1
|
Rahn HP, Liu X, Chosy MB, Sun J, Cegelski L, Wender PA. Biguanide-Vancomycin Conjugates are Effective Broad-Spectrum Antibiotics against Actively Growing and Biofilm-Associated Gram-Positive and Gram-Negative ESKAPE Pathogens and Mycobacteria. J Am Chem Soc 2024; 146:22541-22552. [PMID: 39088791 PMCID: PMC11624893 DOI: 10.1021/jacs.4c06520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Strategies to increase the efficacy and/or expand the spectrum of activity of existing antibiotics provide a potentially fast path to clinically address the growing crisis of antibiotic-resistant infections. Here, we report the synthesis, antibacterial efficacy, and mechanistic activity of an unprecedented class of biguanide-antibiotic conjugates. Our lead biguanide-vancomycin conjugate, V-C6-Bg-PhCl (5e), induces highly effective cell killing with up to a 2 orders-of-magnitude improvement over its parent compound, vancomycin (V), against vancomycin-resistant enterococcus. V-C6-Bg-PhCl (5e) also exhibits improved activity against mycobacteria and each of the ESKAPE pathogens, including the Gram-negative organisms. Furthermore, we uncover broad-spectrum killing activity against biofilm-associated Gram-positive and Gram-negative bacteria as well as mycobacteria not observed for clinically used antibiotics such as oritavancin. Mode-of-action studies reveal that vancomycin-like cell wall synthesis inhibition with improved efficacy attributed to enhanced engagement at vancomycin binding sites through biguanide association with relevant cell-surface anions for Gram-positive and Gram-negative bacteria. Due to its potency, remarkably broad activity, and lack of acute mammalian cell toxicity, V-C6-Bg-PhCl (5e) is a promising candidate for treating antibiotic-resistant infections and notoriously difficult-to-treat slowly growing and antibiotic-tolerant bacteria associated with chronic and often incurable infections. More generally, this study offers a new strategy (biguanidinylation) to enhance antibiotic activity and facilitate clinical entry.
Collapse
Affiliation(s)
- Harrison P. Rahn
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Xinyu Liu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Madeline B. Chosy
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Brčić J, Tong A, Wender PA, Cegelski L. Conjugation of Vancomycin with a Single Arginine Improves Efficacy against Mycobacteria by More Effective Peptidoglycan Targeting. J Med Chem 2023; 66:10226-10237. [PMID: 37477249 PMCID: PMC10783851 DOI: 10.1021/acs.jmedchem.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Drug resistant bacterial infections have emerged as one of the greatest threats to public health. The discovery and development of new antimicrobials and anti-infective strategies are urgently needed to address this challenge. Vancomycin is one of the most important antibiotics for the treatment of Gram-positive infections. Here, we introduce the vancomycin-arginine conjugate (V-R) as a highly effective antimicrobial against actively growing mycobacteria and difficult-to-treat mycobacterial biofilm populations. Further improvement in efficacy through combination treatment of V-R to inhibit peptidoglycan synthesis and ethambutol to inhibit arabinogalactan synthesis underscores the ability to identify compound synergies to more effectively target the Achilles heel of the cell-wall assembly. Moreover, we introduce mechanistic activity data and a molecular model derived from a d-Ala-d-Ala-bound vancomycin structure that we hypothesize underlies the molecular basis for the antibacterial improvement attributed to the arginine modification that is specific to peptidoglycan chemistry employed by mycobacteria and distinct from Gram-positive pathogens.
