1
|
Zhang L, Guo Y, Zhang Y, Li Y, Pei Y, Zhang M. Regulation of PIN-FORMED Protein Degradation. Int J Mol Sci 2023; 24:ijms24010843. [PMID: 36614276 PMCID: PMC9821320 DOI: 10.3390/ijms24010843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Auxin action largely depends on the establishment of auxin concentration gradient within plant organs, where PIN-formed (PIN) auxin transporter-mediated directional auxin movement plays an important role. Accumulating studies have revealed the need of polar plasma membrane (PM) localization of PIN proteins as well as regulation of PIN polarity in response to developmental cues and environmental stimuli, amongst which a typical example is regulation of PIN phosphorylation by AGCVIII protein kinases and type A regulatory subunits of PP2A phosphatases. Recent findings, however, highlight the importance of PIN degradation in reestablishing auxin gradient. Although the underlying mechanism is poorly understood, these findings provide a novel aspect to broaden the current knowledge on regulation of polar auxin transport. In this review, we summarize the current understanding on controlling PIN degradation by endosome-mediated vacuolar targeting, autophagy, ubiquitin modification and the related E3 ubiquitin ligases, cytoskeletons, plant hormones, environmental stimuli, and other regulators, and discuss the possible mechanisms according to recent studies.
Collapse
Affiliation(s)
- Liuqin Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yifan Guo
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yujie Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yuxin Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel./Fax: +86-023-68251883
| |
Collapse
|
2
|
Multifaceted Roles of Retromer in EGFR Trafficking and Signaling Activation. Cells 2022; 11:cells11213358. [DOI: 10.3390/cells11213358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mammalian retromer complex contributes to multiple early endosome-associated trafficking pathways whose origins are dependent on which sorting nexin (SNX) they are complexed with. In an attempt to dissect out the contribution of individual retromer–SNX complexes, we examined the trafficking of EGFR in detail within a series of KO cell line models. We demonstrated that the depletion of retromer subunit Vps35 leads to decreased EGFR protein levels in resting cells with enhanced association of EGFR with lysosomal compartments. Compared to control cells, the addition of EGF to Vps35 KO cells resulted in a reduced rate of EGFR degradation; AKT activation and cell prolferation rates were elevated, while ERK activation remained relatively unchanged. These observations are consistent with a prolonged temporal association of EGFR within early endosomes due to the inefficiency of early endosome-associated protein trafficking pathways or organelle maturation due to retromer absence. We did not fully delineate the discrete contributions from retromer-associated SNXs to the phenotypes observed from retromer Vps35 depletion. While each of the knock-outs of SNX1/2, SNX3, or SNX27 promotes the enhanced association of EGFR with early endosomal compartments, only the decreased EGF-mediated EGFR degradation was observed in SNX1/2 dKO cells, while the enhanced AKT activation was only increased in SNX3 KO or SNX27 KO cells. Despite this, each of the knock-outs showed increased EGF-stimulated cell proliferation rates.
Collapse
|
3
|
Asadzadeh J, Ruchti E, Jiao W, Limoni G, MacLachlan C, Small SA, Knott G, Santa-Maria I, McCabe BD. Retromer deficiency in Tauopathy models enhances the truncation and toxicity of Tau. Nat Commun 2022; 13:5049. [PMID: 36030267 PMCID: PMC9420134 DOI: 10.1038/s41467-022-32683-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Alteration of the levels, localization or post-translational processing of the microtubule associated protein Tau is associated with many neurodegenerative disorders. Here we develop adult-onset models for human Tau (hTau) toxicity in Drosophila that enable age-dependent quantitative measurement of central nervous system synapse loss and axonal degeneration, in addition to effects upon lifespan, to facilitate evaluation of factors that may contribute to Tau-dependent neurodegeneration. Using these models, we interrogate the interaction of hTau with the retromer complex, an evolutionarily conserved cargo-sorting protein assembly, whose reduced activity has been associated with both Parkinson’s and late onset Alzheimer’s disease. We reveal that reduction of retromer activity induces a potent enhancement of hTau toxicity upon synapse loss, axon retraction and lifespan through a specific increase in the production of a C-terminal truncated isoform of hTau. Our data establish a molecular and subcellular mechanism necessary and sufficient for the depletion of retromer activity to exacerbate Tau-dependent neurodegeneration. Tau and the Retromer complex are both linked to Parkinson’s and Alzheimer’s disease. Using Drosophila neurodegeneration models, this study finds that low retromer activity induces a specific increase of a highly toxic truncated form of human Tau.
