1
|
Fu Q, Xie Y, Gao F, Singh R, Zhou X, Zhang B, Kumar S. Four-core fiber-based multi-tapered WaveFlex biosensor for rapid detection of Vibrio parahaemolyticus using nanoparticles-enhanced probes. OPTICS EXPRESS 2024; 32:25772-25788. [PMID: 39538459 DOI: 10.1364/oe.530225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/21/2024] [Indexed: 11/16/2024]
Abstract
Infections caused by Vibrio parahaemolyticus (V. parahaemolyticus) can be highly fatal, making rapid and sensitive detection of them is essential. A new optical fiber biosensor based on localized surface plasmon resonance (LSPR) phenomenon is developed in this paper. A tapered-in-tapered fiber structure based on MFM is constructed by using four-core fiber (FCF) and multi-mode fiber (MMF) to qualitatively detect different concentrations of V. parahaemolyticus. The sensor successfully excites the LSPR phenomenon and increases the attachment point of biomolecules on the probe surface by fixing gold nanoparticles (AuNPs), molybdenum disulfide nanoparticles (MoS2-NPs) and cerium dioxide nanorods (CeO2-NRs). The functionalization of polyclonal antibodies on the probe surface can improve the specificity of the sensor. The linear detection range of the developed sensor was 1 × 100-1 × 107 CFU/mL, the sensitivity was 1.61 nm/[CFU/mL], and the detection limit was 0.14 CFU/mL. In addition, the reusability, reproducibility, stability, and selectivity of the sensor probe are also tested, which shows that the sensor has great application prospects.
Collapse
|
2
|
Qiao W, Wang L, Yang K, Liu Y, Liu Q, Yin F. A multichromatic colorimetric detection method for Vibrio parahaemolyticus based on Fe 3O 4-Zn-Mn nanoenzyme and dual substrates. Microbiol Spectr 2024; 12:e0318923. [PMID: 38054716 PMCID: PMC10783063 DOI: 10.1128/spectrum.03189-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The Fe3O4-Zn-Mn nanomimetic enzyme demonstrates significant importance in dual-substrate colorimetric detection for V. parahaemolyticus, owing to its enhanced sensitivity, selectivity, and rapid detection capabilities. Additionally, it offers cost-effectiveness, portability, and the potential for multiplex detection. This innovative approach holds promise for improving the monitoring and control of V. parahaemolyticus infections, thereby contributing to advancements in public health and food safety.
Collapse
Affiliation(s)
- Wenteng Qiao
- College of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Luliang Wang
- College of Food Engineering, Ludong University, Yantai, Shandong, China
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, Shandong, China
| | - Kun Yang
- College of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Yushen Liu
- College of Food Engineering, Ludong University, Yantai, Shandong, China
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, Shandong, China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Quanwen Liu
- College of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Feng Yin
- Yantai Laishan District Center for Disease Control and Prevention, Centers for Disease Control and Prevention, Yantai, Shandong, China
| |
Collapse
|
3
|
Liu H, Zhu W, Cao Y, Gao J, Jin T, Qin N, Xia X. Punicalagin inhibits biofilm formation and virulence gene expression of Vibrio parahaemolyticus. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Xing J, Yu J, Liu Y. Improvement and evaluation of loop-mediated isothermal amplification combined with chromatographic flow dipstick assays for Vibrio parahaemolyticus. J Microbiol Methods 2020; 171:105866. [PMID: 32057897 DOI: 10.1016/j.mimet.2020.105866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Vibrio parahaemolyticus, a major food-borne pathogen, is a gram-negative rod-shaped halophilic bacterium which inhabits marine environments throughout the world. It can pose a threat to humans after the consumption of raw or undercooked seafood. Fast detection is crucial for hindering and controlling V. parahaemolyticus infection. Compared with traditional methods, loop-mediated isothermal amplification (LAMP) is a simple, rapid and versatile method. It can be performed at one temperature without the need for cycling. As a new method in recent years, LAMP combined with a chromatographic flow dipstick (LFD) meets the needs of point-of-care testing without the need for special instruments. It avoids the limitations of LAMP, reduces detection time and increases detection accuracy. Our previous studies have suggested that the optimized LFD method can improve the sensitivity of LAMP detection and shorten the isothermal amplification time during the detection process. In the present study, two LAMP assays were improved to LFD methods, and a LFD targeting 16S23S rRNA gene internal transcribed spacer (ITS) of V. parahaemolyticus was developed. The lower limit for tlh, toxR, ITS LFD assays were detected as 3.1 × 100, 3.1 × 101, and 3.1 × 100 CFU respectively, whether in pure cultures or artificially contaminated food samples. The shortest amplification times at the limit of each assay were determined as 20 min, 35 min and 25 min. A heating block was used to perform two (tlh and ITS) LFD assays to detect 20 food samples. Compared to a standard method (GB 4789.7-2013 National Food Safety Standards, Food Microbiology Inspection, Vibrio parahaemolyticus test), tlh and ITS LFD assays showed more MPN (most probable number) results than that of culture. It demonstrated that the improved LFD technology can provide a simple and rapid detection method with high sensitivity and specificity for detection of V. parahaemolyticus.
