1
|
Abarikwu SO, Okonkwo CJ, Ezim OE, Obinna VC, Nebeolisa CE, Ndufeiya-Kumasi LC. Testicular weight deficits, altered variables of antioxidant defense system, spermatogenesis impairment, and inflammation induced by busulfan injection are ameliorated by gallic acid administration in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03699-z. [PMID: 39673638 DOI: 10.1007/s00210-024-03699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
This study evaluated the long-term protective effect of gallic acid (GAL) against testicular lesions induced by busulfan (BUSLF) in Wistar rats. Thirty (30) male rats weighing 60-70 g were randomized into three groups of ten in each group: control (2 ml kg-1 body weight (b.w) olive oil), BUSLF (10 mg kg-1 b.w), and BUSLF + GAL (10 mg kg-1 b.w BUSLF + 20 mg kg-1 b.w GAL). BUSLF was injected (intraperitoneally) concurrently with GAL (oral gavage) on day 1 but GAL administration continues for 12 weeks in the BUSLF + GAL animals. At the end of the study, all animals did not show relevant changes in body weights, but absolute testis weight and gonado-somatic index were decreased in the BUSLF-treated animals compared to the control values (p < 0.05). These biometric data remained unchanged in the BUSLF + GAL group relative to the control but were higher than the BUSLF values (p < 0.05). GAL co-treatment counteracted BUSLF-induced decrease in glutathione peroxidase activity and an increase in hydrogen peroxide, malondialdehyde, and carbonyl protein concentrations in the testis. Changes in testicular sorbitol and lactate dehydrogenases and myeloperoxidase activities in BUSLF-treated animals were ameliorated in the BUSLF + GAL-treated animals. GAL co-treatment also prevented BUSLF-induced decrease in testosterone and sialic acid concentrations and sperm quality. The spermatogenesis score index and histological changes induced by BUSLF were also abated in the BUSLF + GAL group. GAL has been established as an effective treatment regimen for the gonadal side effects of BUSLF in a rat model.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria.
- Reproductive Biology & Molecular Toxicology Research Laboratory, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria.
| | - Chinedu J Okonkwo
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Ogechukwu E Ezim
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Victoria C Obinna
- Department of Animal and Environmental Biology, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Chisom E Nebeolisa
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | | |
Collapse
|
2
|
Wu Z, Ma Y, Chen S, Liu Y, Liu X, Cao H, Jin T, Li L, Huang M, Yang F, Dong W. Arginine Biosynthesis Mediates Wulingzhi Extract Resistance to Busulfan-Induced Male Reproductive Toxicity. Int J Mol Sci 2024; 25:6320. [PMID: 38928028 PMCID: PMC11203605 DOI: 10.3390/ijms25126320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Busulfan, an indispensable medicine in cancer treatment, can cause serious reproductive system damage to males as a side effect of its otherwise excellent therapeutic results. Its widespread use has also caused its accumulation in the environment and subsequent ecotoxicology effects. As a Chinese medicine, Wulingzhi (WLZ) has the effects of promoting blood circulation and improving female reproductive function. However, the potential effects of WLZ in male reproduction and in counteracting busulfan-induced testis damage, as well as its probable mechanisms, are still ambiguous. In this study, busulfan was introduced in a mouse model to evaluate its production of the testicular damage. The components of different WLZ extracts were compared using an untargeted metabolome to select extracts with greater efficacy, which were further confirmed in vivo. Here, we demonstrate abnormal spermatogenesis and low sperm quality in busulfan-injured testes. The WLZ extracts showed a strong potential to rehabilitate the male reproductive system; this effect was more prominent in room-temperature extracts. Additionally, both water and ethanol WLZ extracts at room temperature alleviated various busulfan-induced adverse effects. In particular, WLZ recovered spermatogenesis, re-activated arginine biosynthesis, and alleviated the increased oxidative stress and inflammation in the testis, ultimately reversing the busulfan-induced testicular injury. Collectively, these results suggest a promising approach to protecting the male reproductive system from busulfan-induced adverse side effects, as well as those of other similar anti-cancer drugs.
Collapse
Affiliation(s)
- Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Yuyan Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Xianglin Liu
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Mengqi Huang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| |
Collapse
|
3
|
Laddha AP, Joshi S, Kulkarni YA. SP-Max-A herbomineral formulation attenuates busulfan-induced oligospermia in mice by preventing loss of reproductive hormones. Reprod Toxicol 2024; 123:108525. [PMID: 38123000 DOI: 10.1016/j.reprotox.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
SP-Max herbal capsule formulation contains Withania somnifera, Asparagus recemosus, Mucuna pruriens, Chlorophytum arundinaceum, Ipomoea digitata, and Dioscorea bulbifera which are reported in the 'Ayurveda', an Indian Traditional System of medicine as aphrodisiacs. The present study focused on the effect of herbomineral formulation, SP-Max in the treatment of oligospermia. Oligospermia was induced in male Swiss Albino mice by a single intraperitoneal injection of busulfan at a dose of 45 mg/kg. SP-Max herbomineral formulation was given at various doses of 130, 270, and 390 mg/kg for 45 days. Treatment with SP-Max herbomineral formulation at 130, 270 and 390 mg/kg doses significantly improved the sperm count, sperm motility and viability (p < 0.001). SP-Max treatment at a dose of 390 mg/kg significantly prevented the loss of anti-oxidant enzymes in testicular cells. SP-Max prevented the reduction in the level of testosterone, luteinizing hormone, and follicle-stimulating hormone. Histological findings showed that SP-Max treatment prevented degeneration of spermatid, interstitial cells, and Sertoli cells of the testes and also improved epididymal sperm count. High dose of SP-Max treatment i.e 390 mg/kg found to be more effective. Results showed that SP-Max herbomineral formulation is an effective treatment option for oligospermia by decreasing free radical damage to the testes and improving the levels of reproductive hormones.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L Mehta Road, Vile Parle (W), Mumbai 400 056, India
| | - Shantanu Joshi
- Global Herbs Pharmaceuticals, A Wing, 62,63,64, 5th Floor, Pune - Satara Rd, KK Market, Pune, Maharashtra 411043, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L Mehta Road, Vile Parle (W), Mumbai 400 056, India.