Collapse
Affiliation(s)
- Jamshid Asadzadeh
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Evelyne Ruchti
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Wei Jiao
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Greta Limoni
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Catherine MacLachlan
- BioEM Facility, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Scott A Small
- Department of Neurology, Columbia University, New York, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
| | - Graham Knott
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.,BioEM Facility, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA.,Department of Pathology & Cell Biology, Columbia University, New York, USA.,Facultad Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Brian D McCabe
- Brain Mind Institute, EPFL - Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Abubakar YS, Qiu H, Fang W, Zheng H, Lu G, Zhou J, Wang Z, Zheng W. FgRab5 and FgRab7 are essential for endosomes biogenesis and non-redundantly recruit the retromer complex to the endosomes in Fusarium graminearum. STRESS BIOLOGY 2021; 1:17. [PMID: 37676350 PMCID: PMC10441910 DOI: 10.1007/s44154-021-00020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/22/2021] [Indexed: 09/08/2023]
Abstract
The retromer complex, composed of the cargo-selective complex (CSC) Vps35-Vps29-Vps26 in complex with the sorting nexin dimer Vps5-Vps17, mediates the sorting and retrograde transport of cargo proteins from the endosomes to the trans-Golgi network in eukaryotic cells. Rab proteins belong to the Ras superfamily of small GTPases and regulate many trafficking events including vesicle formation, budding, transport, tethering, docking and fusion with target membranes. Herein, we investigated the potential functional relationship between the retromer complex and the 11 Rab proteins that exist in Fusarium graminearum using genetic and high-resolution laser confocal microscopic approaches. We found that only FgRab5 (FgRab5A and FgRab5B) and FgRab7 associate with the retromer complex. Both FgVps35-GFP and FgVps17-GFP are mis-localized and appear diffused in the cytoplasm of ΔFgrab5A, ΔFgrab5B and ΔFgrab7 mutants as compared to their punctate localization within the endosomes of the wild-type. FgRab7 and FgRab5B were found to co-localize with the retromer on endosomal membranes. Most strikingly, we found that these three Rab GTPases are indispensable for endosome biogenesis as both early and late endosomes could not be detected in the cells of the mutants after FM4-64 staining of the cells, while they were very clearly seen in the wild-type PH-1. Furthermore, FgRab7 was found to recruit FgVps35 but not FgVps17 to the endosomal membranes, whereas FgRab5B recruits both FgVps35 and FgVps17 to the membranes. Thus, we conclude that the Rab proteins FgRab5A, FgRab5B and FgRab7 play critical roles in the biogenesis of endosomes and in regulating retromer-mediated trafficking in F. graminearum.
Collapse
Affiliation(s)
- Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Han Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenqin Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huawei Zheng
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
- Institute of Oceanography, Minjiang University, Fuzhou, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
5
|
Retromer dependent changes in cellular homeostasis and Parkinson's disease. Essays Biochem 2021; 65:987-998. [PMID: 34528672 PMCID: PMC8709886 DOI: 10.1042/ebc20210023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
To date, mechanistic treatments targeting the initial cause of Parkinson's disease (PD) are limited due to the underlying biological cause(s) been unclear. Endosomes and their associated cellular homeostasis processes have emerged to have a significant role in the pathophysiology associated with PD. Several variants within retromer complex have been identified and characterised within familial PD patients. The retromer complex represents a key sorting platform within the endosomal system that regulates cargo sorting that maintains cellular homeostasis. In this review, we summarise the current understandings of how PD-associated retromer variants disrupt cellular trafficking and how the retromer complex can interact with other PD-associated genes to contribute to the disease progression.
