistant S. Enteritidis strains. Electron microscopy showed that these phages belong to the Siphoviridae family. Phages were tested against 13 bacterial strains to determine their host range. They could infect four S. Enteritidis and one S. Typhimurium; however, they did not infect other tested bacterial species, indicating their narrow infectivity. The bacteriophage's single-step growth curves revealed a latent period of 20 min for ϕSET1 and 30 min for ϕSET2 and ϕSET3. The isolated Salmonella phages prevented the growth of S. Enteritidis for up to 18 hrs. The findings revealed that Salmonella phages could be used as alternative natural antibacterial compounds to combat infection with MDR S. Enteritidis in the poultry industry and represent a step forward to using large panels of phages for eliminating Salmonella from the food chain.
Collapse
Affiliation(s)
- H Sobhy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh PO Box 13736, Egypt
| | - E A Soliman
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh PO Box 13736, Egypt
| | - A A Abd El-Tawab
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh PO Box 13736, Egypt
| | - F I Elhofy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh PO Box 13736, Egypt
| | - A Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
| | - E M El-Nahas
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh PO Box 13736, Egypt
| | - G Wareth
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh PO Box 13736, Egypt.,Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
| | - W Ahmed
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh PO Box 13736, Egypt
| |
Collapse
|
19
|
Prevalence and molecular characterization of multidrug-resistant and β-lactamase producing Salmonella enterica serovars isolated from duck, pigeon, and quail carcasses in Mansoura, Egypt. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Infection Heterogeneity and Microbiota Differences in Chicks Infected by Salmonella enteritidis. Microorganisms 2021; 9:microorganisms9081705. [PMID: 34442784 PMCID: PMC8399513 DOI: 10.3390/microorganisms9081705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to compare the infection heterogeneity and cecal microbiota in chicks infected by S. enteritidis. Forty-eight 8-d-old female Arbor Acres chicks were challenged with S. enteritidis and euthanized 24 h later. The eight chicks with the highest Salmonella tissue loads were assigned to group S (S. enteritidis-susceptible), and the eight chicks with the lowest Salmonella tissue loads were assigned to group R (S. enteritidis-resistant). Chicks in group S showed a higher liver index (p < 0.05), obvious liver lesions, and an decreasing trend for the villus height-to-crypt depth ratio (p < 0.10), compared with those in group R. Gene expression of occludin, MUC2, and IL10 was higher, whereas that of iNOS and IL6 was lower (p < 0.05), in chicks of group R relative to those in group S. Separation of the cecal microbial community structure has been found between the two groups. The S. enteritidis-susceptible chicks showed higher abundance of pathogenic bacteria (Fusobacterium and Helicobacter) in their cecal, while Desulfovibrio_piger was enriched in the cecal of S. enteritidis-resistant chicks. In summary, chicks showed heterogeneous responses to S. enteritidis infection. Enhanced intestinal barrier function and cecal microbiota structure, especially a higher abundance of Desulfovibrio_piger, may help chicks resist S. enteritidis invasion.
Collapse
|
21
|
Prevalence of extended-spectrum β-lactamase (ESBL)-producing Salmonella enterica from retail fishes in Egypt: A major threat to public health. Int J Food Microbiol 2021; 351:109268. [PMID: 34098467 DOI: 10.1016/j.ijfoodmicro.2021.109268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 01/22/2023]
Abstract
The increase in multidrug-resistant Salmonella enterica and its spread from food to humans are considered a serious public health concern worldwide. Little is currently known about the prevalence of extended-spectrum β-lactamase (ESBL)-producing S. enterica in fish in Africa. Therefore, this study aimed to investigate the existence of ESBL-producing S. enterica in retail fish in Egypt. In total, 200 fish samples were collected randomly from various retail fish markets in Egypt. S. enterica were detected in 19 (9.5%; 95% CI: 5.8-14.4) of the fish samples analyzed. Of the 19 non-repetitive S. enterica isolates, 18 were serologically categorized into eight S. enterica serovars and a non-typable serovar. All 19 S. enterica isolates (100%) showed multidrug-resistant phenotypes to at least three classes of antimicrobials, and 11 (57.9%) exhibited an ESBL-resistant phenotype and harbored at least one ESBL-encoding gene. The ESBL-producing S. enterica serovars were as follows: Kentucky (3 isolates; 15.8%), Enteritidis (2 isolates; 10.5%), Typhimurium (2 isolates; 10.5%), and 1 isolate (5.3%) each of Infantis, Virchow, Paratyphi B, and Senftenberg. The identified β-lactamase-encoding genes included ESBL-encoding genes blaCTX-M-3, blaCTX-M-14, blaCTX-M-15, blaSHV-1, blaSHV-2 and blaSHV-12; the AmpC β-lactamase-encoding gene blaCMY-2; and the narrow-spectrum β-lactamase-encoding genes blaTEM-1 and blaOXA-1. All S. enterica isolates were negative for carbapenemase-encoding genes. Molecular analysis of plasmid transferability and replicon typing revealed that most plasmids (with β-lactamase-encoding genes) were transferrable, and the most common incompatibility groups were IncI1, IncA/C, IncHI1, and IncN. To the best of our knowledge, this is the first report for molecular characterization of ESBL-producing S. enterica in fish in Egypt. The occurrence of ESBL-producing S. enterica in retail fish constitutes a potential public health threat with the possibility of transmission of these strains with resistance genes to humans. Such transmission would exacerbate the resistance to an important class of antibiotics commonly used in hospitals to treat typhoid and non-typhoidal Salmonella infections.
Collapse
|