1
|
Iswareya Lakshimi V, Kavitha M. Cold-active lipase from Psychrobacter alimentarius ILMKVIT and its application in selective enrichment of ω-3 polyunsaturated fatty acids in flax seed oil. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03121-1. [PMID: 39704820 DOI: 10.1007/s00449-024-03121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Lipases are one of the ubiquitous enzymes that belong to the hydrolases family and have a wide variety of applications. Cold-active lipases are of major attraction as they can act in lower temperatures and low water conditions because of their inherent greater flexibility. One of the novel applications of lipase is the enrichment of ω-3 polyunsaturated fatty acids (PUFA) in plant and fish oils. This study is aimed at the isolation and identification of cold-active lipase producing bacterium from marine sources, preliminary optimization of medium constituents and conditions, purification of lipase using chromatographic techniques, biochemical characterization, and ultimately the exploration of its application in the enrichment of ω-3 PUFA in flax seed oil. Psychrobacter alimentarius ILMKVIT was identified as the potential cold-active lipase producing bacterium based on its lipolytic activity in rhodamine B agar, titrimetric, and p-nitrophenyl palmitate (p-NPP) assays. One factor at a time (OFAT) analysis, revealed, an incubation time of 4.5 days, alkaline pH of 9, the temperature of 25 °C, peptone, and yeast extract as nitrogen sources, olive oil as inducer sources, 1% inoculum size, and NaCl as mineral sources as optimum production medium constituents and conditions for lipase production. Lipase purification was achieved by ion exchange and gel-filtration chromatography with a 9.27% yield and 37.51-fold purification. Biochemical characterization reported that the lipase is cold-active, alkaline, enhanced by Fe3+ metal ions, and tolerant to organic solvents, detergents, and inhibitors. P. alimentarius ILMKVIT lipase-hydrolysis followed by urea complexation of flax seed oil resulted in the enrichment of ω-3 PUFA, especially α-linolenic acid (ALA). Hence, the novel cold-active lipase from P. alimentarius ILMKVIT could be used to enrich ω-3 PUFA in flax seed oil and developed further as a prominent nutrient supplement for health benefits.
Collapse
Affiliation(s)
- V Iswareya Lakshimi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Kuddus M, Roohi, Bano N, Sheik GB, Joseph B, Hamid B, Sindhu R, Madhavan A. Cold-active microbial enzymes and their biotechnological applications. Microb Biotechnol 2024; 17:e14467. [PMID: 38656876 PMCID: PMC11042537 DOI: 10.1111/1751-7915.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.
Collapse
Affiliation(s)
- Mohammed Kuddus
- Department of Biochemistry, College of MedicineUniversity of HailHailSaudi Arabia
| | - Roohi
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | - Naushin Bano
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | | | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Burhan Hamid
- Center of Research for DevelopmentUniversity of KashmirSrinagarIndia
| | - Raveendran Sindhu
- Department of Food TechnologyTKM Institute of TechnologyKollamKeralaIndia
| | - Aravind Madhavan
- School of BiotechnologyAmrita Vishwa Vidyapeetham, AmritapuriKollamKeralaIndia
| |
Collapse
|
3
|
Chen B, Zeng Y, Wang J, Lei M, Gan B, Wan Z, Wu L, Luo G, Cao S, An T, Zhang Q, Pan K, Jing B, Ni X, Zeng D. Targeted Screening of Fiber Degrading Bacteria with Probiotic Function in Herbivore Feces. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10215-5. [PMID: 38300451 DOI: 10.1007/s12602-024-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Cellulolytic bacteria with probiotic functions play a crucial role in promoting the intestinal health in herbivores. In this study, we aimed to correlate the 16S rRNA gene amplicon sequencing and fiber-degrading enzyme activity data from six different herbivore feces samples. By utilizing the separation and screening steps of probiotics, we targeted and screened high-efficiency fiber-degrading bacteria with probiotic functions. The animals included Maiwa Yak (MY), Holstein cow (CC), Tibetan sheep (TS), Southern Sichuan black goat (SG), Sichuan white rex rabbit (CR), and New Zealand white rabbit (ZR). The results showed that the enzymes associated with fiber degradation were higher in goat and sheep feces compared to cattle and rabbit's feces. Correlation analysis revealed that Bacillus and Fibrobacter were positively correlated with five types of fiber-degrading related enzymes. Notably, the relative abundance of Bacillus in the feces of Tibetan sheep was significantly higher than that of other five herbivores. A strain TS5 with good cellulose decomposition ability from the feces of Tibetan sheep by Congored staining, filter paper decomposition test, and enzyme activity determination was isolated. The strain was identified as Bacillus velezensis by biological characteristics, biochemical analysis, and 16S rRNA gene sequencing. To test the probiotic properties of Bacillus velezensis TS5, we evaluated its tolerance to acid and bile salt, production of digestive enzymes, antioxidants, antibacterial activity, and adhesion ability. The results showed that the strain had good tolerance to pH 2.0 and 0.3% bile salts, as well as good potential to produce cellulase, protease, amylase, and lipase. This strain also had good antioxidant capacity and the ability to antagonistic Staphylococcus aureus BJ216, Salmonella SC06, Enterotoxigenic Escherichia coli CVCC196, and Escherichia coli ATCC25922. More importantly, the strain had good self-aggregation and Caco-2 cell adhesion rate. In addition, we tested the safety of Bacillus velezensis TS5 by hemolysis test, antimicrobial susceptibility test, and acute toxicity test in mice. The results showed that the strain had no hemolytic phenotype, did not develop resistance to 19 commonly used antibiotics, had no cytotoxicity to Caco-2, and did not have acute toxic harm to mice. In summary, this study targeted isolated and screened a strain of Bacillus velezensis TS5 with high fiber-degrading ability and probiotic potency. This strain can be used as a potential probiotic for feeding microbial preparations for ruminants.