| |
Collapse
|
4
|
Wang H, Zhang J, Ma D, Zhao Z, Yan B, Wang F. The role of red ginseng in men's reproductive health: a literature review. Basic Clin Androl 2023; 33:27. [PMID: 37880595 PMCID: PMC10601307 DOI: 10.1186/s12610-023-00203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Red ginseng (RG) is a traditional herb commonly used in China, Korea, and other East Asian countries. Recently, it has demonstrated a better clinical value in men's reproductive health (MRH). The present review aimed to examine the effects of RG treatment on MRH. RESULTS Overall, 42 articles related to RG application in MRH were reviewed, of which 31 were animal experiments and 11 were clinical studies. Furthermore, this review analyzed the use of RG in some male reproductive diseases in clinical trials and determined the associated mechanisms of action. The mechanism of action of RG in MRH may be related to oxidative stress, regulation of sex hormones and spermatogenesis-related proteins, and anti-inflammation. CONCLUSIONS The application of RG for the treatment of male infertility, erectile dysfunction, and prostate diseases has the potential to contribute to MRH.
Collapse
Affiliation(s)
- Hao Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jiwei Zhang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Dongyue Ma
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ziwei Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Bin Yan
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
5
|
Kim KH, Park MJ, Park NC, Park HJ. Effect of N-acetyl-L-cysteine on Testicular Tissue in Busulfan-Induced Dysfunction in the Male Reproductive System. World J Mens Health 2023; 41:882-891. [PMID: 37118950 PMCID: PMC10523131 DOI: 10.5534/wjmh.220100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE This study aimed to evaluate the protective effect of N-acetyl-L-cysteine (NAC) as an antioxidant on busulfan-induced testicular dysfunction in mice and elucidate its possible mechanism of action. MATERIALS AND METHODS Thirty-two C57BL/6 male mice were randomly divided into four groups (n=8/group) as follows: (1) control group (oral administration of saline [0.1 mL daily] for 35 days); (2) NAC group (oral administration of NAC [10 mg/kg daily] for 35 days); (3) busulfan group (double intraperitoneal injections of 20 mg/kg; total dose of 40 mg/kg); and (4) busulfan+NAC group (after double intraperitoneal injections of 20 mg/kg; total dose of 40 mg/kg, NAC administration [10 mg/kg daily] for 35 days). The testes were removed, weighed, and subjected to sperm parameter analysis and morphology assessment. Reproductive hormone, serum/testicular reactive oxygen species (ROS) level, oxidative stress and antioxidant markers were evaluated. The testicular expression of Nrf2 and HO-1 was examined using RT-qPCR. RESULTS Busulfan treatment significantly decreased testicular weight, sperm count, and serum testosterone levels. Atrophy and degeneration of germinal epithelium were observed in the busulfan group. NAC administration after busulfan treatment partially attenuated the deterioration of testis weight, sperm quality, serum hormones, histomorphometric changes, and oxidative and antioxidative status. NAC treatment resulted in a considerable improvement in Nrf2 and HO-1 mRNA expression levels. CONCLUSIONS This study provides compelling evidence that NAC as a potent antioxidant has significant protective effects against busulfan-induced male reproductive impairment possibly through modification of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Korea
| | - Nam Cheol Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- The Korea Institute for Public Sperm Bank, Busan, Korea
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea.
| |
Collapse
|
6
|
Li HT, Zhong K, Xia YF, Song J, Chen XQ, Zhao W, Zeng XH, Chen TX. Puerarin improves busulfan-induced disruption of spermatogenesis by inhibiting MAPK pathways. Biomed Pharmacother 2023; 165:115231. [PMID: 37516022 DOI: 10.1016/j.biopha.2023.115231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023] Open
Abstract
Male infertility is a global concern, with a noticeable increase in the decline of spermatogenesis and sperm quality. However, there are limited clinically effective treatments available. This study aimed to investigate the potential effectiveness of puerarin in treating male infertility, which leads to gonadal changes. The results obtained from various analyses such as CASA, immunofluorescence, DIFF-Quick, hematoxylin and eosin (H&E), and periodic acid-Schiff (PAS) staining demonstrated that puerarin supplementation significantly alleviated the busulfan-induced reduction in spermatogenesis and sperm quality in both young and adult mice. Furthermore, puerarin exhibited a marked improvement in the damage caused by busulfan to the architecture of seminiferous tubules, causal epididymis, blood-testicular barrier (BTB), as well as spermatogonia and Sertoli cells. Similarly, puerarin significantly reduced the levels of total antioxidant capacity (T-AOC), malondialdehyde (MDA), and caspase-3 in the testes of busulfan-induced mice, as determined by microplate reader analysis. Additionally, RNA-seq data, RT-qPCR, and western blotting revealed that puerarin restored the abnormal gene expressions induced by busulfan to nearly healthy levels. Notably, puerarin significantly reversed the impact of busulfan on the expression of marker genes involved in spermatogenesis and oxidative stress. Moreover, puerarin suppressed the phosphorylation of p38, ERK1/2, and JNK in the testes, as observed through testicular analysis. Consequently, this study concludes that puerarin may serve as a potential alternative for treating busulfan-induced damage to male fertility by inactivating the testicular MAPK pathways. These findings may pave the way for the use of puerarin in addressing chemotherapy- or other factors-induced male infertility in humans.