Collapse
|
6
|
Yanguas F, Valdivieso MH. Analysis of the SNARE Stx8 recycling reveals that the retromer-sorting motif has undergone evolutionary divergence. PLoS Genet 2021; 17:e1009463. [PMID: 33788833 PMCID: PMC8041195 DOI: 10.1371/journal.pgen.1009463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/12/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Fsv1/Stx8 is a Schizosaccharomyces pombe protein similar to mammalian syntaxin 8. stx8Δ cells are sensitive to salts, and the prevacuolar endosome (PVE) is altered in stx8Δ cells. These defects depend on the SNARE domain, data that confirm the conserved function of syntaxin8 and Stx8 in vesicle fusion at the PVE. Stx8 localizes at the trans-Golgi network (TGN) and the prevacuolar endosome (PVE), and its recycling depends on the retromer component Vps35, and on the sorting nexins Vps5, Vps17, and Snx3. Several experimental approaches demonstrate that Stx8 is a cargo of the Snx3-retromer. Using extensive truncation and alanine scanning mutagenesis, we identified the Stx8 sorting signal. This signal is an IEMeaM sequence that is located in an unstructured protein region, must be distant from the transmembrane (TM) helix, and where the 133I, 134E, 135M, and 138M residues are all essential for recycling. This sorting motif is different from those described for most retromer cargoes, which include aromatic residues, and resembles the sorting motif of mammalian polycystin-2 (PC2). Comparison of Stx8 and PC2 motifs leads to an IEMxx(I/M) consensus. Computer-assisted screening for this and for a loose Ψ(E/D)ΨXXΨ motif (where Ψ is a hydrophobic residue with large aliphatic chain) shows that syntaxin 8 and PC2 homologues from other organisms bear variation of this motif. The phylogeny of the Stx8 sorting motifs from the Schizosaccharomyces species shows that their divergence is similar to that of the genus, showing that they have undergone evolutionary divergence. A preliminary analysis of the motifs in syntaxin 8 and PC2 sequences from various organisms suggests that they might have also undergone evolutionary divergence, what suggests that the presence of almost-identical motifs in Stx8 and PC2 might be a case of convergent evolution. Eukaryotes possess membranous intracellular compartments, whose communication is essential for cellular homeostasis. Protein complexes that facilitate the generation, transport, and fusion of coated vesicles mediate this communication. Since alterations in these processes lead to human disease, their characterization is of biological and medical interest. Retromer is a protein complex that facilitates retrograde trafficking from the prevacuolar endosome to the Golgi, being essential for the functionality of the endolysosomal system. SNAREs are required for vesicle fusion and, after facilitating membrane merging, are supposed to return to their donor organelle for new rounds of fusion. However, little is known about this recycling. We have found that Stx8, a fungal SNARE similar to human syntaxin 8, is a retromer cargo, and have identified its retromer binding motif. Sequence screening and comparison has determined that this sorting motif is conserved mainly in fungal Stx8 sequences. Notably, this motif is similar to the retromer sorting motif that is present in a family of vertebrate ion transporters. Our initial phylogenetic analyses suggest that, although retromer and some of its cargoes are conserved, the sorting motif in the cargoes might have undergone evolutionary divergence.
Collapse
Affiliation(s)
- Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca. Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC). Salamanca. Spain
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca. Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC). Salamanca. Spain
- * E-mail:
| |
Collapse
|
7
|
Yang L, Tan W, Yang X, You Y, Wang J, Wen G, Zhong J. Sorting nexins: A novel promising therapy target for cancerous/neoplastic diseases. J Cell Physiol 2020; 236:3317-3335. [PMID: 33090492 DOI: 10.1002/jcp.30093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Sorting nexins (SNXs) are a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins containing the PX domain proteins. The function of SNX proteins in regulating intracellular protein trafficking consists of endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX proteins are demonstrated to be involved in several cancerous/neoplastic diseases. Here, we review the accumulated evidence of the molecular structure and biological function of SNX proteins and discuss the regulatory role of SNX proteins in distinct cancerous/neoplastic diseases. SNX family proteins may be a valuable potential biomarker and therapeutic strategy for diagnostics and treatment of cancerous/neoplastic diseases.