Collapse
Affiliation(s)
- Jiahua Xing
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Geng Y, Tan K, Liu L, Sun XX, Zhao B, Wang J. Development and evaluation of a rapid and sensitive RPA assay for specific detection of Vibrio parahaemolyticus in seafood. BMC Microbiol 2019; 19:186. [PMID: 31409301 PMCID: PMC6693139 DOI: 10.1186/s12866-019-1562-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background Vibrio parahaemolyticus (V. parahaemolyticus) is a leading cause of food poisoning and is of great importance to public health due to the frequency and seriousness of the diseases. The simple, timely and efficient detection of this pathogen is a major concern worldwide. In this study, we established a simple and rapid method based on recombinase polymerase amplification (RPA) for the determination of V. parahaemolyticus. According to the gyrB gene sequences of V. parahaemolyticus available in GenBank, specific primers and an exo probe were designed for establishing real-time recombinase polymerase amplification (real-time RPA). Results The real-time RPA reaction was performed successfully at 38 °C, and results were obtained within 20 min. The method only detected V. parahaemolyticus and did not show cross-reaction with other bacteria, exhibiting a high level of specificity. The study showed that the detection limit (LOD) of real-time RPA was 1.02 × 102 copies/reaction. For artificially contaminated samples with different bacteria concentrations, V. parahaemolyticus could be detected within 5–12 min by real-time RPA in oyster sauce, codfish and sleeve-fish at concentrations as low as 4 CFU/25 g, 1 CFU/25 g and 7 CFU/25 g, respectively, after enrichment for 6 h, but were detected in a minimum of 35 min by real-time PCR (Ct values between 27 and 32). Conclusion This study describes a simple, rapid, and reliable method for the detection of V. parahaemolyticus, which could potentially be applied in the research laboratory and disease diagnosis.
Collapse
Affiliation(s)
- Yunyun Geng
- Department of Pharmacology, Hebei University of Chinese Medicine, No.326 South Xinshi Road, Shijiazhuang, 050091, Hebei, China.,College of Life Sciences, Hebei Normal University, No.20, Road E. 2nd Ring South, Yuhua District, Shijiazhuang, Hebei Province, 050024, People's Republic of China
| | - Ke Tan
- College of Life Sciences, Hebei Normal University, No.20, Road E. 2nd Ring South, Yuhua District, Shijiazhuang, Hebei Province, 050024, People's Republic of China
| | - Libing Liu
- Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, No.318 Hepingxilu Road, Shijiazhuang, 050024, Hebei, China.,Hebei Academy of Inspection and Quarantine Science and Technology, No.318 Hepingxilu Road, Shijiazhuang, Hebei Province, 050051, People's Republic of China
| | - Xiao Xia Sun
- Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, No.318 Hepingxilu Road, Shijiazhuang, 050024, Hebei, China.,Hebei Academy of Inspection and Quarantine Science and Technology, No.318 Hepingxilu Road, Shijiazhuang, Hebei Province, 050051, People's Republic of China
| | - Baohua Zhao
- College of Life Sciences, Hebei Normal University, No.20, Road E. 2nd Ring South, Yuhua District, Shijiazhuang, Hebei Province, 050024, People's Republic of China.
| | - Jianchang Wang
- Center of Inspection and Quarantine, Hebei Entry-Exit Inspection and Quarantine Bureau, No.318 Hepingxilu Road, Shijiazhuang, 050024, Hebei, China. .,Hebei Academy of Inspection and Quarantine Science and Technology, No.318 Hepingxilu Road, Shijiazhuang, Hebei Province, 050051, People's Republic of China.