Collapse
Affiliation(s)
- Hai-Tao Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Kun Zhong
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Yun-Fei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Jian Song
- Reproductive Medicine Center, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Xiao-Qing Chen
- Human Resources Division and Clinical Research Center, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
| | - Xu-Hui Zeng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China.
| | - Tian-Xing Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
7
|
Kooshesh L, Nateghian Z, Aliabadi E. Evaluation of L-Carnitine Potential in Improvement of Male Fertility. J Reprod Infertil 2023; 24:69-84. [PMID: 37547570 PMCID: PMC10402461 DOI: 10.18502/jri.v24i2.12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023] Open
Abstract
L-carnitine, through its antioxidant potential, plays a significant role in reducing ROS production in male genital tract; therefore, fundamental improvements in spermatogenesis process and sperm structural and functional parameters in seminal plasma can be observed by treatment with L-carnitine. A literature search was performed using PubMed (including Medline) from the database earliest inception to 2021. Eligibility criteria included studies on protective effects of L-carnitine against damages to the male reproductive system. Based on the findings of the current study, L-carnitine has an effective potential to protect testis and improve conventional and functional sperm parameters against ROS-induced damages by sperm cryopreservation, busulfan treatment, and radiation.
Collapse
Affiliation(s)
- Leila Kooshesh
- Department of Genetics, Fars Academic Center for Education, Culture and Research, ACECR, Shiraz, Iran
| | - Zohre Nateghian
- Islamic Azad University of Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Elham Aliabadi
- Department of Anatomy, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Ghorbaninejad Z, Eghbali A, Ghorbaninejad M, Ayyari M, Zuchowski J, Kowalczyk M, Baharvand H, Shahverdi A, Eftekhari-Yazdi P, Esfandiari F. Carob extract induces spermatogenesis in an infertile mouse model via upregulation of Prm1, Plzf, Bcl-6b, Dazl, Ngn3, Stra8, and Smc1b. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115760. [PMID: 36209951 DOI: 10.1016/j.jep.2022.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ethnopharmacological studies for drug discovery from natural compounds play an important role for developing current therapeutical platforms. Plants are a group of natural sources which have been served as the basis in the treatment of many diseases for centuries. In this regard, Ceratonia siliqua (carob) is one of the herbal medicine which is traditionally used for male infertility treatments. But so far the main mechanisms for effects of carob are unknown. Here, we intend to investigate the ability of carob extract to induce spermatogenesis in an azoospermia mouse model and determine the mechanisms that underlie its function. AIM OF THE STUDY This is a pre-clinical animal model study to evaluate the effect of carob extract in spermatogenesis recovery. METHODS We established an infertile mouse model with the intent to examine the ability of carob extract as a potential herbal medicine for restoration of male fertility. Sperm parameters, as well as gene expression dynamics and levels of spermatogenesis hormones, were evaluated 35 days after carob administration. RESULTS Significant enhanced sperm parameters (P < 0.05) showed that the carob extract could induce spermatogenesis in the infertile mouse model. Our data suggested an anti-apototic and inducer role in the expressions of cell cycle regulating genes. Carob extract improved the spermatogenesis niche by considerable affecting Sertoli and Leydig cells (P < 0.05). The carob-treated mice were fertile and contributed to healthy offspring that matured. Our data confirmed that this extract triggered the hormonal system, the spermatogenesis-related gene expression network, and signaling pathways to induce and promote sperm production with notable level (P < 0.05). We found that the aqueous extract consisted of a polar and mainly well water-soluble substance. Carob extract might upregulate spermatogenesis hormones via its amino acid components, which were detected in the extract by liquid chromatography-mass spectrometry (LC-MS). CONCLUSION Our results strongly suggest that carob extract might be a promising future treatment option for male infertility. This finding could pave the way for clinical trials in infertile men. This is the first study that has provided reliable, strong pre-clinical evidence for carob extract as an effective candidate for fertility recovery in cancer-related azoospermia.
Collapse
Affiliation(s)
- Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Atiyeh Eghbali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahdi Ayyari
- Department of Horticultural Science, Tarbiat Modares University, Tehran, Iran
| | - Jerzy Zuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Rahbar M, Asadpour R, Azami M, Mazaheri Z, Hamali H. Improving the process of spermatogenesis in azoospermic mice using spermatogonial stem cells co-cultured with epididymosomes in three-dimensional culture system. Life Sci 2022; 310:121057. [DOI: 10.1016/j.lfs.2022.121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
|
10
|
Zhou Y, Chen L, Han H, Xiong B, Zhong R, Jiang Y, Liu L, Sun H, Tan J, Cheng X, Schroyen M, Gao Y, Zhao Y, Zhang H. Taxifolin increased semen quality of Duroc boars by improving gut microbes and blood metabolites. Front Microbiol 2022; 13:1020628. [PMCID: PMC9614168 DOI: 10.3389/fmicb.2022.1020628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Taxifolin (TAX), as a natural flavonoid, has been widely focused on due to its strong anti-oxidation, anti-inflammation, anti-virus, and even anti-tumor activity. However, the effect of TAX on semen quality was unknown. The purpose of this study was to analyze the beneficial influences of adding feed additive TAX to boar semen in terms of its quality and potential mechanisms. We discovered that TAX increased sperm motility significantly in Duroc boars by the elevation of the protein levels such as ZAG, PKA, CatSper, and p-ERK for sperm quality. TAX increased the blood concentration of testosterone derivatives, antioxidants such as melatonin and betaine, unsaturated fatty acids such as DHA, and beneficial amino acids such as proline. Conversely, TAX decreased 10 different kinds of bile acids in the plasma. Moreover, TAX increased “beneficial” microbes such as Intestinimonas, Coprococcus, Butyrivibrio, and Clostridium_XlVa at the Genus level. However, TAX reduced the “harmful” intestinal bacteria such as Prevotella, Howardella, Mogibacterium, and Enterococcus. There was a very close correlation between fecal microbes, plasma metabolites, and semen parameters by the spearman correlation analysis. Therefore, the data suggest that TAX increases the semen quality of Duroc boars by benefiting the gut microbes and blood metabolites. It is supposed that TAX could be used as a kind of feed additive to increase the semen quality of boars to enhance production performance.
