1
|
Zhang F, Yan Y, Ge C. Frailty as a predictor of adverse outcomes in patients with gastric cancer: A systematic review and meta-analysis of 75,357 patients. Ageing Res Rev 2024; 101:102528. [PMID: 39362340 DOI: 10.1016/j.arr.2024.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/16/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Frailty is the most problematic expression of population ageing, which has been associated with increased mortality and complications among patients with gastric cancer (GC). However, previous evidence about the frailty prevalence and outcomes in frail populations with gastric cancer remains unknown. METHODS Eligible studies were searched in Embase, PubMed, Scopus, and Web of Science to explore the prevalence and impact of frailty in patients with gastric cancer from inception until November 25, 2023. The pooled prevalence of frailty, hazard ratio (HR), and odds ratio (OR) corresponding 95 % confidence intervals (CI) in mortality and postoperative complications estimates were analyzed. RESULTS A total of 24 studies containing 75,357 GC patients were involved. The prevalence of frailty in gastric cancer was 27 % (95 % CI = 24-30; I2 = 96.7 %; p = 0.000). Frailty was independently associated with an increased hazard ratio for mortality (adjusted HR = 2.14; 95 % CI = 1.60-2.86; I2 = 67.3 %, p = 0.000). Furthermore, frailty was significantly associated with an increased odds ratio for postoperative complication in GC patients (adjusted OR = 2.65; 95 % CI = 2.17-3.25; I2 = 0.0 %, Cochran's Q = 1.20, p = 0.878). CONCLUSION The prevalence of frailty in gastric cancer is common and has a significant adverse effect on GC patients' outcomes. Our findings highlight the importance of routine frailty assessment in GC patients, which may provide prognostic outcomes.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Ying Yan
- Department of Urinary Surgery, Northeast International Hospital, Shenyang 110623, China
| | - Chunlin Ge
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
3
|
Zheng X, Shi JY, Wang ZW, Ruan GT, Ge YZ, Lin SQ, Liu CA, Chen Y, Xie HL, Song MM, Liu T, Yang M, Liu XY, Deng L, Cong MH, Shi HP. Geriatric Nutritional Risk Index Combined with Calf Circumference Can be a Good Predictor of Prognosis in Patients Undergoing Surgery for Gastric or Colorectal Cancer. Cancer Control 2024; 31:10732748241230888. [PMID: 38303637 PMCID: PMC10836130 DOI: 10.1177/10732748241230888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/16/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVES To explore the effect of combined hematological and physical measurement indicators on the prognosis of patients undergoing surgery for gastric or colorectal cancer and to screen for the best prognostic indicators. INTRODUCTION Gastric and colorectal cancer is a widespread health concern worldwide and one of the major contributors to cancer-related death. The hematological and physical measurement indicators have been shown to associate with the prognosis of patients undergoing surgery for gastric or colorectal cancer, respectively, but it is still unclear whether the combination of the two can reflect the prognosis more effectively. METHODS Thirteen hematological indicators and 5 physical measurement indicators were selected in this study, and the most promising ones were screened using LASSO regression. Then, the best prognostic indicators were selected by time-ROC curves. Survival curves were constructed using the Kaplan-Meier method, and the effects of hematological and physical measurement indicators on the prognosis of patients undergoing surgery for gastric or colorectal cancers were evaluated by Cox proportional risk regression analysis. In addition, the relationship between hematological and physical measurement indicators on secondary outcomes, including length of stay, hospitalization costs, intensive care unit (ICU) admission, and patients' subjective global assessment scores (PGSGA), was explored. RESULTS After initial screening, among the hematological indicators, the geriatric nutritional risk index (GNRI) showed the highest mean area under the curve (AUC) values. Among body measures, calf circumference (CC) showed the highest mean AUC value. Further analyses showed that the combination of combined nutritional prognostic index (GNRI) and calf circumference (CC) (GNRI-CC) had the best performance in predicting the prognosis of patients undergoing surgery for gastric or colorectal cancers. Low GNRI, low CC, and low GNRI-low CC increased the risk of death by 44%, 48%, and 104%, respectively. Sensitivity analyses showed the same trend. In addition, low GNRI-low CC increased the risk of malnutrition by 17%. CONCLUSION This study emphasizes that a combination of blood measures and body measures is essential to accurately assess the prognosis of patients undergoing surgery for gastric or colorectal cancers. The GNRI-CC is a good prognostic indicator and can also assess the risk of possible malnutrition.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Jin-Yu Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Zi-Wen Wang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Guo-Tian Ruan
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Yi-Zhong Ge
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shi-Qi Lin
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen-An Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Chen