Collapse
Affiliation(s)
- Lu Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Weihua Tan
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Emergency Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinzhi Yang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yong You
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jing Wang
- Research Lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gebo Wen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Zhong
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Liu Y, Fan J, Yan Y, Dang X, Zhao R, Xu Y, Ding Z. JMY expression by Sertoli cells contributes to mediating spermatogenesis in mice. FEBS J 2020; 287:5478-5497. [PMID: 32279424 DOI: 10.1111/febs.15328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/27/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Sertoli cells are crucial for spermatogenesis in the seminiferous epithelium because their actin cytoskeleton supports vesicular transport, cell junction formation, protein anchoring, and spermiation. Here, we show that a junction-mediating and actin-regulatory protein (JMY) affects the blood-tissue barrier (BTB) function through remodeling of the Sertoli cell junctional integrity and it also contributes to controlling endocytic vesicle trafficking. These functions are critical for the maintenance of sperm fertility since loss of Sertoli cell-specific Jmy function induced male subfertility in mice. Specifically, these mice have (a) impaired BTB integrity and spermatid adhesion in the seminiferous tubules; (b) high incidence of sperm structural deformity; and (c) reduced sperm count and poor sperm motility. Moreover, the cytoskeletal integrity was compromised along with endocytic vesicular trafficking. These effects impaired junctional protein recycling and reduced Sertoli cell BTB junctional integrity. In addition, JMY interaction with actin-binding protein candidates α-actinin1 and sorbin and SH3 domain containing protein 2 was related to JMY activity, and in turn, actin cytoskeletal organization. In summary, JMY affects the control of spermatogenesis through the regulation of actin filament organization and endocytic vesicle trafficking in Sertoli cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Jiaying Fan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China.,Center for Experimental Medical Science Education, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Yan
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Xuening Dang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Ran Zhao
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yimei Xu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
9
|
Tu Y, Zhao L, Billadeau DD, Jia D. Endosome-to-TGN Trafficking: Organelle-Vesicle and Organelle-Organelle Interactions. Front Cell Dev Biol 2020; 8:163. [PMID: 32258039 PMCID: PMC7093645 DOI: 10.3389/fcell.2020.00163] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network (TGN) diverts proteins and lipids away from lysosomal degradation. It is essential for maintaining cellular homeostasis and signaling. In recent years, significant advancements have been made in understanding this classical pathway, revealing new insights into multiple steps of vesicular trafficking as well as critical roles of ER-endosome contacts for endosomal trafficking. In this review, we summarize up-to-date knowledge about this trafficking pathway, in particular, mechanisms of cargo recognition at endosomes and vesicle tethering at the TGN, and contributions of ER-endosome contacts.
Collapse
Affiliation(s)
- Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, State Key Laboratory of Biotherapy, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Li JG, Chiu J, Ramanjulu M, Blass BE, Praticò D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener 2020; 15:1. [PMID: 31964406 PMCID: PMC6975032 DOI: 10.1186/s13024-019-0350-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Background The vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex system, an ubiquitous multiprotein assembly responsible for sorting and trafficking protein cargos out of the endosomes. VPS35 can regulate APP metabolism and Aβ formation, and its levels are reduced in Alzheimer’s disease (AD) brains. We and others demonstrated that VPS35 genetic manipulation modulates the phenotype of mouse models of AD. However, the translational value of this observation remains to be investigated. Methods Triple transgenic mice were randomized to receive a pharmacological chaperone, which stabilizes the retromer complex, and the effect on their AD-like phenotype assessed. Results Compared with controls, treated mice had a significant improvement in learning and memory, an elevation of VPS35 levels, and improved synaptic integrity. Additionally, the same animals had a significant decrease in Aβ levels and deposition, reduced tau phosphorylation and less astrocytes activation. Conclusions Our study demonstrates that the enhancement of retromer function by pharmacological chaperones is a potentially novel and viable therapy against AD.
Collapse
Affiliation(s)
- Jian-Guo Li
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB, suite 1160, Philadelphia, PA, 19140, USA
| | - Jin Chiu
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB, suite 1160, Philadelphia, PA, 19140, USA
| | - Mercy Ramanjulu
- Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Benjamin E Blass
- Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, MERB, suite 1160, Philadelphia, PA, 19140, USA.
| |
Collapse
|
11
|
The emerging role of sorting nexins in cardiovascular diseases. Clin Sci (Lond) 2019; 133:723-737. [PMID: 30877150 PMCID: PMC6418407 DOI: 10.1042/cs20190034] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023]
Abstract
The sorting nexin (SNX) family consists of a diverse group of cytoplasmic- and membrane-associated phosphoinositide-binding proteins that play pivotal roles in the regulation of protein trafficking. This includes the entire endocytic pathway, such as endocytosis, endosomal sorting, and endosomal signaling. Dysfunctions of SNX pathway are involved in several forms of cardiovascular disease (CVD). Moreover, SNX gene variants are associated with CVDs. In this review, we discuss the current knowledge on SNX-mediated regulatory mechanisms and their roles in the pathogenesis and treatment of CVDs.