Collapse
Affiliation(s)
- Jasna Brčić
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Alan Tong
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Sharma K, Ahmed F, Sharma T, Grover A, Agarwal M, Grover S. Potential Repurposed Drug Candidates for Tuberculosis Treatment: Progress and Update of Drugs Identified in Over a Decade. ACS OMEGA 2023; 8:17362-17380. [PMID: 37251185 PMCID: PMC10210030 DOI: 10.1021/acsomega.2c05511] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
The devastating impact of Tuberculosis (TB) has been a menace to mankind for decades. The World Health Organization (WHO) End TB Strategy aims to reduce TB mortality up to 95% and 90% of overall TB cases worldwide, by 2035. This incessant urge will be achieved with a breakthrough in either a new TB vaccine or novel drugs with higher efficacy. However, the development of novel drugs is a laborious process involving a timeline of almost 20-30 years with huge expenditure; on the other hand, repurposing previously approved drugs is a viable technique for overcoming current bottlenecks in the identification of new anti-TB agents. The present comprehensive review discusses the progress of almost all the repurposed drugs that have been identified to the present day (∼100) and are in the development or clinical testing phase against TB. We have also emphasized the efficacy of repurposed drugs in combination with already available frontline anti-TB medications along with the scope of future investigations. This study would provide the researchers a detailed overview of nearly all identified anti-TB repurposed drugs and may assist them in selecting the lead compounds for further in vivo/clinical research.
Collapse
Affiliation(s)
- Khushbu Sharma
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Faraz Ahmed
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Tarina Sharma
- New
Jersey Medical School, Rutgers, The State
University of New Jersey, Newark, New Jersey 07103, United States
| | - Abhinav Grover
- School
of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Meetu Agarwal
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Sonam Grover
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
4
|
Alffenaar JWC, de Steenwinkel JEM, Diacon AH, Simonsson USH, Srivastava S, Wicha SG. Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An evaluation of in vitro, in vivo methodologies and human studies. Front Pharmacol 2022; 13:1063453. [PMID: 36569287 PMCID: PMC9780293 DOI: 10.3389/fphar.2022.1063453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
There has been an increased interest in pharmacokinetics and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better understanding of the relationship between drug exposure, antimicrobial kill and acquired drug resistance is essential not only to optimize current treatment regimens but also to design appropriately dosed regimens with new anti-tuberculosis drugs. Although the interest in PKPD has resulted in an increased number of studies, the actual bench-to-bedside translation is somewhat limited. One of the reasons could be differences in methodologies and outcome assessments that makes it difficult to compare the studies. In this paper we summarize most relevant in vitro, in vivo, in silico and human PKPD studies performed to optimize the drug dose and regimens for treatment of tuberculosis. The in vitro assessment focuses on MIC determination, static time-kill kinetics, and dynamic hollow fibre infection models to investigate acquisition of resistance and killing of Mycobacterium tuberculosis populations in various metabolic states. The in vivo assessment focuses on the various animal models, routes of infection, PK at the site of infection, PD read-outs, biomarkers and differences in treatment outcome evaluation (relapse and death). For human PKPD we focus on early bactericidal activity studies and inclusion of PK and therapeutic drug monitoring in clinical trials. Modelling and simulation approaches that are used to evaluate and link the different data types will be discussed. We also describe the concept of different studies, study design, importance of uniform reporting including microbiological and clinical outcome assessments, and modelling approaches. We aim to encourage researchers to consider methods of assessing and reporting PKPD of anti-tuberculosis drugs when designing studies. This will improve appropriate comparison between studies and accelerate the progress in the field.
Collapse
Affiliation(s)
- Jan-Willem C. Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia,School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia,Westmead Hospital, Sydney, NSW, Australia,*Correspondence: Jan-Willem C. Alffenaar,
| | | | | | | | - Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Maitra A, Solanki P, Sadouki Z, McHugh TD, Kloprogge F. Improving the Drug Development Pipeline for Mycobacteria: Modelling Antibiotic Exposure in the Hollow Fibre Infection Model. Antibiotics (Basel) 2021; 10:antibiotics10121515. [PMID: 34943727 PMCID: PMC8698378 DOI: 10.3390/antibiotics10121515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterial infections are difficult to treat, requiring a combination of drugs and lengthy treatment times, thereby presenting a substantial burden to both the patient and health services worldwide. The limited treatment options available are under threat due to the emergence of antibiotic resistance in the pathogen, hence necessitating the development of new treatment regimens. Drug development processes are lengthy, resource intensive, and high-risk, which have contributed to market failure as demonstrated by pharmaceutical companies limiting their antimicrobial drug discovery programmes. Pre-clinical protocols evaluating treatment regimens that can mimic in vivo PK/PD attributes can underpin the drug development process. The hollow fibre infection model (HFIM) allows for the pathogen to be exposed to a single or a combination of agents at concentrations achieved in vivo-in plasma or at infection sites. Samples taken from the HFIM, depending on the analyses performed, provide information on the rate of bacterial killing and the emergence of resistance. Thereby, the HFIM is an effective means to investigate the efficacy of a drug combination. Although applicable to a wide variety of infections, the complexity of anti-mycobacterial drug discovery makes the information available from the HFIM invaluable as explored in this review.