| |
Collapse
|
6
|
Gao CH, Zhang M, Wu Y, Huang Q, Cai P. Divergent Influence to a Pathogen Invader by Resident Bacteria with Different Social Interactions. MICROBIAL ECOLOGY 2019; 77:76-86. [PMID: 29858645 DOI: 10.1007/s00248-018-1207-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Bacterial social interaction is a potential influencing factor in determining the fate of invading pathogens in diverse environments. In this study, interactions between two representative resident species (Bacillus subtilis and Pseudomonas putida) and a leading food-borne disease causative pathogen (Vibrio parahaemolyticus) were examined. An antagonistic effect toward V. parahaemolyticus was observed for B. subtilis but not for P. putida. However, the relative richness of the pathogen remained rather high in B. subtilis co-cultures and was, unexpectedly, not sensitive to the initial inoculation ratios. Furthermore, two approaches were found to be efficient at modulating the relative richness of the pathogen. (1) The addition of trace glycerol and manganese to Luria-Bertani medium (LBGM) reduced the richness of V. parahaemolyticus in the co-culture with B. subtilis and in contrast, increased its richness in the co-culture with P. putida, although it did not affect the growth of V. parahaemolyticus by its own. (2) The relative richness of V. parahaemolyticus on semisolid medium decreased significantly as a function of an agar gradient, ranging from 0 to 2%. Furthermore, we explored the molecular basis of bacterial interaction through transcriptomic analysis. In summary, we investigated the interactions between a pathogen invader and two resident bacteria species, showing that the different influences on a pathogen by different types of interactions can be modulated by chemicals and medium fluidity.
Collapse
Affiliation(s)
- Chun-Hui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Pang B, Fu K, Liu Y, Ding X, Hu J, Wu W, Xu K, Song X, Wang J, Mu Y, Zhao C, Li J. Development of a self-priming PDMS/paper hybrid microfluidic chip using mixed-dye-loaded loop-mediated isothermal amplification assay for multiplex foodborne pathogens detection. Anal Chim Acta 2018; 1040:81-89. [DOI: 10.1016/j.aca.2018.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022]
|
8
|
Ding C, Li J, Liu X, Liu Q. Development of colloidal gold-based immunochromatographic strip test using two monoclonal antibodies for detection of Vibrio parahaemolyticus. J Food Saf 2018. [DOI: 10.1111/jfs.12468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chengchao Ding
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
- Laboratory for Marine Fisheries Science and Food Production Processes; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
| | - Jianwu Li
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
| | - Xiao Liu
- The College of Tourism and Culinary Science; Yangzhou University; Yangzhou China
| | - Qing Liu
- School of Medical Instrument and Food Engineering; University of Shanghai for Science and Technology; Shanghai China
- Laboratory for Marine Fisheries Science and Food Production Processes; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
| |
Collapse
|
9
|
Tung HY, Chen WC, Ou BR, Yeh JY, Cheng YH, Tsng PH, Hsu MH, Tsai MS, Liang YC. Simultaneous detection of multiple pathogens by multiplex PCR coupled with DNA biochip hybridization. Lab Anim 2017; 52:186-195. [PMID: 28691600 DOI: 10.1177/0023677217718864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Traditional serological enzyme-linked immunosorbent assay (ELISA) is routinely used to monitor pathogens during quarantine in most animal facilities to prevent possible infection. However, the ELISA platform is a single-target assay, and screening all targeted pathogens is time-consuming and laborious. In this study, to increase sensitivity and to reduce diagnosis time for high-throughput processes, multiplex PCR and DNA biochip techniques were combined to develop a multi-pathogen diagnostic method for use instead of routine ELISA. Eight primer sets were designed for multiplex PCR to detect genes from seven targeted bacterial and viral pathogens. DNA-DNA hybridization was conducted on a biochip following the multiple PCR analysis. Using this method, a total of 24 clinical samples were tested, and the result showed that not only single infection but also co-infection by multi-pathogens can be detected. In conclusion, multiplex PCR coupled with a DNA biochip is an efficient method for detecting multi-pathogens in a reaction. This platform is a useful tool for quarantine services and disease prevention in animal facilities.