Collapse
Affiliation(s)
- Benhao Chen
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingxia Lei
- Neijiang Center for Animal and Plant Epidemic Disease Prevention and Control and Agricultural Products Quality Inspection, Neijiang, China
| | - Baoxing Gan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Wan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liqian Wu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangrong Luo
- Sichuan Longri Breeding Stock Farm, Aba Autonomous Prefecture, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tianwu An
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Qibin Zhang
- Agricultural Comprehensive Service Center of Beimu Town, Neijiang, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Chen B, Zhou Y, Duan L, Gong X, Liu X, Pan K, Zeng D, Ni X, Zeng Y. Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice. Front Microbiol 2023; 14:1322910. [PMID: 38125573 PMCID: PMC10731255 DOI: 10.3389/fmicb.2023.1322910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction In recent years, a large number of studies have shown that Bacillus velezensis has the potential as an animal feed additive, and its potential probiotic properties have been gradually explored. Methods In this study, Illumina NovaSeq PE150 and Oxford Nanopore ONT sequencing platforms were used to sequence the genome of Bacillus velezensis TS5, a fiber-degrading strain isolated from Tibetan sheep. To further investigate the potential of B. velezensis TS5 as a probiotic strain, in vivo experiments were conducted using 40 five-week-old male specific pathogen-free C57BL/6J mice. The mice were randomly divided into four groups: high fiber diet control group (H group), high fiber diet probiotics group (HT group), low fiber diet control group (L group), and low fiber diet probiotics group (LT group). The H and HT groups were fed high-fiber diet (30%), while the L and LT groups were fed low-fiber diet (5%). The total bacteria amount in the vegetative forms of B. velezensis TS5 per mouse in the HT and LT groups was 1 × 109 CFU per day, mice in the H and L groups were given the same volume of sterile physiological saline daily by gavage, and the experiment period lasted for 8 weeks. Results The complete genome sequencing results of B. velezensis TS5 showed that it contained 3,929,788 nucleotides with a GC content of 46.50%. The strain encoded 3,873 genes that partially related to stress resistance, adhesion, and antioxidants, as well as the production of secondary metabolites, digestive enzymes, and other beneficial nutrients. The genes of this bacterium were mainly involved in carbohydrate metabolism, amino acid metabolism, vitamin and cofactor metabolism, biological process, and molecular function, as revealed by KEGG and GO databases. The results of mouse tests showed that B. velezensis TS5 could improve intestinal digestive enzyme activity, liver antioxidant capacity, small intestine morphology, and cecum microbiota structure in mice. Conclusion These findings confirmed the probiotic effects of B. velezensis TS5 isolated from Tibetan sheep feces and provided the theoretical basis for the clinical application and development of new feed additives.
Collapse
Affiliation(s)
- Benhao Chen
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xuemei Gong
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
5
|
Singh AK, Kumari M, Sharma N, Rai AK, Singh SP. Metagenomic views on taxonomic and functional profiles of the Himalayan Tsomgo cold lake and unveiling its deterzome potential. Curr Genet 2022; 68:565-579. [PMID: 35927361 DOI: 10.1007/s00294-022-01247-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 12/14/2022]
Abstract
Cold habitat is considered a potential source for detergent industry enzymes. This study aims at the metagenomic investigation of Tsomgo lake for taxonomic and functional annotation, unveiling the deterzome potential of the residing microbiota at this site. The present investigation revealed molecular profiling of microbial community structure and functional potential of the high-altitude Tsomgo lake samples of two different temperatures, harvested during March and August. Bacteria were found to be the most dominant phyla, with traces of genomic pieces of evidence belonging to archaea, viruses, and eukaryotes. Proteobacteria and Actinobacteria were noted to be the most abundant bacterial phyla in the cold lake. In-depth metagenomic investigation of the cold aquatic habitat revealed novel genes encoding detergent enzymes, amylase, protease, and lipase. Further, metagenome-assembled genomes (MAGs) belonging to the psychrophilic bacterium, Arthrobacter alpinus, were constructed from the metagenomic data. The annotation depicted the presence of detergent enzymes and genes for low-temperature adaptation in Arthrobacter alpinus. Psychrophilic microbial isolates were screened for lipase, protease, and amylase activities to further strengthen the metagenomic findings. A novel strain of Acinetobacter sp. was identified with the dual enzymatic activity of protease and amylase. The bacterial isolates exhibited hydrolyzing activity at low temperatures. This metagenomic study divulged novel genomic resources for detergent industry enzymes, and the bacterial isolates secreting cold-active amylase, lipase, and protease enzymes. The findings manifest that Tsomgo lake is a potential bioresource of cold-active enzymes, vital for various industrial applications.
Collapse
Affiliation(s)
- Ashutosh Kumar Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Megha Kumari
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Gangtok, Sikkim, India
| | - Nitish Sharma
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong, Gangtok, Sikkim, India.
