1
|
Hirano M, Peters GJ. Advances in purine and pyrimidine metabolism in health and diseases. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 35:495-501. [PMID: 27906626 DOI: 10.1080/15257770.2016.1218022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In June, 2015, the Purine and Pyrimidine Society organized the 16th biennial symposium on Purine and Pyrimidine metabolism at the Faculty House of Columbia University, New York City. This exciting meeting focused on these important molecules, new developments in inborn errors of metabolism; therapeutic analogs. In addition, the biochemistry of mammalian and non-mammalian systems were discussed. Due to significant advances in molecular medicine, the boundaries between clinical and basic sciences have merged into exciting translational research, of which a small portion was highlighted in the presymposium.
Collapse
Affiliation(s)
- Michio Hirano
- a Department of Neurology , Columbia University Medical Center , New York , New York , USA
| | - Godefridus J Peters
- b Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
2
|
Mutahir Z, Christiansen LS, Clausen AR, Berchtold MW, Gojkovic Z, Munch-Petersen B, Knecht W, Piškur J. Gene duplications and losses among vertebrate deoxyribonucleoside kinases of the non-TK1 Family. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 35:677-690. [PMID: 27906638 DOI: 10.1080/15257770.2016.1143557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) salvage deoxyribonucleosides (dNs) and catalyze the rate limiting step of this salvage pathway by converting dNs into corresponding monophosphate forms. These enzymes serve as an excellent model to study duplicated genes and their evolutionary history. So far, among vertebrates only four mammalian dNKs have been studied for their substrate specificity and kinetic properties. However, some vertebrates, such as fish, frogs, and birds, apparently possess a duplicated homolog of deoxycytidine kinase (dCK). In this study, we characterized a family of dCK/deoxyguanosine kinase (dGK)-like enzymes from a frog Xenopus laevis and a bird Gallus gallus. We showed that X. laevis has a duplicated dCK gene and a dGK gene, whereas G. gallus has a duplicated dCK gene but has lost the dGK gene. We cloned, expressed, purified, and subsequently determined the kinetic parameters of the dCK/dGK enzymes encoded by these genes. The two dCK enzymes in G. gallus have broader substrate specificity than their human or X. laevis counterparts. Additionally, the duplicated dCK enzyme in G. gallus might have become mitochondria. Based on our study we postulate that changing and adapting substrate specificities and subcellular localization are likely the drivers behind the evolution of vertebrate dNKs.
Collapse
Affiliation(s)
| | - Louise Slot Christiansen
- a Department of Biology , Lund University , Lund , Sweden.,e Lund Protein Production Platform, Lund University , Lund , Sweden
| | | | - Martin W Berchtold
- b Department of Biology , University of Copenhagen , Copenhagen , Denmark
| | | | - Birgitte Munch-Petersen
- a Department of Biology , Lund University , Lund , Sweden.,d Department of Science , Systems and Models, Roskilde University , Roskilde , Denmark
| | - Wolfgang Knecht
- a Department of Biology , Lund University , Lund , Sweden.,e Lund Protein Production Platform, Lund University , Lund , Sweden
| | - Jure Piškur
- a Department of Biology , Lund University , Lund , Sweden
| |
Collapse
|
3
|
Slot Christiansen L, Egeblad L, Munch-Petersen B, Piškur J, Knecht W. New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine. Cancers (Basel) 2015; 7:966-80. [PMID: 26061968 PMCID: PMC4491694 DOI: 10.3390/cancers7020819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/19/2015] [Accepted: 05/27/2015] [Indexed: 11/17/2022] Open
Abstract
Nucleoside analogues (NA) are prodrugs that are phosphorylated by deoxyribonucleoside kinases (dNKs) as the first step towards a compound toxic to the cell. During the last 20 years, research around dNKs has gone into new organisms other than mammals and viruses. Newly discovered dNKs have been tested as enzymes for suicide gene therapy. The tomato thymidine kinase 1 (ToTK1) is a dNK that has been selected for its in vitro kinetic properties and then successfully been tested in vivo for the treatment of malignant glioma. We present the selection of two improved variants of ToTK1 generated by random protein engineering for suicide gene therapy with the NA azidothymidine (AZT).We describe their selection, recombinant production and a subsequent kinetic and biochemical characterization. Their improved performance in killing of E. coli KY895 is accompanied by an increase in specificity for the NA AZT over the natural substrate thymidine as well as a decrease in inhibition by dTTP, the end product of the nucleoside salvage pathway for thymidine. The understanding of the enzymatic properties improving the variants efficacy is instrumental to further develop dNKs for use in suicide gene therapy.
Collapse
Affiliation(s)
- Louise Slot Christiansen
- Department of Biology, Lund University, Lund 22362, Sweden; E-Mail:
- Lund Protein Production Platform, Lund University, Lund 22362, Sweden; E-Mail:
| | - Louise Egeblad
- Lund Protein Production Platform, Lund University, Lund 22362, Sweden; E-Mail:
| | - Birgitte Munch-Petersen
- Department of Science, Systems and Models, Roskilde University, Roskilde 4000, Denmark; E-Mail:
| | - Jure Piškur
- Department of Biology, Lund University, Lund 22362, Sweden; E-Mail:
| | - Wolfgang Knecht
- Department of Biology, Lund University, Lund 22362, Sweden; E-Mail:
- Lund Protein Production Platform, Lund University, Lund 22362, Sweden; E-Mail:
| |
Collapse
|