Collapse
|
12
|
Stroupe C. This Is the End: Regulation of Rab7 Nucleotide Binding in Endolysosomal Trafficking and Autophagy. Front Cell Dev Biol 2018; 6:129. [PMID: 30333976 PMCID: PMC6176412 DOI: 10.3389/fcell.2018.00129] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023] Open
Abstract
Rab7 – or in yeast, Ypt7p – governs membrane trafficking in the late endocytic and autophagic pathways. Rab7 also regulates mitochondrion-lysosome contacts, the sites of mitochondrial fission. Like all Rab GTPases, Rab7 cycles between an “active” GTP-bound form that binds downstream effectors – e.g., the HOPS and retromer complexes and the dynactin-binding Rab-interacting lysosomal protein (RILP) – and an “inactive” GDP-bound form that cannot bind effectors. Accessory proteins regulate the nucleotide binding state of Rab7: guanine nucleotide exchange factors (GEFs) stimulate exchange of bound GDP for GTP, resulting in Rab7 activation, whereas GTPase activating proteins (GAPs) boost Rab7’s GTP hydrolysis activity, thereby inactivating Rab7. This review will discuss the GEF and GAPs that control Rab7 nucleotide binding, and thus regulate Rab7’s activity in endolysosomal trafficking and autophagy. It will also consider how bacterial pathogens manipulate Rab7 nucleotide binding to support intracellular invasion and immune evasion.
Collapse
Affiliation(s)
- Christopher Stroupe
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
13
|
Wang J, Fedoseienko A, Chen B, Burstein E, Jia D, Billadeau DD. Endosomal receptor trafficking: Retromer and beyond. Traffic 2018; 19:578-590. [PMID: 29667289 PMCID: PMC6043395 DOI: 10.1111/tra.12574] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
The tubular endolysosomal network is a quality control system that ensures the proper delivery of internalized receptors to specific subcellular destinations in order to maintain cellular homeostasis. Although retromer was originally described in yeast as a regulator of endosome-to-Golgi receptor recycling, mammalian retromer has emerged as a central player in endosome-to-plasma membrane recycling of a variety of receptors. Over the past decade, information regarding the mechanism by which retromer facilitates receptor trafficking has emerged, as has the identification of numerous retromer-associated molecules including the WASH complex, sorting nexins (SNXs) and TBC1d5. Moreover, the recent demonstration that several SNXs can directly interact with retromer cargo to facilitate endosome-to-Golgi retrieval has provided new insight into how these receptors are trafficked in cells. The mechanism by which SNX17 cargoes are recycled out of the endosomal system was demonstrated to involve a retromer-like complex termed the retriever, which is recruited to WASH positive endosomes through an interaction with the COMMD/CCDC22/CCDC93 (CCC) complex. Lastly, the mechanisms by which bacterial and viral pathogens highjack this complex sorting machinery in order to escape the endolysosomal system or remain hidden within the cells are beginning to emerge. In this review, we will highlight recent studies that have begun to unravel the intricacies by which the retromer and associated molecules contribute to receptor trafficking and how deregulation at this sorting domain can contribute to disease or facilitate pathogen infection.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Alina Fedoseienko
- Division of Oncology Research, Department of Biochemistry and Molecular Biology, and Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bayou Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ezra Burstein
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Department of Biochemistry and Molecular Biology, and Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Elwell C, Engel J. Emerging Role of Retromer in Modulating Pathogen Growth. Trends Microbiol 2018; 26:769-780. [PMID: 29703496 DOI: 10.1016/j.tim.2018.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
Intracellular pathogens have developed elegant mechanisms to modulate host endosomal trafficking. The highly conserved retromer pathway has emerged as an important target of viruses and intravacuolar bacteria. Some pathogens require retromer function to survive. For others, retromer activity restricts intracellular growth; these pathogens must disrupt retromer function to survive. In this review, we discuss recent paradigm changes to the current model for retromer assembly and cargo selection. We highlight how the study of pathogen effectors has contributed to these fundamental insights, with a special focus on the biology and structure of two recently described bacterial effectors, Chlamydia trachomatis IncE and Legionella pneumophila RidL. These two pathogens employ distinct strategies to target retromer components and overcome restriction of intracellular growth imposed by retromer.
Collapse
Affiliation(s)
- Cherilyn Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Abstract
In eukaryotes, distinct transport vesicles functionally connect various intracellular compartments. These carriers mediate transport of membranes for the biogenesis and maintenance of organelles, secretion of cargo proteins and peptides, and uptake of cargo into the cell. Transport vesicles have distinct protein coats that assemble on a donor membrane where they can select cargo and curve the membrane to form a bud. A multitude of structural elements of coat proteins have been solved by X-ray crystallography. More recently, the architectures of the COPI and COPII coats were elucidated in context with their membrane by cryo-electron tomography. Here, we describe insights gained from the structures of these two coat lattices and discuss the resulting functional implications.