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India.
| |
Collapse
|
6
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
7
|
Vivek K, Sandhia GS, Subramaniyan S. Extremophilic lipases for industrial applications: A general review. Biotechnol Adv 2022; 60:108002. [PMID: 35688350 DOI: 10.1016/j.biotechadv.2022.108002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 01/10/2023]
Abstract
With industrialization and development in modern science enzymes and their applications increased widely. There is always a hunt for new proficient enzymes with novel properties to meet specific needs of various industrial sectors. Along with the high efficiency, the green and eco-friendly side of enzymes attracts human attention, as they form a true answer to counter the hazardous and toxic conventional industrial catalyst. Lipases have always earned industrial attention due to the broad range of hydrolytic and synthetic reactions they catalyse. When these catalytic properties get accompanied by features like temperature stability, pH stability, and solvent stability lipases becomes an appropriate tool for use in many industrial processes. Extremophilic lipases offer the same, thermostable: hot and cold active thermophilic and psychrophilic lipases, acid and alkali resistant and active acidophilic and alkaliphilic lipases, and salt tolerant halophilic lipases form excellent biocatalyst for detergent formulations, biofuel synthesis, ester synthesis, food processing, pharmaceuticals, leather, and paper industry. An interesting application of these lipases is in the bioremediation of lipid waste in harsh environments. The review gives a brief account on various extremophilic lipases with emphasis on thermophilic, psychrophilic, halophilic, alkaliphilic, and acidophilic lipases, their sources, biochemical properties, and potential applications in recent decades.
Collapse
Affiliation(s)
- K Vivek
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - G S Sandhia
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - S Subramaniyan
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India.
| |
Collapse
|
8
|
Phukon LC, Chourasia R, Padhi S, Abedin MM, Godan TK, Parameswaran B, Singh SP, Rai AK. Cold-adaptive traits identified by comparative genomic analysis of a lipase-producing Pseudomonas sp. HS6 isolated from snow-covered soil of Sikkim Himalaya and molecular simulation of lipase for wide substrate specificity. Curr Genet 2022; 68:375-391. [PMID: 35532798 DOI: 10.1007/s00294-022-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
The genomic analysis of industrially important bacteria can help in understanding their capability to withstand extreme environments and shed light on their metabolic capabilities. The whole genome of a previously reported broad temperature active lipase-producing Pseudomonas sp. HS6, isolated from snow-covered soil of the Sikkim Himalayan Region, was analyzed to understand the capability of the bacterium to withstand cold temperatures and study its lipolytic nature. Pseudomonas sp. HS6 was found to be psychrotolerant with an optimal growth temperature ranging between 25 and 30 °C, with the ability to grow at 5 °C. The genome harbours various cold-adaptation genes, such as cold-shock proteins, fatty acid alteration, and cold stress-tolerance genes, supporting the psychrotolerant nature of the organism. The comparative analysis of Pseudomonas sp. HS6 genome showed the presence of amino acid substitutions in genes that favor efficient functioning and flexibility at cold temperatures. Genome mining revealed the presence of four triacylglycerol lipases, among which the putative lipase 3 was highly similar to the broad temperature-active lipase purified and characterized in our previous study. In silico studies of putative lipase 3 revealed broad substrate specificity with partial and no inhibition of the enzyme activity in the presence of PMSF and orlistat. The presence of genes associated with cold adaptations and true lipases with activity at broad temperature and substrate specificity in the genome of Pseudomonas sp. HS6 makes this bacterium a suitable candidate for industrial applications.
Collapse
Affiliation(s)
- Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | | | - Binod Parameswaran
- CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India.
| |
Collapse
|
9
|
Molecular characterization of lipase from a psychrotrophic bacterium Pseudomonas sp. CRBC14. Curr Genet 2021; 68:243-251. [PMID: 34837516 DOI: 10.1007/s00294-021-01224-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022]
Abstract
Lipases from Pseudomonas species are particularly useful due to their broader biocatalytic applications and temperature activity. In this study, we amplified the gene encoding wild-type cold-active lipase from the genome of psychrotrophic bacterium isolated from the Himalayan glacier. The isolated CRBC14 strain was identified as Pseudomonas sp. based on the 16S rRNA gene sequence. Lipase activity was determined by observing the hydrolysis zone on nutrient agar containing tributyrin (1%, v/v). The sequence analysis of cold-active lipase revealed a protein of 611 amino acids with a calculated molecular mass of 63.71 kDa. The three-dimensional structure of this lipase was generated through template-supported modeling. Distinct techniques stamped the model quality, following which the binding free energies of tributyrin and oleic acid in the complex state with this enzymatic protein were predicted through molecular mechanics generalized born surface area (MMGBSA). A relative comparison of binding free energy values of these substrates indicated tributyrin's comparatively higher binding propensity towards the lipase. Using molecular docking, we evaluated the binding activity of cold-active lipase against tributyrin and oleic acid. Our docking analysis revealed that the lipase had a higher affinity for tributyrin than oleic acid, as evidenced by our measurement of the hydrolysis zone on two media plates. This study will help to understand the bacterial diversity of unexplored Himalayan glaciers and the possible application of their cold-adapted enzymes.
Collapse
|
10
|
Komesli S, Akbulut S, Arslan NP, Adiguzel A, Taskin M. Waste frying oil hydrolysis and lipase production by cold-adapted Pseudomonas yamanorum LP2 under non-sterile culture conditions. ENVIRONMENTAL TECHNOLOGY 2021; 42:3245-3253. [PMID: 32192416 DOI: 10.1080/09593330.2020.1745297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Non-sterile culture technique is currently used in some microbial processes. However, there is no study on the use of this technique in the production of microbial lipases and hydrolysis of waste frying oils. This study was conducted to hydrolyse waste frying oils and produce lipase under non-sterile culture conditions using locally isolated cold-adapted bacteria. Of 75 bacterial isolates, the psychrotolerant Pseudomonas yamanorum LP2 (Genbank number: KU711080) was determined to have the highest lipase activity. It was found that a combination of restricted nutrient availability, low temperature and high inoculum volume prevented microbial contaminants under non-sterile conditions. The most favourable parameters for lipase production under both sterile and non-sterile conditions were 15°C temperature, pH 8, 30 mL/L inoculum volume, 40 mL/L waste frying oil concentration, 10 mL/L Tween-80 and 72 h incubation time. The maximum lipase activities in sterile and non-sterile media were determined as 93.3 and 96.8 U/L, respectively. The present process designed for enzyme production and waste oil hydrolysis can reduce the cost of cultivation medium as well as energy consumption and workload. The potential of cold-adapted bacteria to produce lipase and hydrolyse waste oils under non-sterile culture conditions was first tested in the current study.