Collapse
Affiliation(s)
- Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bohui Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Jiang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, China
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, China
| | | | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, Jilin, China
- Yang Gao,
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Yong Zhao, ;
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Hongfu Zhang,
| |
Collapse
|
11
|
Heidarizadi S, Rashidi Z, Jalili C, Gholami M. Overview of biological effects of melatonin on testis: A review. Andrologia 2022; 54:e14597. [PMID: 36168927 DOI: 10.1111/and.14597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a major global health issue and male factors account for half of all infertility cases. One of the causes of male infertility is the loss of spermatogonial stem cells, which may occur because of chemotherapy, radiotherapy or genetic defects. In numerous animal species, the evidence suggests the pineal gland and melatonin secretion in their reproductive activities are involved. Recently, considerable attention has pointed to the usage of melatonin in the treatment of diseases. Melatonin is associated with the regulation of circadian and seasonal rhythmic functions, immune system functions, retinal physiology, spermatogenesis and inhibition of tumour growth in different species. Several studies demonstrated that melatonin acts as an anti-apoptotic, anti-inflammatory, anticancer and antioxidant agent. Melatonin can also protect testicles and spermatogonia against oxidative damage, chemotherapy drugs, environmental radiation, toxic substances, hyperthermia, ischemia/reperfusion, diabetes-induced testicular damage, metal-induced testicular toxicity, improve sperm quality and it affects the testosterone secretion pathway by affecting Leydig cells. Therefore, the objective of this study is to investigate the biological effects of melatonin as a natural antioxidant on testicles and their disorders.
Collapse
Affiliation(s)
- Somayeh Heidarizadi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Rashidi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Mobarak H, Rahbarghazi R, Nouri M, Heidarpour M, Mahdipour M. Intratesticular versus intraperitoneal injection of Busulfan for the induction of azoospermia in a rat model. BMC Pharmacol Toxicol 2022; 23:50. [PMID: 35831882 PMCID: PMC9281107 DOI: 10.1186/s40360-022-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Administration of antineoplastic drugs may cause azoospermia driving to subfertility. Production of animal azoospermia models is essential for evaluating new treatment methods before therapeutic interventions in human setup. This study aimed to investigate the toxic effects of Busulfan (an anticancer drug) on some vital organs and describe the best method and appropriate dose of Busulfan to induce an animal azoospermia model. METHODS Rats were randomly assigned into four groups, treatment groups received 10 mg/kg, 40 mg/kg Busulfan intraperitoneally (IP), 5 mg/kg Busulfan intratesticular (IT), and control group. Blood, bone marrow, liver, renal, and testes samples were collected for histological (H&E staining), biochemical (serum levels of ALT, AST, ALP, creatinine, and urea), and hematological analyses. RESULTS Results revealed severe anemia and leukopenia in rats that received Busulfan via IP. By contrast, injection of 5 mg/kg Busulfan via IT did not cause anemia except with a mild decrease in RBC count. Non-significant differences in the M/E ratio were observed in all groups. The administration of 40 mg/kg of Busulfan led to evacuation and destruction in the spermatogenesis process with thin-walled seminiferous epithelium in most tubules, but in rats treated with 10 mg/kg of Busulfan, the normal spermatogenesis process was notified. IT injection of Busulfan contributed to the complete degradation of spermatogenesis in which all spermatogenic cells degenerated. In the renal tissue, hyperemia, extensive tubular necrosis degeneration, and hyaline casts were found after IP injection of Busulfan. In hepatic tissue, focal hemorrhagic, chronic cholangitis, and hepatocyte degeneration, and swelling were noticed. Biochemical analysis revealed apparent Busulfan toxicity of both hepatic and renal tissues in IP Busulfan-treated rats. CONCLUSIONS In summary, we found that the intratesticular injection of low doses of Busulfan (5 mg/kg) is a relatively non-invasive and safe method for producing the rat azoospermia model causing the least toxicity on vital organs.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Abarikwu SO, Mgbudom-Okah CJ, Njoku RCC, Okonkwo CJ, Onuoha CC, Wokoma AFS. Gallic acid ameliorates busulfan-induced testicular toxicity and damage in mature rats. Drug Chem Toxicol 2022; 45:1881-1890. [PMID: 33730944 DOI: 10.1080/01480545.2021.1892949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Here, we studied the protective effect of gallic acid (GAL) as a potent anti-oxidant and anti-inflammatory agent against damage caused by busulfan (BUS) in the testes of adult rats. The adult Wistar rats were assigned as control, BUS: was intraperitoneally (i.p.) treated with busulfan (15 mg/kg, day 7 and 14), GAL + BUS: was co-treated with busulfan (i.p., 15 mg/kg, day 7 and 14) and orally treated (per os) with gallic acid (60 days, 20 mg/kg) and GAL: was treated with gallic acid (per os, 60 days, 20 mg/kg). The results showed that GAL co-treatment increased the numbers of spermatogonia (Type A and B), spermatocytes (primary and secondary) and round spermatids, along with the tubular diameter, epithelial height and gonado-somatic index. In addition, BUS-induced increase in 3β-hydroxysteroid dehydrogenase and γ-glutamyl transpeptidase activities were inhibited on GAL co-treatment. Similarly, BUS-induced decrease in gluthathione concentration, catalase and superoxide dismutase activities along with increase in myeloperoxidase activity and malondialdehyde concentration were significantly normalized to control values on GAL co-treatment. Busulfan-induced elimination of tubular germ cells was completely prevented by GAL. Overall, GAL may inhibit BUS-mediated spermatogenesis arrest via decreasing inflammatory-mediated oxidative stress in a rat experimental model.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | | | - Chinedu J Okonkwo