Collapse
Affiliation(s)
- Hsiang-Yun Tung
- 1 College of Biotechnology and Bioresources, Dayeh University, Changhua, Taiwan
| | - Wei-Chen Chen
- 2 Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Bor-Rung Ou
- 3 Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Jan-Ying Yeh
- 4 Department of Post-Baccalaureate Veterinary Medicine, Asia University, Wufeng Taichung, Taiwan.,5 Food Safety and Inspection Center, Asia University, Wufeng Taichung, Taiwan
| | - Yeong-Hsiang Cheng
- 6 Department of Biotechnology and Animal Science, National I-Lan University, I-Lan, Taiwan
| | - Ping-Hua Tsng
- 7 GeneReach Biotechnology Corporation, Taichung, Taiwan
| | - Ming-Hua Hsu
- 8 Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Shiun Tsai
- 1 College of Biotechnology and Bioresources, Dayeh University, Changhua, Taiwan
| | - Yu-Chuan Liang
- 2 Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
10
|
Kim HJ, Ryu JO, Lee SY, Kim ES, Kim HY. Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics. BMC Microbiol 2015; 15:239. [PMID: 26502878 PMCID: PMC4624192 DOI: 10.1186/s12866-015-0577-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 10/19/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The genus Vibrio is clinically significant and major pathogenic Vibrio species causing human Vibrio infections are V. cholerae, V. parahaemolyticus, V. vulnificus, V. alginolyticus and V. mimicus. In this study, we screened for novel genetic markers using comparative genomics and developed a Vibrio multiplex PCR for the reliable diagnosis of the Vibrio genus and the associated major pathogenic Vibrio species. METHODS A total of 30 Vibrio genome sequences were subjected to comparative genomics, and specific genes of the Vibrio genus and five major pathogenic Vibrio species were screened. The designed primer sets from the screened genes were evaluated by single PCR using DNAs from various Vibrio spp. and other non-Vibrio bacterial strains. A sextuplet multiplex PCR using six primer sets was developed to enable detection of the Vibrio genus and five pathogenic Vibrio species. RESULTS The designed primer sets from the screened genes yielded specific diagnostic results for target the Vibrio genus and Vibrio species. The specificity of the developed multiplex PCR was confirmed with various Vibrio and non-Vibrio strains. This Vibrio multiplex PCR was evaluated using 117 Vibrio strains isolated from the south seashore areas in Korea and Vibrio isolates were identified as Vibrio spp., V. parahaemolyticus, V. vulnificus and V. alginolyticus, demonstrating the specificity and discriminative ability of the assay towards Vibrio species. CONCLUSIONS This novel multiplex PCR method could provide reliable and informative identification of the Vibrio genus and major pathogenic Vibrio species in the food safety industry and in early clinical treatment, thereby protecting humans against Vibrio infection.
Collapse
Affiliation(s)
- Hyun-Joong Kim
- Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| | - Ji-Oh Ryu
- Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| | - Shin-Young Lee
- Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| | - Ei-Seul Kim
- Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
11
|
Liu Y, Zhang Z, Wang Y, Zhao Y, Lu Y, Xu X, Yan J, Pan Y. A highly sensitive and flexible magnetic nanoprobe labeled immunochromatographic assay platform for pathogen Vibrio parahaemolyticus. Int J Food Microbiol 2015; 211:109-16. [DOI: 10.1016/j.ijfoodmicro.2015.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/29/2015] [Accepted: 07/03/2015] [Indexed: 12/30/2022]
|
12
|
Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 2015; 6:144. [PMID: 25798132 PMCID: PMC4350439 DOI: 10.3389/fmicb.2015.00144] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/07/2015] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yanfang Zhong
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Xiaosong Gu
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Jun Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Abdullah F Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
13
|
Suffredini E, Cozzi L, Ciccaglioni G, Croci L. Development of a colony hybridization method for the enumeration of total and potentially enteropathogenic Vibrio parahaemolyticus in shellfish. Int J Food Microbiol 2014; 186:22-31. [PMID: 24984219 DOI: 10.1016/j.ijfoodmicro.2014.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/07/2014] [Accepted: 06/10/2014] [Indexed: 01/30/2023]
Abstract
Vibrio parahaemolyticus is a marine microorganism, recognized as cause of gastroenteritis outbreaks associated with seafood consumption. In this study the development and the in-house validation of a colony hybridization method for the enumeration of total and potentially pathogenic V. parahaemolyticus is reported. The method included a set of three controls (process, hybridization and detection control) for the full monitoring of the analytical procedure. Four digoxigenin-labeled probes were designed for pathogenic strains enumeration (tdh1, tdh2, trh1 and trh2 probes) and one for total V. parahaemolyticus count (toxR probe). Probes were tested on a panel of 70 reference strains and 356 environmental, food and clinical isolates, determining the inclusivity (tdh: 96.7%, trh: 97.8%, toxR: 99.4%) and the exclusivity (100% for all probes). Accuracy and linearity of the enumeration were evaluated on pure and mixed cultures: slopes of the regression lines ranged from 0.957 to 1.058 depending on the target gene and R(2) was greater than or equal to 0.989 for all reactions. Evaluation was also carried on using four experimentally contaminated seafood matrices (shellfish, finfish, crustaceans and cephalopods) and the slopes of the curves varied from 0.895 (finfish) to 0.987 (cephalopods) for the counts of potentially pathogenic V. parahaemolyticus (R(2)≥0.965) and from 0.965 to 1.073 for total V. parahaemolyticus enumeration (R(2)≥0.981). Validation was performed on 104 naturally contaminated shellfish samples, analyzed in parallel by colony hybridization, ISO/TS 21872-1 and MPN enumeration. Colony hybridization and ISO method showed a relative accuracy of 86.7%, and a statistically significant correlation was present between colony hybridization enumeration and MPN results (r=0.744, p<0.001). The proposed colony hybridization can be a suitable alternative method for the enumeration of total and potentially pathogenic V. parahaemolyticus in seafood.