Collapse
Affiliation(s)
- Senba Komesli
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Sumeyya Akbulut
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | | | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
11
|
Krumova E, Abrashev R, Dishliyska V, Stoyancheva G, Kostadinova N, Miteva-Staleva J, Spasova B, Angelova M. Cold-active catalase from the psychrotolerant fungus Penicillium griseofulvum. J Basic Microbiol 2021; 61:782-794. [PMID: 34309887 DOI: 10.1002/jobm.202100209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/08/2022]
Abstract
Cold-active catalase (CAT) elicits great interest because of its vast prospective at the medical, commercial, and biotechnological levels. The study paper reports the production of cold-active CAT by the strain Penicillium griseofulvum P29 isolated from Antarctic soil. Improved enzyme production was achieved by optimization of medium and culture conditions. Maximum CAT was demonstrated under low glucose content (2%), 10% inoculum size, temperature 20°C, and dissolved oxygen concentration (DO) 40%. An effective laboratory technology based on changing the oxidative stress level through an increase of DO in the bioreactor was developed. The used strategy resulted in a 1.7- and 1.4-fold enhanced total enzyme activity and maximum enzyme productivity. The enzyme was purified and characterized. P. griseofulvum P29 CAT was most active at approximately 20°C and pH 6.0. Its thermostability was in the range between 5°C and 40°C.
Collapse
Affiliation(s)
- Ekaterina Krumova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Radoslav Abrashev
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vladislava Dishliyska
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Galina Stoyancheva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nedelina Kostadinova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jeny Miteva-Staleva
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Boryana Spasova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Angelova
- Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
12
|
Mhetras N, Mapare V, Gokhale D. Cold Active Lipases: Biocatalytic Tools for Greener Technology. Appl Biochem Biotechnol 2021; 193:2245-2266. [PMID: 33544363 DOI: 10.1007/s12010-021-03516-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Lipases are enzymes that catalyze the ester bond hydrolysis in triglycerides with the release of fatty acids, mono- and diglycerides, and glycerol. The microbial lipases account for $400 million market size in 2017 and it is expected to reach $590 million by 2023. Many biotechnological processes are expedited at high temperatures and hence much research is dealt with thermostable enzymes. Cold active lipases are now gaining importance in the detergent, synthesis of chiral intermediates and frail/fragile compounds, and food and pharmaceutical industries. In addition, they consume less energy since they are active at low temperatures. These cold active lipases have not been commercially exploited so far compared to mesophilic and thermophilc lipases. Cold active lipases are distributed in microbes found at low temperatures. Only a few microbes were studied for the production of these enzymes. These cold-adapted enzymes show increased flexibility of their structures in response to freezing effect of the cold habitats. This review presents an update on cold-active lipases from microbial sources along with some structural features justifying high enzyme activity at low temperature. In addition, recent achievements on their use in various industries will also be discussed.
Collapse
Affiliation(s)
- Nutan Mhetras
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) Lavale, Pune, India
| | - Vidhyashri Mapare
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Digambar Gokhale
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
13
|
Mohammed ABA, Hegazy AE, Salah A. Predigested high-fat meats based on Lactobacillus fermentum lipase enzyme immobilized on silver-alginate nanoparticle matrix. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Pasban-Ziyarat F, Mehrzad J, Asoodeh A, Deiminiat B, Motavalizadehkakhky A. A novel organic-solvent and detergent resistant esterase from Bacillus sp. isolated from Bazangan Lake. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1918121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behjat Deiminiat
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
16
|
Yasin MT, Ali Y, Ahmad K, Ghani A, Amanat K, Basheir MM, Faheem M, Hussain S, Ahmad B, Hussain A, Bokhari SAI. Alkaline lipase production by novel meso-tolerant psychrophilic Exiguobacterium sp. strain (AMBL-20) isolated from glacier of northeastern Pakistan. Arch Microbiol 2020; 203:1309-1320. [PMID: 33325000 DOI: 10.1007/s00203-020-02133-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Abstract
Lipase is an important commercial enzyme with unique and versatile biotechnological applications. This study was conducted to biosynthesize and characterizes alkaliphilic lipase by Exiguobacterium sp. strain AMBL-20T isolated from the glacial water samples of the northeastern (Gilgit-Baltistan) region of Pakistan. The isolated bacterium was identified as Exiguobaterium sp. strain AMBL-20T on the basis of morphological, biochemical, and phylogenetic analysis of 16S rRNA sequences with GenBank accession number MW229267. The bacterial strain was further screened for its lipolytic activity, biosynthesis, and characterization by different parameters with the aim of maximizing lipase activity. Results showed that 2% Olive oil, 0.2% peptone at 25 °C, pH 8, and 24 h of incubation time found optimal for maximum lipase production. The lipase enzyme was partially purified by ammonium sulphate precipitation and its activity was standardized at pH 8 under 30 °C temperature. The enzyme showed functional stability over a range of temperature and pH. Hence, extracellular alkaliphilic lipase from Exiguobacterium sp. is a potential candidate with extraordinary industrial applications, particularly in bio-detergent formulations.