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Adaba F S Wokoma
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
14
|
Yan X, Ma X, Hao Y, Liu J, Fang H, Lu D, Shen W, Zhang H, Ge W, Zhao Y. Alginate oligosaccharides ameliorate busulfan-induced renal tubule injury. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Improvement of ovarian insufficiency from alginate oligosaccharide in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Wang B, Xu J, Jiang S, Wang Y, Zhu J, Zhang Y. Combined Analysis of Gut Microbiota and Plasma Metabolites Reveals the Effect of Red-Fleshed Apple Anthocyanin Extract on Dysfunction of Mice Reproductive System Induced by Busulfan. Front Nutr 2022; 8:802352. [PMID: 35096946 PMCID: PMC8789878 DOI: 10.3389/fnut.2021.802352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
Busulfan is currently an indispensable anti-cancer drug, but the side effects on male reproductive system are so serious. Meanwhile, red-fleshed apples are natural products with high anthocyanin content. In this research, we analyzed the effect of red-fleshed apple anthocyanin extract (RAAE) on busulfan-treated mice. Compared with the busulfan group, main plasma biochemical indicators were significantly improved after RAAE treatment. Compared with BA0 (busulfan without RAAE) group, total antioxidant capacity(T-AOC) and the activity of superoxide dismutase (SOD) and glutathione catalase (GSH-Px) in RAAE treatment groups were obviously increased, while the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly decreased. Malondialdehyde (MDA) was significantly decreased in the RAAE groups. In addition, we found RAAE alleviated busulfan-disrupted spermatogenesis through improving genes expression which are important for spermatogenesis, such as DDX4, PGK2, and TP1. Furthermore, we found that RAAE increased beneficial bacteria Akkermansia and Lactobacillaceae, and significantly depleted harmful bacteria Erysipelotrichia. The correlation studies indicated that RAAE ameliorated busulfan-induced rise in LysoPC levels through regulating gut microbial community and their associated metabolites. In conclusion, this study extends our understanding of the alleviated effect of RAAE on busulfan-induced male reproductive dysfunction through regulating the relationships between gut microbiota and metabolites.
Collapse
Affiliation(s)
- Bin Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jihua Xu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shenhui Jiang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yugang Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
17
|
Tesi EP, Ben‐Azu B, Mega OO, Mordi J, Knowledge OO, Awele ED, Rotu RA, Emojevwe V, Adebayo OG, Eneni OA. Kolaviron, a flavonoid‐rich extract ameliorates busulfan‐induced chemo‐brain and testicular damage in male rats through inhibition of oxidative stress, inflammatory, and apoptotic pathways. J Food Biochem 2022; 46:e14071. [DOI: 10.1111/jfbc.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Edesiri P. Tesi
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Benneth Ben‐Azu
- Department of Pharmacology Faculty of Basic Medical Science, College of Health Sciences Delta State University Abraka Nigeria
| | - Oyovwi O. Mega
- Department of Basic Medical Sciences Achievers University Owo Nigeria
| | - Joseph Mordi
- Department of Biochemistry Faculty of Basic Medical Science, College of Health Sciences Delta State University Abraka Nigeria
| | - Obed O. Knowledge
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Egbuchua D. Awele
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Rume A. Rotu
- Department of Physiology Faculty of Basic Medical Science College of Medicine University of Ibadan Ibadan Nigeria
| | - Victor Emojevwe
- Department of Physiology Faculty of Basic Medical Science University of Medical Sciences Ondo Nigeria
| | - Olusegun G. Adebayo
- Neurophysiology Unit, Department of Physiology PAMO University of Medical Sciences Port‐Harcourt Nigeria
| | - Okubo Aya‐Ebi Eneni
- Department of Pharmacology and Toxicology Faculty of Pharmacy Niger Delta University Amassoma Nigeria
| |
Collapse
|
18
|
Yilmaz H, Karakoc Y, Tumkaya L, Mercantepe T, Sevinc H, Yilmaz A, Yılmaz Rakıcı S. The protective effects of red ginseng and amifostine against renal damage caused by ionizing radiation. Hum Exp Toxicol 2022; 41:9603271221143029. [DOI: 10.1177/09603271221143029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This study aimed to elucidate the effects of amifostine (ethyol) (AM), a synthetic radioprotector, and red ginseng (RG), a natural radioprotective agent, against the toxic effect of ionizing radiation (IR) on kidney tissues through changes in biochemical and histopathological parameters in addition to contributions to the use of amifostine and RG in clinical studies . Five groups were established: Group I (control, receiving only saline by gavage), Group II (IR only), and Group III (IR+AM, 200 mg/kg intraperitoneally (i.p.). Group IV (IR + RG, 200 mg/kg orally once a day for 4 weeks), and Group V (IR+RG+AM, 200 mg/kg orally once/day for 4 weeks before IR and 200 mg/kg AM administered (i.p.) 30 min before IR). All groups, except for the control group, were subject to 6-Gy whole-body IR in a single fraction. 24 h after irradiation, all animals were sacrificed under anesthesia. IR enhanced MDA, 8-OHdG, and caspase-3 expression while decreasing renal tissue GSH levels ( p < .05). Significant numbers of necrotic tubules together with diffuse vacuolization in proximal and distal tubule epithelial cells were also observed. The examination also revealed substantial brush boundary loss in proximal tubules as well as relatively unusual glomerular structures. While GSH levels significantly increased in the AM, RG, and AM+RG groups, a decrease in KHDS, MDA, 8-OHdG, and caspase-3 expression was observed, compared to the group subject to IR only ( p < .05). Therefore, reactive oxygen species-scavenging antioxidants may represent a promising treatment for avoiding kidney damage in patients receiving radiation.
