1
|
Li W, Liu Y, Zhou G, Li Z, Wang Z, Wang L, Ma X, Wang X. Comparison of Umbilical Cord Mesenchymal Stem Cells and Fibroblasts as Donor Nuclei for Handmade Cloning in Sheep Using a Single-Cell Transcriptome. Animals (Basel) 2024; 14:589. [PMID: 38396557 PMCID: PMC10886412 DOI: 10.3390/ani14040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Oocytes are efficient at reprogramming terminally differentiated cells to a totipotent state. Nuclear transfer techniques can exploit this property to produce cloned animals. However, the overall efficiency is low. The use of umbilical cord mesenchymal stem cells (UC-MSCs) as donor nuclei may increase blastocyst rates, but the exact reasons for this remain unexplored. A single-cell transcriptomic approach was used to map the transcriptome profiles of eight-cell embryos that were in vitro-fertilized and handmade-cloned using umbilical cord mesenchymal stem cells and fibroblasts as nuclear donors. Differences were examined at the chromatin level, the level of differentially expressed genes, the level of histone modifications and the level of DNA methylation. This research provides critical information regarding the use of UC-MSCs as a preferred donor nucleus for nuclear transfer techniques. It also offers unique insights into the mechanism of cellular reprogramming.
Collapse
Affiliation(s)
- Weijian Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yalan Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guizhen Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Zhuo Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Li Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiuling Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xuguang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Liu S, Zhao S, Zhang C, Tian C, Wang D, Yu H, Li Z, Liu L, Liu N. Dppa3 Improves the Germline Competence of Pluripotent Stem Cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10552-y. [PMID: 37171679 DOI: 10.1007/s12015-023-10552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Chimera formation and germline competence are critical features of mouse pluripotent stem cells (PSCs). However, the factors that contribute to germline competence in the chimeras remain to be understood. METHODS To determine the role of Dppa3 in PSCs, we first constructed Dppa3 knockout (Dppa3 KO) and Dppa3 overexpression (Dppa3 OE) PSCs, respectively. Using Dppa3 KO and Dppa3 OE PSCs, we then investigated the role of Dppa3 in PSCs by evaluating the chimera generation, DNA methylation, and pluripotent state conversion. RESULTS We show that Dppa3 plays an important role in chimera formation and germline competence of mouse PSCs. PSC lines with high expression of Dppa3 show high germline competence. In contrast, Dppa3 deficiency reduces chimera formation and abrogates the germline transmission capacity of PSCs. Molecularly, Dppa3 facilitates establishing global DNA hypomethylation in PSCs. High levels of Dppa3 in PSCs reduce the expression of Dnmt3a/b and impede Uhrf1-Dnmt1 complex binding to DNA replication forks, maintaining DNA hypomethylation. Additionally, Dppa3 facilitates two-cell-stage (2C) genes expression and promotes conversion to a 2C-like state. CONCLUSION These data show that Dppa3 is involved in maintaining DNA hypomethylation homeostasis and is required for high chimera formation and germline competence of PSCs.
Collapse
Affiliation(s)
- Siying Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China
| | - Shuang Zhao
- School of Medicine, Nankai University, Tianjin, 300071, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chuanyu Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chenglei Tian
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huaxin Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lin Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China.
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Mazid MA, Ward C, Luo Z, Liu C, Li Y, Lai Y, Wu L, Li J, Jia W, Jiang Y, Liu H, Fu L, Yang Y, Ibañez DP, Lai J, Wei X, An J, Guo P, Yuan Y, Deng Q, Wang Y, Liu Y, Gao F, Wang J, Zaman S, Qin B, Wu G, Maxwell PH, Xu X, Liu L, Li W, Esteban MA. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature 2022; 605:315-324. [PMID: 35314832 DOI: 10.1038/s41586-022-04625-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.
Collapse
Affiliation(s)
- Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiwei Luo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Liang Wu
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Jinxiu Li
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Jiang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lixin Fu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueli Yang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - David P Ibañez
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjian Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyu Wei
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Juan An
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Pengcheng Guo
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue Yuan
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Qiuting Deng
- University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Shahriar Zaman
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Baoming Qin
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | - Patrick H Maxwell
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | | | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- BGI-Shenzhen, Shenzhen, China.