Collapse
Affiliation(s)
- Muhammad Talha Yasin
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Yasir Ali
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Khurshid Ahmad
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Abdul Ghani
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Kinza Amanat
- Department of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Mudassir Basheir
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Saddam Hussain
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Bashir Ahmad
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Adil Hussain
- Department of Biotechnology, University of Okara, Okara, 56130, Pakistan
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
17
|
Phukon LC, Chourasia R, Kumari M, Godan TK, Sahoo D, Parameswaran B, Rai AK. Production and characterisation of lipase for application in detergent industry from a novel Pseudomonas helmanticensis HS6. BIORESOURCE TECHNOLOGY 2020; 309:123352. [PMID: 32299046 DOI: 10.1016/j.biortech.2020.123352] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to explore novel source of lipase from biodiversity hot spot region of Sikkim with activity at broad temperature range for application in detergent industry. Among the isolates, Pseudomonas helmanticensis HS6 showed activity at wide range of temperatures was selected for lipase production. Statistical optimisation for enhanced production of lipase resulted in enhancement of lipase activity from 2.3 to 179.3 U/mg. Lipase was purified resulting in 18.78 fold purification, 5.58% yield and high specific activity of 3368 U/mg. The partially purified lipase was found to be active in wide range of temperature (5-80 °C) and pH (6-9), showing optimum activity at 50 °C at pH 7. Peptide sequences on mass spectrometric analysis of purified lipase showed similarity to lipase family protein of three species of Pseudomonas. Both crude and purified lipase retained residual activity of 40-80% after 3 h of incubation with commercial detergents suggesting its application in detergent industry.
Collapse
Affiliation(s)
- Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong 737102, Sikkim, India
| | - Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong 737102, Sikkim, India
| | - Megha Kumari
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong 737102, Sikkim, India
| | - Tharangattumana Krishnan Godan
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong 737102, Sikkim, India
| | - Binod Parameswaran
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Sikkim Centre, Tadong 737102, Sikkim, India.
| |
Collapse
|
18
|
Kumar A, Mukhia S, Kumar N, Acharya V, Kumar S, Kumar R. A Broad Temperature Active Lipase Purified From a Psychrotrophic Bacterium of Sikkim Himalaya With Potential Application in Detergent Formulation. Front Bioeng Biotechnol 2020; 8:642. [PMID: 32671041 PMCID: PMC7329984 DOI: 10.3389/fbioe.2020.00642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial lipases with activity spanning over a broad temperature and substrate range have several industrial applications. An efficient enzyme-producing bacterium Chryseobacterium polytrichastri ERMR1:04, previously reported from Sikkim Himalaya, was explored for purification and characterization of cold-adapted lipase. Optimum lipase production was observed in 1% (v/v) rice bran oil, pH 7 at 20°C. Size exclusion and hydrophobic interaction chromatography purified the enzyme up to 21.3-fold predicting it to be a hexameric protein of 250 kDa, with 39.8 kDa monomeric unit. MALDI-TOF-MS analysis of the purified lipase showed maximum similarity with alpha/beta hydrolase (lipase superfamily). Biochemical characterization of the purified enzyme revealed optimum pH (8.0), temperature (37°C) and activity over a temperature range of 5–65°C. The tested metals (except Cu2+ and Fe2+) enhanced the enzyme activity and it was tolerant to 5% (v/v) methanol and isopropanol. The Km and Vmax values were determined as 0.104 mM and 3.58 U/mg, respectively for p-nitrophenyl palmitate. Bioinformatics analysis also supported in vitro findings by predicting enzyme's broad temperature and substrate specificity. The compatibility of the purified lipase with regular commercial detergents, coupled with its versatile temperature and substrate range, renders the given enzyme a promising biocatalyst for potential detergent formulations.
Collapse
Affiliation(s)
- Anil Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Neeraj Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
19
|
Dhakar K, Pandey A. Microbial Ecology from the Himalayan Cryosphere Perspective. Microorganisms 2020; 8:microorganisms8020257. [PMID: 32075196 PMCID: PMC7074745 DOI: 10.3390/microorganisms8020257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/18/2022] Open
Abstract
Cold-adapted microorganisms represent a large fraction of biomass on Earth because of the dominance of low-temperature environments. Extreme cold environments are mainly dependent on microbial activities because this climate restricts higher plants and animals. Himalaya is one of the most important cold environments on Earth as it shares climatic similarities with the polar regions. It includes a wide range of ecosystems, from temperate to extreme cold, distributed along the higher altitudes. These regions are characterized as stressful environments because of the heavy exposure to harmful rays, scarcity of nutrition, and freezing conditions. The microorganisms that colonize these regions are recognized as cold-tolerant (psychrotolerants) or/and cold-loving (psychrophiles) microorganisms. These microorganisms possess several structural and functional adaptations in order to perform normal life processes under the stressful low-temperature environments. Their biological activities maintain the nutrient flux in the environment and contribute to the global biogeochemical cycles. Limited culture-dependent and culture-independent studies have revealed their diversity in community structure and functional potential. Apart from the ecological importance, these microorganisms have been recognized as source of cold-active enzymes and novel bioactive compounds of industrial and biotechnological importance. Being an important part of the cryosphere, Himalaya needs to be explored at different dimensions related to the life of the inhabiting extremophiles. The present review discusses the distinct facts associated with microbial ecology from the Himalayan cryosphere perspective.