Collapse
Affiliation(s)
- Hamit Yilmaz
- Department of Biophysics, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Yunus Karakoc
- Department of Biophysics, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University Rize, Turkey
| | - Hacer Sevinc
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University Rize, Turkey
| | - Adnan Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University Rize, Turkey
| | - Sema Yılmaz Rakıcı
- Department of Radiation Oncology, Faculty of Medicine, Recep Tayyip Erdogan University Rize, Turkey
| |
Collapse
|
19
|
Abarikwu SO, Njoku RCC, John IG, Amadi BA, Mgbudom-Okah CJ, Onuah CL. Antioxidant and anti-inflammatory protective effects of rutin and kolaviron against busulfan-induced testicular injuries in rats. Syst Biol Reprod Med 2021; 68:151-161. [PMID: 34753368 DOI: 10.1080/19396368.2021.1989727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There are few treatment options, including the use of natural phenolics-based combination therapy for mitigating male infertility conditions associated with chemotherapy. Busulfan is an anti-cancer drug that leads to testicular problems in humans. Here, we studied the effect of co-treatment of rutin and kolaviron against busulfan-induced testis damage. Young adult male Wistar rats were intraperitoneally injected busulfan (4 mg/kg b.w), and then orally administered rutin (30 mg/kg b.w), and kolaviron (50 mg/kg b.w) alone and combined for 60 days. Results revealed that rutin and kolaviron alone or in combination reversed busulfan-induced increase in oxidative stress along with sperm quality of treated animals. However, kolaviron and rutin separately improved the concentrations of MDA and GSH and sperm quality more than when they were combined. Similarly, rutin and kolaviron separately or in combination preserved spermatogenesis and relieved busulfan-induced increase in nitric oxide concentration, myeloperoxidase and 3β-hydroxysteroid dehydrogenase activities. Co-supplementation with kolaviron but not rutin nor when rutin was combined with kolaviron also improved the testicular level of tumor necrosis-alpha. Finally, the histological features in the testes caused by busulfan were reversed by rutin, whereas treatment with kolaviron alone or in combination with rutin partially protected the testis from busulfan-induced injury as demonstrated by the appearance of few germ cells, damaged tubules, loss of round spermatids and defoliation of the seminiferous epithelium. Thus, the combined treatment regimen of rutin and kolaviron sparingly prevented busulfan-induced testicular injuries in rats.Abbreviations: CAT: Catalase; GSH: Glutathione; 3β-HSD: 3β- hydroxysteroid Dehydrogenase; MDA: Malondialdehyde; TNF-α: Tumor necrosis-alpha; BUS: Busulfan; RUT: Rutin; KV: Kolaviron; TBARS: Thiobarbituric Acid Reactive Substances; MPO: Myeloperoxidase; ELISA: Enzyme-Linked Immunoassay; NAD: Nicotinamide Adenine Dinucleotide (oxidized); ROS: Reactive Oxygen Species.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Rex-Clovis C Njoku
- Department of Chemistry/Biochemistry & Molecular Biology, Alex Ekwueme-Federal University Ndufu-Alike, Ikwo, Nigeria
| | - Ifeoma G John
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Benjamin A Amadi
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Chigozie L Onuah
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
20
|
Xu J, Zhang X, Sun X, Lv Q, Zhang Y. Red-Fleshed Apple Anthocyanin Extracts Attenuate Male Reproductive System Dysfunction Caused by Busulfan in Mice. Front Nutr 2021; 8:632483. [PMID: 34249984 PMCID: PMC8268157 DOI: 10.3389/fnut.2021.632483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
In this research, we analyzed the effect of an intragastrical oral administration of red-fleshed apple anthocyanin extract (RAAE) on busulfan-treated mice. First, we showed that the most abundant component in RAAE was cyanidin 3-O-galactoside. To determine the effect of the RAAE, the mice were divided into control and four other different concentrations of RAAE feeding treatment groups (BA0, no RAAE; BA.1, 0.1 mg/kg; BA1, 1 mg/kg; and BA5, 5 mg/kg) following busulfan injection. We observed that RAAE treatments displayed ameliorative effects on male reproductive system dysfunction caused by busulfan, such as recovering the irregular arrangements of seminiferous tubules, increasing the number of spermatogonia and spermatocytes, improving sperm concentration by 3-fold in BA.1, and improving sperm motility by 2-fold in BA1. The liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis showed significant up- or downregulation of certain metabolites, such as lysophosphatidylcholine (LysoPC), L-arginine, glycine, anandamide, and L-carnitine, which could contribute to the positive effects of RAAE, especially in PBA1 (plasma of BA1) and PBA5 (plasma of BA5). Taken together, the results indicate that 1 mg/kg of RAAE is a suitable concentration for rescuing spermatogenesis in mice. The research suggests that RAAE could be a potential nutraceutical for protecting spermatogenesis after busulfan therapy in cancer.