Collapse
Affiliation(s)
- Elisabetta Suffredini
- Istituto Superiore di Sanità, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, v.le Regina Elena 299, 00161 Rome, Italy.
| | - Loredana Cozzi
- Istituto Superiore di Sanità, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, v.le Regina Elena 299, 00161 Rome, Italy
| | - Gianni Ciccaglioni
- Istituto Superiore di Sanità, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, v.le Regina Elena 299, 00161 Rome, Italy
| | - Luciana Croci
- Istituto Superiore di Sanità, Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, v.le Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
14
|
Elexson N, Afsah-Hejri L, Rukayadi Y, Soopna P, Lee H, Tuan Zainazor T, Nor Ainy M, Nakaguchi Y, Mitsuaki N, Son R. Effect of detergents as antibacterial agents on biofilm of antibiotics-resistant Vibrio parahaemolyticus isolates. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Wang R, Xiang S, Feng Y, Srinivas S, Zhang Y, Lin M, Wang S. Engineering production of functional scFv antibody in E. coli by co-expressing the molecule chaperone Skp. Front Cell Infect Microbiol 2013; 3:72. [PMID: 24224158 PMCID: PMC3818579 DOI: 10.3389/fcimb.2013.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/16/2013] [Indexed: 11/20/2022] Open
Abstract
Single-chain variable fragment (scFv) is a class of engineered antibodies generated by the fusion of the heavy (VH) and light chains (VL) of immunoglobulins through a short polypeptide linker. ScFv play a critical role in therapy and diagnosis of human diseases, and may in fact also be developed into a potential diagnostic and/or therapeutic agent. However, the fact that current scFv antibodies have poor stability, low solubility, and affinity, seriously limits their diagnostic and clinical implication. Here we have developed four different expression vectors, and evaluated their abilities to express a soluble scFv protein. The solubility and binding activity of the purified proteins were determined using both SDS-PAGE and ELISA. Amongst the four purified proteins, the Skp co-expressed scFv showed the highest solubility, and the binding activity to antigen TLH was 3-4 fold higher than the other three purified scFv. In fact, this scFv is specific for TLH and does not cross-react with other TLH-associated proteins and could be used to detect TLH directly in real samples. These results suggest that the pACYC-Duet-skp co-expression vector might be a useful tool for the production of soluble and functional scFv antibody.
Collapse
Affiliation(s)
- Rongzhi Wang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Generation and Characterization of a scFv Antibody Against T3SS Needle of Vibrio parahaemolyticus. Indian J Microbiol 2013; 54:143-50. [PMID: 25320414 DOI: 10.1007/s12088-013-0428-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022] Open
Abstract
Vibrio parahaemolyticus, a halophilic gram-negative bacterium, is a food-borne pathogen that largely inhabits marine and estuarine environments, and poses a serious threat to human and animal health all over the world. The hollow "needle" channel, a specific assemble of T3SS which exists in most of gram-negative bacteria, plays a key role in the transition of virulence effectors to host cells. In this study, needle protein VP1694 was successfully expressed and purified, and the fusion protein Trx-VP1694 was used to immunize Balb/c mice. Subsequently, a phage single-chain fragment variable antibody (scFv) library was constructed, and a specific scFv against VP1694 named scFv-FA7 was screened by phage display panning. To further identify the characters of scFv, the soluble expression vector pACYC-scFv-skp was constructed and the soluble scFv was purified by Ni(2+) affinity chromatography. ELISA analysis showed that the scFv-FA7 was specific to VP1694 antigen, and its affinity constant was 1.07 × 10(8 )L/mol. These results offer a molecular basis to prevent and cure diseases by scFv, and also provide a new strategy for further research on virulence mechanism of T3SS in V. parahaemolyticus by scFv.