Collapse
Affiliation(s)
- Arundhati Maitra
- Institute for Global Health, University College London, London WC1N 1EH, UK; (Z.S.); (F.K.)
- Correspondence:
| | - Priya Solanki
- Centre for Clinical Microbiology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (P.S.); (T.D.M.)
| | - Zahra Sadouki
- Institute for Global Health, University College London, London WC1N 1EH, UK; (Z.S.); (F.K.)
- Centre for Clinical Microbiology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (P.S.); (T.D.M.)
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK; (P.S.); (T.D.M.)
| | - Frank Kloprogge
- Institute for Global Health, University College London, London WC1N 1EH, UK; (Z.S.); (F.K.)
| |
Collapse
|
6
|
Khan SS, Sudasinghe TD, Landgraf AD, Ronning DR, Sucheck SJ. Total Synthesis of Tetrahydrolipstatin, Its Derivatives, and Evaluation of Their Ability to Potentiate Multiple Antibiotic Classes against Mycobacterium Species. ACS Infect Dis 2021; 7:2876-2888. [PMID: 34478259 PMCID: PMC8630808 DOI: 10.1021/acsinfecdis.1c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydrolipstatin (THL, 1a) has been shown to inhibit both mammalian and bacterial α/β hydrolases. In the case of bacterial systems, THL is a known inhibitor of several Mycobacterium tuberculosis hydrolases involved in mycomembrane biosynthesis. Herein we report a highly efficient eight-step asymmetric synthesis of THL using a route that allows modification of the THL α-chain substituent to afford compounds 1a through 1e. The key transformation in the synthesis was use of a (TPP)CrCl/Co2(CO)8-catalyzed regioselective and stereospecific carbonylation on an advanced epoxide intermediate to yield a trans-β-lactone. These compounds are modest inhibitors of Ag85A and Ag85C, two α/β hydrolases of M. tuberculosis involved in the biosynthesis of the mycomembrane. Among these compounds, 10d showed the highest inhibitory effect on Ag85A (34 ± 22 μM) and Ag85C (66 ± 8 μM), and its X-ray structure was solved in complex with Ag85C to 2.5 Å resolution. In contrast, compound 1e exhibited the best-in-class MICs of 50 μM (25 μg/mL) and 16 μM (8.4 μg/mL) against M. smegmatis and M. tuberculosis H37Ra, respectively, using a microtiter assay plate. Combination of 1e with 13 well-established antibiotics synergistically enhanced the potency of few of these antibiotics in M. smegmatis and M. tuberculosis H37Ra. Compound 1e applied at concentrations 4-fold lower than its MIC enhanced the MIC of the synergistic antibiotic by 2-256-fold. In addition to observing synergy with first-line drugs, rifamycin and isoniazid, the MIC of vancomycin against M. tuberculosis H37Ra was 65 μg/mL; however, the MIC was lowered to 0.25 μg/mL in the presence of 2.1 μg/mL 1e demonstrating the potential of targeting mycobacterial hydrolases involved in mycomembrane and peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Saniya S Khan
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Thanuja D Sudasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Alexander D Landgraf
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Steven J Sucheck
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|