Collapse
Affiliation(s)
- Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiang Zhang
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaohong Sun
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qiang Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yugang Zhang
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
21
|
Luo J, Yang Y, Ji X, He W, Fan J, Huang Y, Wang Y. NGF Rescues Spermatogenesis in Azoospermic Mice. Reprod Sci 2021; 28:2780-2788. [PMID: 33725311 DOI: 10.1007/s43032-021-00511-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/21/2021] [Indexed: 11/26/2022]
Abstract
Nerve growth factor (NGF) plays an important role in regulating the hypothalamus-pituitary-gonadal (HPG) axis. However, the effects of NGF on spermatogenesis remain unclear. This study aimed to assess the potential application of NGF with nasal delivery on spermatogenesis in azoospermic mice. We established a model with azoospermia induced by a single intraperitoneal (i.p.) injection of busulfan. NGF pre-encapsulated with liposomes (25, 50, and 100 μg/kg) was delivered via internasal administration. Three weeks after busulfan injection, NGF treatments were performed twice a week for 8 weeks; the change of sperm quality, testis and epididymis histopathology, and androgenic hormone were analyzed to evaluate sperm regeneration. Furthermore, 30 mg/kg busulfan injection caused severe testicular atrophy of the seminiferous tubules, characterized by a loss of spermatogenic elements and sperms. NGF with nasal administration could significantly upregulate the markers expressing meiotic spermatogonia (Stra8) and spermatocytes (SYCP3), restore spermatogenesis, and improve sperm quality in busulfan-treated mice by increasing the secretion of sexual hormones. The convenient and noninvasive nasal delivery of NGF may be a new potential therapy for spermatogenesis via activating the HPG axis and elevating androgenic hormones. This study opened a new horizon for NGF application in reproductive endocrine.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Institute for Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, China
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou, China
| | - Xunmin Ji
- Guangdong Provincial Institute of Biological Products and Materia, Guangzhou, China
| | - Weiyi He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jing Fan
- Department of Reproductive Medicine Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou, China
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
22
|
Mobarak H, Heidarpour M, Rahbarghazi R, Nouri M, Mahdipour M. Amniotic fluid-derived exosomes improved spermatogenesis in a rat model of azoospermia. Life Sci 2021; 274:119336. [PMID: 33716061 DOI: 10.1016/j.lfs.2021.119336] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
AIMS This study aimed to explore the therapeutic effects of amniotic fluid-derived extracellular vesicles including exosomes (AF-Exos) on the recovery of sperm production capacity in a rat model of azoospermia. MAIN METHODS The non-obstructive azoospermia (NOA) was induced in rats using intratesticular administration of Busulfan. Azoospermia was confirmed by testis histology. AF-Exos samples containing 10 or 40 μg exosomal proteins were injected into testicular tissue of NOA rats. After two months, the recovery of spermatogenesis was monitored via histopathological staining, spermiogram, and hormonal analysis. Immunohistochemistry staining for OCT-3/4 was used to identify of spermatogonial progenitors. The expression of DAZL and VASA, was also measured. KEY FINDINGS AF-Exos exhibited sphere-shaped morphology with the mean diameter and zeta potential of 50 ± 7.521 nm and -7.16 mV. Immunoblots revealed that isolated nanoparticles were CD63, CD9, and CD81 positive. Histopathological evaluation revealed that spermatogenesis was improved significantly in NOA rats after AF-Exos injection. Data showed that the sperm parameters and spermatogenesis index were significantly improved after AF-Exos injection compared to azoospermic groups. OCT-3/4+ cells were increased in NOA rats after AF-Exos injection, showing the restoration of spermatogenesis. In the present study, both doses of exosome (10 and 40 μg) restored the testicular function of NOA rats. DAZL and VASA were increased significantly in animals who received 40 μg exosomal protein compared to azoospermic rats. Except in a high dose of AF-Exos (40 μg) for Testosterone and FSH, no statistically significant differences were found regarding hormones post-exosome injection. SIGNIFICANCE Our study demonstrated that AF-Exos regenerated spermatogenesis and improved sperm quality in NOA rats.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran.
| | - Reza Rahbarghazi
- Biotechnology Research Center, Tabriz University of Medical Sciences, 5165665811 Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166615739 Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166615739 Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5166653431 Tabriz, Iran.
| |
Collapse
|
23
|
Ma D, Han P, Song M, Zhang H, Shen W, Huang G, Zhao M, Sun Q, Zhao Y, Min L. β-carotene Rescues Busulfan Disrupted Spermatogenesis Through Elevation in Testicular Antioxidant Capability. Front Pharmacol 2021; 12:593953. [PMID: 33658940 PMCID: PMC7917239 DOI: 10.3389/fphar.2021.593953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
β-carotene, precursor of vitamin A, is an excellent antioxidant with many beneficial properties. It is a lipid-soluble antioxidant and a very effective quencher of reactive oxygen species (ROS) to reduce the oxidative stress. In contrast to vitamin A, β-carotene is not toxic even consumed in higher amount when it is delivered from natural plant products. Recently, we found that β-carotene acts as a potential antioxidant in the oocyte to improve its quality. Even though many studies have been reported that β-carotene has the beneficial contribution to the ovarian development and steroidogenesis, it is unknown the effects of β-carotene on the spermatogenesis. This investigation aimed to explore the hypothesis that β-carotene could improve spermatogenesis and the underlying mechanism. And we found that β-carotene rescued busulfan disrupted spermatogenesis in mouse with the increase in the sperm concentration and motility. β-carotene improved the expression of genes/proteins important for spermatogenesis, such as VASA, DAZL, SYCP3, PGK2. Moreover, β-carotene elevated the testicular antioxidant capability by the elevation of the antioxidant glutathione and antioxidant enzymes SOD, GPX1, catalase levels. In conclusion, β-carotene may be applied for the infertile couples by the improvement of spermatogenesis, since, worldly many couples are infertile due to the idiopathic failed gametogenesis (spermatogenesis).