Collapse
|
17
|
Wen D, Zhang C. Universal Multiplex PCR: a novel method of simultaneous amplification of multiple DNA fragments. PLANT METHODS 2012; 8:32. [PMID: 22894545 PMCID: PMC3485162 DOI: 10.1186/1746-4811-8-32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Multiplex PCR has been successfully applied in many areas since it was first reported in 1988; however, it suffers from poor universality. RESULTS A novel method called Universal Multiplex PCR (UM-PCR) was created, which simultaneously amplifies multiple target fragments from genomic DNA. The method has two steps. First, the universal adapter-F and universal adapter-R are connected to the forward primers and the reverse primers, respectively. Hairpin structures and cross dimers of five pairs of adapter-primers are detected. Second, UM-PCR amplification is implemented using a novel PCR procedure termed "Two Rounds Mode" (three and 28-32 cycles). The first round (the first three cycles) is named the "One by One Annealing Round". The second round (28-32 cycles) combines annealing with extension. In the first two cycles of the first round, primers only amplify the specific templates; there are no templates for the universal adapters. The templates of universal adapters begin to be synthesized from the second cycle of the first round, and universal adapters and primers commence full amplification from the third cycle of the first round. CONCLUSIONS UM-PCR greatly improves the universality of multiplex PCR. UM-PCR could rapidly detect the genetic purity of maize seeds. In addition, it could be applied in other areas, such as analysis of polymorphisms, quantitative assays and identifications of species.
Collapse
Affiliation(s)
- Daxing Wen
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an, Shandong Province 271018, P. R. China
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an, Shandong Province 271018, P. R. China
| |
Collapse
|
18
|
Singh R, Narayan V, McLenachan P, Winkworth RC, Mitra S, Lockhart PJ, Berry L, Hatha AM, Aalbersberg W, Rao D. Detection and diversity of pathogenic Vibrio from Fiji. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:403-411. [PMID: 23760825 DOI: 10.1111/j.1758-2229.2012.00344.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Here we investigate the diversity of pathogenic Vibrio species in marine environments close to Suva, Fiji. We use four distinct yet complementary analyses - biochemical testing, phylogenetic analyses, metagenomic analyses and molecular typing - to provide some preliminary insights into the diversity of vibrios in this region. Taken together our analyses confirmed the presence of nine Vibrio species, including three of the most important disease-causing vibrios (i.e. V. cholerae, V. parahaemolyticus and V. vulnificus), in Fijian marine environments. Furthermore, since toxigenic V. parahaemolyticus are present on fish for consumption we suggest these bacteria represent a potential public health risk. Our results from Illumina short read sequencing are encouraging in the context of microbial profiling and biomonitoring. They suggest this approach may offer an efficient and cost-effective method for studying the dynamics of microbial diversity in marine environments over time.
Collapse
Affiliation(s)
- Reema Singh
- School of Biological and Chemical Sciences Institute of Applied Sciences, University of the South Pacific, Suva, Fiji Institute of Molecular BioSciences, Massey University, Private Mailbag 11222, Palmerston North, New Zealand Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool, UK Institute of Fundamental Sciences Massey Genome Service, Massey University, Private Mailbag 11222, Palmerston North, New Zealand Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science & Technology, Kerala, India Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Screening for a single-chain variable-fragment antibody that can effectively neutralize the cytotoxicity of the Vibrio parahaemolyticus thermolabile hemolysin. Appl Environ Microbiol 2012; 78:4967-75. [PMID: 22562997 DOI: 10.1128/aem.00435-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a halophilic bacterium that is widely distributed in water resources. The bacterium causes lethal food-borne diseases and poses a serious threat to human and animal health all over the world. The major pathogenic factor of V. parahaemolyticus is thermolabile hemolysin (TLH), encoded by the tlh gene, but its toxicity mechanisms are unknown. A high-affinity antibody that can neutralize TLH activity effectively is not available. In this study, we successfully expressed and purified the TLH antigen and discovered a high-affinity antibody to TLH, named scFv-LA3, by phage display screening. Cytotoxicity analysis showed that scFv-LA3 has strong neutralization effects on TLH-induced cell toxicity.
Collapse
|