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhao S, Zhang C, Xu J, Liu S, Yu L, Chen S, Wen H, Li Z, Liu N. Dppa3 facilitates self-renewal of embryonic stem cells by stabilization of pluripotent factors. Stem Cell Res Ther 2022; 13:169. [PMID: 35477484 PMCID: PMC9044575 DOI: 10.1186/s13287-022-02846-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developmental pluripotency-associated 3 (Dppa3, also called Stella or PGC7) is a principal maternal protein specially expressed in pre-implantation embryos, embryonic stem cells (ES cells) and primordial germ cells (PGCs). It plays critical role in the regulating of DNA methylation in zygotes and oocytes. However, the effect of Dppa3 in ES cells on the stability of proteins is still unclear. METHODS In this study, we first identified the potential interacting proteins with Dppa3 using immunoprecipitation-mass spectrometry (IP-MS). After GO analysis, we further constructed Dppa3-silenced ES cells and ES cell lines overexpressing with different lengths of Dppa3 to explore the mechanisms of Dppa3 on protein stability. RESULTS IP-MS results showed that Dppa3 interacted with quite a few subunits of 26S proteasome. Full length of Dppa3 stabilized Uhrf1 and Nanog by inhibiting its degradation. Silencing Dppa3 promoted degradation of Nanog protein. CONCLUSIONS Our results indicated that Dppa3 safeguard the stability of Uhrf1 and Nanog by inhibiting proteasome-associated degradation in ES cells. These findings shed light on new function of Dppa3 in maintaining stability of proteins and provides a valuable resource for understanding the roles of Dppa3 in embryonic stem cells.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China.,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chuanyu Zhang
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Jia Xu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Siying Liu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Lu Yu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Hang Wen
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Zongjin Li
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China.,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Na Liu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China. .,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Yang L, Song L, Liu X, Bai L, Li G. KDM6A and KDM6B play contrasting roles in nuclear transfer embryos revealed by MERVL reporter system. EMBO Rep 2018; 19:embr.201846240. [PMID: 30389724 PMCID: PMC6280793 DOI: 10.15252/embr.201846240] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/20/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023] Open
Abstract
Despite the success of animal cloning by somatic cell nuclear transfer (SCNT) in many species, the method is limited by its low efficiency. After zygotic genome activation (ZGA) during mouse development, a large number of endogenous retroviruses (ERVs) are expressed, including the murine endogenous retrovirus‐L (MuERVL/MERVL). In this study, we generate a series of MERVL reporter mouse strains to detect the ZGA event in embryos. We show that the majority of SCNT embryos do not undergo ZGA, and H3K27me3 prevents SCNT reprogramming. Overexpression of the H3K27me3‐specific demethylase KDM6A, but not of KDM6B, improves the efficiency of SCNT. Conversely, knockdown of KDM6B not only facilitates ZGA, but also impedes ectopic Xist expression in SCNT reprogramming. Furthermore, knockdown of KDM6B increases the rate of SCNT‐derived embryonic stem cells from Duchenne muscular dystrophy embryos. These results not only provide insight into the mechanisms underlying failures of SCNT, but also may extend the applications of SCNT.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Lige Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China .,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Wang QQ, Zhang YM, Zhong X, Li JW, An XR, Hou J. Dimethylated histone H3 lysine 9 is dispensable for the interaction between developmental pluripotency-associated protein 3 (Dppa3) and ten-eleven translocation 3 (Tet3) in somatic cells. Reprod Fertil Dev 2018; 31:347-356. [PMID: 30099980 DOI: 10.1071/rd18062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/11/2018] [Indexed: 01/15/2023] Open
Abstract
Both developmental pluripotency-associated protein 3 (Dppa3/Stella/PGC7) and dioxygenase ten-eleven translocation 3 (Tet3) are maternal factors that regulate DNA methylation reprogramming during early embryogenesis. In the mouse zygote, dimethylated histone H3 lysine 9 (H3K9me2) attracts Dppa3 to prevent Tet3-mediated oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Here, we addressed the interplay between Dppa3 and Tet3 or H3K9me2 in somatic cells. In mouse NIH3T3 cells, the exogenously expressed Dppa3 preferentially accumulated in the cytoplasm and had no effect on Tet3-mediated 5hmC generation. In HeLa cells, the expressed Dppa3 was predominantly localised in the nucleus and could partially suppress Tet3-induced 5hmC accumulation, but this suppressive function was not correlated with H3K9me2. Co-immunoprecipitation assays further revealed an interaction of Dppa3 with Tet3 but not with H3K9me2 in HeLa cells. In cloned zygotes from somatic cells, Dppa3 distribution and 5hmC accumulation in nuclei were not affected by H3K9me2 levels. Taken together, these results suggest that H3K9me2 is not functionally associated with Dppa3 and Tet3 in somatic cells or somatic cell cloned embryos.
Collapse
Affiliation(s)
- Qian-Qian Wang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| | - Yu-Mei Zhang
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| | - Xia Zhong
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| | - Jian-Wei Li
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| | - Xiao-Rong An
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology and College of Biological Science, China Agricultural University, #2, Yuan-Ming-Yuan West Road, Haidian District, Beijing, 100193, China
| |
Collapse
|