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Lun Xie
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Meng-Meng Song
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Tong Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Ming Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Xiao-Yue Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Li Deng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Hua Cong
- Comprehensive Oncology Department, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Smith JS, Kelly MP, Buell TJ, Ben-Israel D, Diebo B, Scheer JK, Line B, Lafage V, Lafage R, Klineberg E, Kim HJ, Passias P, Gum JL, Kebaish K, Mullin JP, Eastlack R, Daniels A, Soroceanu A, Mundis G, Hostin R, Protopsaltis TS, Hamilton DK, Gupta M, Lewis SJ, Schwab FJ, Lenke LG, Shaffrey CI, Burton D, Ames CP, Bess S. Adult Cervical Deformity Patients Have Higher Baseline Frailty, Disability, and Comorbidities Compared With Complex Adult Thoracolumbar Deformity Patients: A Comparative Cohort Study of 616 Patients. Global Spine J 2023:21925682231214059. [PMID: 37948666 DOI: 10.1177/21925682231214059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
STUDY DESIGN Multicenter comparative cohort. OBJECTIVE Studies have shown markedly higher rates of complications and all-cause mortality following surgery for adult cervical deformity (ACD) compared with adult thoracolumbar deformity (ATLD), though the reasons for these differences remain unclear. Our objectives were to compare baseline frailty, disability, and comorbidities between ACD and complex ATLD patients undergoing surgery. METHODS Two multicenter prospective adult spinal deformity registries were queried, one ATLD and one ACD. Baseline clinical and frailty measures were compared between the cohorts. RESULTS 616 patients were identified (107 ACD and 509 ATLD). These groups had similar mean age (64.6 vs 60.8 years, respectively, P = .07). ACD patients were less likely to be women (51.9% vs 69.5%, P < .001) and had greater Charlson Comorbidity Index (1.5 vs .9, P < .001) and ASA grade (2.7 vs 2.4, P < .001). ACD patients had worse VR-12 Physical Component Score (PCS, 25.7 vs 29.9, P < .001) and PROMIS Physical Function Score (33.3 vs 35.3, P = .031). All frailty measures were significantly worse for ACD patients, including hand dynamometer (44.6 vs 55.6 lbs, P < .001), CSHA Clinical Frailty Score (CFS, 4.0 vs 3.2, P < .001), and Edmonton Frailty Scale (EFS, 5.15 vs 3.21, P < .001). Greater proportions of ACD patients were frail (22.9% vs 5.7%) or vulnerable (15.6% vs 10.9%) based on EFS (P < .001). CONCLUSIONS Compared with ATLD patients, ACD patients had worse baseline characteristics on all measures assessed (comorbidities/disability/frailty). These differences may help account for greater risk of complications and all-cause mortality previously observed in ACD patients and facilitate strategies for better preoperative optimization.
Collapse
Affiliation(s)
- Justin S Smith
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Michael P Kelly
- Department of Orthopedic Surgery, Rady Children's Hospital, San Diego, CA, USA
| | - Thomas J Buell
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Ben-Israel
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Bassel Diebo
- Department of Orthopedic Surgery, Brown University, Providence, RI, USA
| | - Justin K Scheer
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Breton Line
- Presbyterian St Lukes Medical Center, Denver, CO, USA
| | - Virginie Lafage
- Department of Orthopedic Surgery, Lennox Hill Hospital, New York City, NY, USA
| | - Renaud Lafage
- Department of Orthopedic Surgery, Lennox Hill Hospital, New York City, NY, USA
| | - Eric Klineberg
- Department of Orthopedic Surgery, University of Texas Health Houston, Houston, TX, USA
| | - Han Jo Kim
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York City, NY, USA
| | - Peter Passias
- Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| | | | - Khal Kebaish
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey P Mullin
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Robert Eastlack
- Department of Orthopedic Surgery, Scripps Clinic, San Diego, USA
| | - Alan Daniels
- Department of Orthopedic Surgery, Brown University, Providence, RI, USA
| | - Alex Soroceanu
- Department of Orthopedic Surgery, University of Calgary, Calgary, AB, Canada
| | - Gregory Mundis
- Department of Orthopedic Surgery, Scripps Clinic, San Diego, USA
| | - Richard Hostin
- Department of Orthopaedic Surgery, Baylor Scoliosis Center, Plano, TX, USA
| | | | - D Kojo Hamilton
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Munish Gupta
- Department of Orthopedic Surgery, Washington University, St Louis, MO, USA
| | - Stephen J Lewis
- Department of Surgery, Division of Orthopedic Surgery, University of Toronto and Toronto Western Hospital, Toronto, ON, Canada
| | - Frank J Schwab
- Department of Orthopedic Surgery, Lennox Hill Hospital, New York City, NY, USA
| | - Lawrence G Lenke
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, NY, USA
| | | | - Douglas Burton
- Department of Orthopaedic Surgery, University of Kansas Medical Center, Kansas City, KA, USA
| | - Christopher P Ames
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shay Bess
- Presbyterian St Lukes Medical Center, Denver, CO, USA
| |
Collapse
|