Collapse
Affiliation(s)
- Kusum Dhakar
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun 248002, India
- Correspondence:
| |
Collapse
|
20
|
Al-Ghanayem AA, Joseph B. Current prospective in using cold-active enzymes as eco-friendly detergent additive. Appl Microbiol Biotechnol 2020; 104:2871-2882. [PMID: 32037467 DOI: 10.1007/s00253-020-10429-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022]
Abstract
Advanced developments in the field of enzyme technology have increased the use of enzymes in industrial applications, especially in detergents. Enzymes as detergent additives have been extensively studied and the demand is considerably increasing due to its distinct properties and potential applications. Enzymes from microorganisms colonized at various geographical locations ranging from extreme hot to cold are explored for compatibility studies as detergent additives. Especially psychrophiles growing at cold conditions have cold-active enzymes with high catalytic activity and their stability under extreme conditions makes it as an appropriate eco-friendly and cost-effective additive in detergents. Adequate number of reports are available on cold-active enzymes such as proteases, lipases, amylases, and cellulases with high efficiency and exceptional features. These enzymes with increased thermostability and alkaline stability have become the premier choice as detergent additives. Modern approaches in genomics and proteomics paved the way to understand the compatibility of cold-active enzymes as detergent additives in broader dimensions. The molecular techniques such as gene coding, amino acid sequencing, and protein engineering studies helped to solve the mysteries related to alkaline stability of these enzymes and their chemical compatibility with oxidizing agents. The present review provides an overview of cold-active enzymes used as detergent additives and molecular approaches that resulted in development of these enzymes as commercial hit in detergent industries. The scope and challenges in using cold-active enzymes as eco-friendly and sustainable detergent additive are also discussed.
Collapse
Affiliation(s)
- Abdullah A Al-Ghanayem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Kingdom of Saudi Arabia
| | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Kingdom of Saudi Arabia.
| |
Collapse
|
21
|
Patchimpet J, Sangkharak K, Klomklao S. Lipolytic activity of viscera extract from three freshwater fish species in Phatthalung, Thailand: Comparative studies and potential use as dishwashing detergent additive. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Li T, Zhang W, Hao J, Sun M, Lin SX. Cold-active extracellular lipase: Expression in Sf9 insect cells, purification, and catalysis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 21:e00295. [PMID: 30568889 PMCID: PMC6290134 DOI: 10.1016/j.btre.2018.e00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022]
Abstract
Cold-active lipases are gaining special attention nowadays as they are increasingly used in various industries such as fine chemical synthesis, food processing, and washer detergent. In the present study, an extracellular lipase gene from Yarrowia lipolytica (LIPY8) was cloned and expressed by baculovirus expression system. The recombinant lipase (LipY8p) was purified using chromatographic techniques, resulting in a purification factor of 25.7-fold with a specific activity of 1102.9U/mg toward olive oil. The apparent molecular mass of purified LipY8p was 40 kDa. The enzyme was most active at pH 7.5 and 17 °C. It exhibited maximum activity toward medium chain (C10) esters. The presence of transition metals such as Zn2+, Cu2+, and Ni2+ strongly inhibited the enzyme activity, which was enhanced by EDTA. The lipase activity was affected by detergents and was elevated by various organic solvents at 10% (v/v). These enzymatic properties make this lipase of considerable potential for biotechnological applications.
Collapse
Key Words
- Baculovirus expression system
- C12E8, octaethylene glycol monododecyl ether
- Cold-active
- DMF, Dimethylformamide
- Extracellular lipase
- PH, polyhedrin
- Purification
- RhB, rhodamine B
- RhB-OOe, RhB-olive oil
- Yarrowia lipolytica
- pNPA, p-nitro phenyl acetate
- pNPB, p-nitro phenyl butyrate
- pNPD, p-nitro phenyl decanoate
- pNPL, p-nitro phenyl dodecanoate
- pNPM, p-nitro phenyl myristate
- pNPP, p-nitro phenyl palmitate
- β-DDM, n-Dodecyl-β-d-Maltoside
- β-ME, β-mercaptoethanol
- β-OG, n-octyl-β-d-glucoside
Collapse
Affiliation(s)
- Tang Li
- Molecular Endocrinology and Nephrology, Axe CHU Research Center and Department of Molecular Medicine, Laval University, 2705 boulevard Laurier, Québec, G1V 4G2, Canada
| | - Wenfa Zhang
- Molecular Endocrinology and Nephrology, Axe CHU Research Center and Department of Molecular Medicine, Laval University, 2705 boulevard Laurier, Québec, G1V 4G2, Canada
| | - Jianhua Hao
- Laboratory of Sustainable Development of Polar Fishery, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Mi Sun
- Laboratory of Sustainable Development of Polar Fishery, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Sheng-Xiang Lin
- Molecular Endocrinology and Nephrology, Axe CHU Research Center and Department of Molecular Medicine, Laval University, 2705 boulevard Laurier, Québec, G1V 4G2, Canada
| |
Collapse
|
23
|
Salwoom L, Raja Abd Rahman RNZ, Salleh AB, Mohd Shariff F, Convey P, Pearce D, Mohamad Ali MS. Isolation, Characterisation, and Lipase Production of a Cold-Adapted Bacterial Strain Pseudomonas sp. LSK25 Isolated from Signy Island, Antarctica. Molecules 2019; 24:E715. [PMID: 30781467 PMCID: PMC6413188 DOI: 10.3390/molecules24040715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2023] Open
Abstract
In recent years, studies on psychrophilic lipases have been an emerging area of research in the field of enzymology. This study focuses on bacterial strains isolated from anthropogenically-influenced soil samples collected around Signy Island Research Station (South Orkney Islands, maritime Antarctic). Limited information on lipase activities from bacteria isolated from Signy station is currently available. The presence of lipase genes was determined using real time quantification PCR (qPCR) in samples obtained from three different locations on Signy Island. Twenty strains from the location with highest lipase gene detection were screened for lipolytic activities at a temperature of 4 °C, and from this one strain was selected for further examination based on the highest enzymatic activities obtained. Analysis of 16S rRNA sequence data of this strain showed the highest level of sequence similarity (98%) to a Pseudomonas sp. strain also isolated from Antarctica. In order to increase lipase production of this psychrophilic strain, optimisation of different parameters of physical and nutritional factors were investigated. Optimal production was obtained at 10 °C and pH 7.0, at 150 rev/min shaking rate over 36 h incubation.