Collapse
Affiliation(s)
- Julien Béthune
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| | - Felix T Wieland
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany; ,
| |
Collapse
|
16
|
Abstract
Recycling from endosomes to the plasma membrane is an important step in cell homeostasis. The retromer/SNX27/WASH complex recycles numerous receptors, but key ones are still unaccounted for. Now a related conserved heterotrimer, called retriever, has been identified that, together with SNX17, the CCC complex and WASH, mediates the recycling of α5β1 integrins.
Collapse
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute/KNAW and UMC Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; and the Department of Cell Biology, UMC Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
17
|
Yeast dynamin associates with the GARP tethering complex for endosome-to-Golgi traffic. Eur J Cell Biol 2017; 96:612-621. [DOI: 10.1016/j.ejcb.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
|
18
|
Abubakar YS, Zheng W, Olsson S, Zhou J. Updated Insight into the Physiological and Pathological Roles of the Retromer Complex. Int J Mol Sci 2017; 18:ijms18081601. [PMID: 28757549 PMCID: PMC5577995 DOI: 10.3390/ijms18081601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Retromer complexes mediate protein trafficking from the endosomes to the trans-Golgi network (TGN) or through direct recycling to the plasma membrane. In yeast, they consist of a conserved trimer of the cargo selective complex (CSC), Vps26-Vps35-Vps29 and a dimer of sorting nexins (SNXs), Vps5-Vps17. In mammals, the CSC interacts with different kinds of SNX proteins in addition to the mammalian homologues of Vps5 and Vps17, which further diversifies retromer functions. The retromer complex plays important roles in many cellular processes including restriction of invading pathogens. In this review, we summarize some recent developments in our understanding of the physiological and pathological functions of the retromer complex.
Collapse
Affiliation(s)
- Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Duclos C, Lavoie C, Denault JB. Caspases rule the intracellular trafficking cartel. FEBS J 2017; 284:1394-1420. [PMID: 28371378 DOI: 10.1111/febs.14071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022]
Abstract
During apoptosis, caspases feast on several hundreds of cellular proteins to orchestrate rapid cellular demise. Indeed, caspases are known to get a taste of every cellular process in one way or another, activating some, but most often shutting them down. Thus, it is not surprising that caspases proteolyze proteins involved in intracellular trafficking with particularly devastating consequences for this important process. This review article focuses on how caspases target the machinery responsible for smuggling goods within and outside the cell.
Collapse
Affiliation(s)
- Catherine Duclos
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC, Canada
| | - Christine Lavoie
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC, Canada
| | - Jean-Bernard Denault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC, Canada
| |
Collapse
|
20
|
Elwell CA, Czudnochowski N, von Dollen J, Johnson JR, Nakagawa R, Mirrashidi K, Krogan NJ, Engel JN, Rosenberg OS. Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction. eLife 2017; 6. [PMID: 28252385 PMCID: PMC5364026 DOI: 10.7554/elife.22709] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/26/2017] [Indexed: 02/02/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that resides in a membrane-bound compartment, the inclusion. The bacteria secrete a unique class of proteins, Incs, which insert into the inclusion membrane and modulate the host-bacterium interface. We previously reported that IncE binds specifically to the Sorting Nexin 5 Phox domain (SNX5-PX) and disrupts retromer trafficking. Here, we present the crystal structure of the SNX5-PX:IncE complex, showing IncE bound to a unique and highly conserved hydrophobic groove on SNX5. Mutagenesis of the SNX5-PX:IncE binding surface disrupts a previously unsuspected interaction between SNX5 and the cation-independent mannose-6-phosphate receptor (CI-MPR). Addition of IncE peptide inhibits the interaction of CI-MPR with SNX5. Finally, C. trachomatis infection interferes with the SNX5:CI-MPR interaction, suggesting that IncE and CI-MPR are dependent on the same binding surface on SNX5. Our results provide new insights into retromer assembly and underscore the power of using pathogens to discover disease-related cell biology.
Collapse
Affiliation(s)
- Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Nadine Czudnochowski
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - John von Dollen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Rachel Nakagawa
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Kathleen Mirrashidi
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,QB3, California Institute for Quantitative Biosciences, San Francisco, United States.,Gladstone Institutes, San Francisco, United States
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Oren S Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| |
Collapse
|