Collapse
Affiliation(s)
- Leelatulasi Salwoom
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- National Antarctic Research Centre (NARC) B303, Block B, Level 3, IPS Building, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| | - David Pearce
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK.
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria at Newcastle, Newcastle-Upon-Tyne NE1 8ST, UK.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| |
Collapse
|
24
|
Godoy P, Mourenza Á, Hernández-Romero S, González-López J, Manzanera M. Microbial Production of Ethanol From Sludge Derived From an Urban Wastewater Treatment Plant. Front Microbiol 2018; 9:2634. [PMID: 30443244 PMCID: PMC6221965 DOI: 10.3389/fmicb.2018.02634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/16/2018] [Indexed: 11/22/2022] Open
Abstract
A collection of lipase-producing microorganisms was isolated from sludge derived from an urban wastewater treatment plant. The microorganisms with the highest levels of lipase activity were selected in order to use triglycerides present in the sludge effectively and were then transformed with pdc:adhB genes for the production of ethanol. The transgenic strains showed high growth rates in diluted sludge and produced lipase protein in order to utilize fat present in the sludge, which provides an abundant source of carbon. Using sludge derived from treated wastewater as nutrient source, ethanol was produced by certain transgenic species belonging to the genera Proteus. Different forms of sludge were tested for maximal ethanol production, with dehydrated sludge being found to produce the best performance.
Collapse
Affiliation(s)
- Patricia Godoy
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| | - Álvaro Mourenza
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| | - Sergio Hernández-Romero
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| | - Jesús González-López
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| | - Maximino Manzanera
- Department of Microbiology, Institute for Water Research, University of Granada, Granada, Spain
| |
Collapse
|
25
|
Maharana AK, Singh SM. A cold and organic solvent tolerant lipase produced by Antarctic strain Rhodotorula sp. Y-23. J Basic Microbiol 2018; 58:331-342. [PMID: 29442377 DOI: 10.1002/jobm.201700638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/27/2017] [Accepted: 01/20/2018] [Indexed: 11/12/2022]
Abstract
Psychrotolerant yeast Rhodotorula sp. Y-23 was isolated from the sediment core sub-samples of Nella Lake, East Antarctica. Isolate was screened for lipase production using plate assay method followed by submerged fermentation. Production optimization revealed the maximum lipase production by using palmolein oil (5% v/v), pH 8.0 and inoculum size of 2.5% v/v at 15 °C. The potential inducers for lipase were 1% w/v of galactose and KNO3 , and MnCl2 (0.1% w/v). Final productions with optimized conditions gave 5.47-fold increase in lipase production. Dialyzed product gave a purification fold of 5.63 with specific activity of 26.83 U mg-1 and 15.67% yields. This lipase was more stable at pH 5.0 and -20 °C whereas more activity was found at pH 8.0 and 35 °C. Stability was more in 50 mM Fe3+ , EDTA-Na (20 mM), sodium deoxycholate (20 mM), H2 O2 (1% v/v), and almost all organic solvents (50% v/v). Tolerance capacity at wider range of pH and temperature with having lower Km value i.e., 0.08 mg ml-1 and higher Vmax 385.68 U mg-1 at 15 °C make the studied lipase useful for industrial applications. Besides this, the lipase was compatible with commercially available detergents, and its addition to them increases lipid degradation performances making it a potential candidate in detergent formulation.
Collapse
Affiliation(s)
- Abhas K Maharana
- Polar Biology Laboratory, National Center for Antarctic and Ocean Research, Vasco-da-Gama, Goa, India
| | - Shiv M Singh
- Polar Biology Laboratory, National Center for Antarctic and Ocean Research, Vasco-da-Gama, Goa, India
| |
Collapse
|
26
|
Scale-up and inhibitory studies on productivity of lipase from Acinetobacter radioresistens PR8. J Biosci Bioeng 2017; 124:150-155. [DOI: 10.1016/j.jbiosc.2017.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/09/2017] [Indexed: 11/21/2022]
|
27
|
García-Silvera EE, Martínez-Morales F, Bertrand B, Morales-Guzmán D, Rosas-Galván NS, León-Rodríguez R, Trejo-Hernández MR. Production and application of a thermostable lipase from Serratia marcescens
in detergent formulation and biodiesel production. Biotechnol Appl Biochem 2017; 65:156-172. [DOI: 10.1002/bab.1565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/13/2017] [Indexed: 11/06/2022]
Affiliation(s)
| | - Fernando Martínez-Morales
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| | - Brandt Bertrand
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| | - Daniel Morales-Guzmán
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| | | | - Renato León-Rodríguez
- Instituto de Investigaciones Biomédicas UNAM, Tercer circuito exterior; s/n, Cd. Universitaria Coyoacán México
| | - María R. Trejo-Hernández
- Centro de Investigación en Biotecnología; Universidad Autónoma del Estado de Morelos; Morelos México
| |
Collapse
|
28
|
Vasiee A, Behbahani BA, Yazdi FT, Moradi S. Optimization of the production conditions of the lipase produced by Bacillus cereus from rice flour through Plackett-Burman Design (PBD) and response surface methodology (RSM). Microb Pathog 2016; 101:36-43. [DOI: 10.1016/j.micpath.2016.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022]
|
29
|
Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Duan X, Zheng M, Liu Y, Jiang Z, Yang S. High-level expression and biochemical characterization of a novel cold-active lipase from Rhizomucor endophyticus. Biotechnol Lett 2016; 38:2127-2135. [DOI: 10.1007/s10529-016-2200-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
|
31
|
Affiliation(s)
- M. Kavitha
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
32
|
Kuepethkaew S, Sangkharak K, Benjakul S, Klomklao S. Laundry detergent-stable lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas: Effect of extraction media and biochemical characterization. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1180534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Yan Q, Duan X, Liu Y, Jiang Z, Yang S. Expression and characterization of a novel 1,3-regioselective cold-adapted lipase from Rhizomucor endophyticus suitable for biodiesel synthesis. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:86. [PMID: 27081399 PMCID: PMC4831154 DOI: 10.1186/s13068-016-0501-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/01/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND The biodiesel production can be carried out by transesterification using either chemical or enzymatic process. The enzymatic transesterification is more promising as it offers an environmental friendly option compared to the chemical process, where the lipases with high catalytic efficiency and good stability play a key role. Hence, it is of great value to identify novel lipases which are suitable for biodiesel production. RESULTS A lipase gene (ReLipA) from Rhizomucor endophyticus was cloned and heterologously expressed in Pichia pastoris. ReLipA shared the highest identity of 61 % with the lipases from Rhizopus delemar, Rhizopus oryzae, and Saccharomyces cerevisiae. The recombinant lipase (ReLipA) was secreted as an active protein with the highest activity of 1961 U mL(-1) in a 5-L fermentor by high cell-density fermentation. ReLipA was purified to homogeneity with a recovery yield of 75.7 %. The purified enzyme was most active at pH 6.0 and 40 °C, respectively, and it was stable up to 55 °C. ReLipA displayed 75 % of its maximal activity at 0 °C, indicating that it is a cold-adapted lipase. It exhibited broad substrate specificity toward various p-nitrophenyl esters and triglycerides. ReLipA hydrolyzed triolein to release mainly 1,2-diolein without the formation of 1,3-diolein, suggesting that it is a sn-1,3 regiospecific lipase. Furthermore, ReLipA synthesized different types of oleates by esterification using oleic acid and short chain alcohols (e.g., methanol, ethanol, and butanol) as the substrates with the highest conversion yield of 82.2 %. Therefore, the cold-adapted lipase may be a good biocatalyst in ester synthesis in biodiesel industry. CONCLUSIONS A novel cold-adapted lipase was identified and characterized. The high yield and excellent properties may confer the enzyme with great potential for biodiesel production in bioenergy industry. This is the first report on a cold-adapted lipase from Rhizomucor species.
Collapse
Affiliation(s)
- Qiaojuan Yan
- />Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing, 100083 China
| | - Xiaojie Duan
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| | - Yu Liu
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| | - Zhengqiang Jiang
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| | - Shaoqing Yang
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
34
|
Dong J, Zhao W, Gasmalla MA, Sun J, Hua X, Zhang W, Han L, Fan Y, Feng Y, Shen Q, Yang R. A novel extracellular cold-active esterase of Pseudomonas sp. TB11 from glacier No.1: Differential induction, purification and characterisation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Maharana A, Ray P. A novel cold-active lipase from psychrotolerant Pseudomonas sp. AKM-L5 showed organic solvent resistant and suitable for detergent formulation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Ekinci AP, Dinçer B, Baltaş N, Adıgüzel A. Partial purification and characterization of lipase from Geobacillus stearothermophilus AH22. J Enzyme Inhib Med Chem 2015; 31:325-31. [DOI: 10.3109/14756366.2015.1024677] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arife Pınar Ekinci
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey and
| | - Barbaros Dinçer
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey and
| | - Nimet Baltaş
- Department of Chemistry, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey and
| | - Ahmet Adıgüzel
- Department of Molecular Biology and Genetic, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
37
|
Moradi S, Razavi SH, Mousavi SM, Gharibzahedi SMT. Optimization and partial purification of a high-activity lipase synthesized by a newly isolated Acinetobacter from offshore waters of the Caspian Sea under solid-state fermentation. RSC Adv 2015. [DOI: 10.1039/c4ra10485d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new aerobic mesophilic bacterium was isolated from the southern coastal waters of the Caspian Sea which substantially produced an extracellular lipase in solid-state fermentation using milled coriander seeds (MCS) as support substrate.
Collapse
Affiliation(s)
- Samira Moradi
- Bioprocess Engineering Laboratory (BPEL)
- Department of Food Science, Engineering & Technology
- Faculty of Agricultural Engineering and Technology
- University of Tehran
- Karaj 31587-77871
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL)
- Department of Food Science, Engineering & Technology
- Faculty of Agricultural Engineering and Technology
- University of Tehran
- Karaj 31587-77871
| | - Seyyed Mohammad Mousavi
- Biotechnology Group
- Chemical Engineering Department
- Faculty of Engineering
- Tarbiat Modares University
- Tehran
| | - Seyed Mohammad Taghi Gharibzahedi
- Bioprocess Engineering Laboratory (BPEL)
- Department of Food Science, Engineering & Technology
- Faculty of Agricultural Engineering and Technology
- University of Tehran
- Karaj 31587-77871
| |
Collapse
|
38
|
Li XL, Zhang WH, Wang YD, Dai YJ, Zhang HT, Wang Y, Wang HK, Lu FP. A high-detergent-performance, cold-adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Tripathi R, Singh J, Bharti RK, Thakur IS. Isolation, Purification and Characterization of Lipase from Microbacterium sp. and its Application in Biodiesel Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.egypro.2014.07.293] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|