Collapse
Affiliation(s)
- Dongxue Ma
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| | - Pengfei Han
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Mingji Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guian Huang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Minghui Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingyuan Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingjiang Min
- College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
24
|
Choopani R, Athari S, Lorian K, Kashafroodi H, Ghafarzadeh S. Protective effects of honey compound syrup on busulfan-induced azoospermia in male rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2021. [DOI: 10.4103/2305-0500.331266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Two resveratrol analogs, pinosylvin and 4,4′-dihydroxystilbene, improve oligoasthenospermia in a mouse model by attenuating oxidative stress via the Nrf2-ARE pathway. Bioorg Chem 2020; 104:104295. [DOI: 10.1016/j.bioorg.2020.104295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023]
|
26
|
Abarikwu SO, Mgbudom-Okah CJ, Onuah CL. The protective effect of rutin against busulfan-induced testicular damage in adult rats. Drug Chem Toxicol 2020; 45:1035-1043. [PMID: 32757678 DOI: 10.1080/01480545.2020.1803905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Here, we studied the protective effect of rutin (RUT) against testicular damage caused by busulfan (BUS) in rats. Adult male Wistar rats were intraperitoneally injected with BUS (4 mg/kg body weight at day 7 and 14), and then treated with RUT (30 mg/kg body weight) by gavage thrice weekly for 60 days. The results showed that BUS-induced increase in 3β-hydroxysteroid dehydrogenase (3β-HSD) was significantly decreased by RUT, whereas 17β-HSD activity and plasma testosterone concentration remained unaffected (p > 0.05). It was also observed that RUT inhibited BUS-induced increase in nitrite concentrations and myeloperoxidase enzyme activities in the plasma and testes (p < 0.05). Similarly, BUS-induced decrease in glutathione and increase in malondialdehyde concentrations in the testes were significantly normalized to control values by RUT. Finally, RUT administration showed some tendency to improve the architecture of the seminiferous epithelium of the rat's testes after BUS treatment. Overall, RUT inhibited BUS-induced oxidative damage and inflammation in the testis of an experimental rat model.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Chigozie L Onuah
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
27
|
Yu S, Zhao Y, Zhang FL, Li YQ, Shen W, Sun ZY. Chestnut polysaccharides benefit spermatogenesis through improvement in the expression of important genes. Aging (Albany NY) 2020; 12:11431-11445. [PMID: 32568099 PMCID: PMC7343452 DOI: 10.18632/aging.103205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Recently there has been a continuing worldwide decrease in the quality of human spermatozoa, especially in spermatozoa motility and concentration. Many factors are involved in this decline, and great efforts have been made to rescue spermatogenesis; however, there has been little progress in the improvement of sperm quality. Chestnuts are used in traditional Chinese medicine; their major active components are chestnut polysaccharides (CPs). CPs have many biological activities but their effects on spermatogenesis are unknown. The current investigation was designed to explore the impact of CPs on spermatogenesis and the underlying mechanisms. We demonstrated that CPs significantly increased sperm motility and concentration (4-fold and 12-fold, respectively), and improved seminiferous tubule development by increasing the number of germ cells after busulfan treatment. CPs dramatically rescued the expression of important genes and proteins (STRA8, DAZL, SYCP1, SYCP3, TNP1 etc.) in spermatogenesis. Furthermore, CPs increased the levels of hormone synthesis proteins such as CYP17A1 and HSD17β1. All the data suggested that CPs improved the testicular microenvironment to rescue spermatogenesis. With CPs being natural products, they may be an attractive alternative for treating infertile patients in the future. At the same time, the deep underlying mechanisms of their action need to be explored.
Collapse
Affiliation(s)
- Shuai Yu
- Urology Department, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Center for Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ya-Qi Li
- Urology Department, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang 277100, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhong-Yi Sun
- Urology Department, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Center for Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
28
|
Zhao Y, Zhang P, Ge W, Feng Y, Li L, Sun Z, Zhang H, Shen W. Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis. Am J Cancer Res 2020; 10:3308-3324. [PMID: 32194870 PMCID: PMC7053202 DOI: 10.7150/thno.43189] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: Busulfan is currently an indispensable anti-cancer drug, particularly for children, but the side effects on male reproduction are so serious that critical drug management is needed to minimize any negative impact. Meanwhile, alginate oligosaccharides (AOS) are natural products with many consequent advantages, that have attracted a great deal of pharmaceutical attention. In the current investigation, we performed single-cell RNA sequencing on murine testes treated with busulfan and/or AOS to define the mitigating effects of AOS on spermatogenesis at the single cell level. Methods: Testicular cells (in vivo) were examined by single cell RNA sequencing analysis, histopathological analysis, immunofluorescence staining, and Western blotting. Testes samples (ex vivo) underwent RNA sequencing analysis. Blood and testicular metabolomes were determined by liquid chromatography-mass spectrometry (LC/MS). Results: We found that AOS increased murine sperm concentration and motility, and rescued busulfan disrupted spermatogenesis through improving (i) the proportion of germ cells, (ii) gene expression important for spermatogenesis, and (iii) transcriptional factors in vivo. Furthermore, AOS promoted the ex vivo expression of genes important for spermatogenesis. Finally, our results showed that AOS improved blood and testis metabolomes as well as the gut microbiota to support the recovery of spermatogenesis. Conclusions: AOS could be used to improve fertility in patients undergoing chemotherapy and to combat other factors that induce infertility in humans.
Collapse
|
29
|
Single-cell RNA sequencing analysis reveals alginate oligosaccharides preventing chemotherapy-induced mucositis. Mucosal Immunol 2020; 13:437-448. [PMID: 31900405 PMCID: PMC7181395 DOI: 10.1038/s41385-019-0248-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 02/04/2023]
Abstract
Worldwide the incidence of cancer has been continuing increasing. Mucositis of the gastrointestinal tract is a common side effect in patients under chemotherapy. Anticancer drug busulfan, used for treating chronic myeloid leukemia especially in pediatric patients, causes mucositis of the gastrointestinal tract. Alginate oligosaccharides (AOS) are natural products with attractive pharmaceutical potentials. We aimed to investigate, at the single-cell level, AOS preventing small intestine mucositis induced by busulfan. We found that busulfan disturbed the endoplasmic reticulum and mitochondria of cells in the small intestine, damaged cell membranes especially cell junctions, and disrupted microvilli; all of which were rescued by AOS. Single-cell RNA sequencing analysis and functional enrichment analysis showed that AOS could recover small intestinal function. Deep analysis found that AOS improved the expression of transcriptional factors which explained AOS regulating gene expression to improve small intestine function. Further investigation in IPEC-J2 cells found that AOS acts its function through mannose receptor signaling pathway. Moreover, the improved blood metabolome confirmed small intestinal function was recovered by AOS. As a natural product with many advantages, AOS could be developed to assist in the recovery of intestinal functions in patients undergoing anticancer chemotherapy or other treatments.
Collapse
|
30
|
Abarikwu SO, Mgbudom-Okah CJ, Onuah CL, Ogunlaja A. Fluted pumpkin seeds protect against busulfan-induced oxidative stress and testicular injuries in adult mice. Drug Chem Toxicol 2019; 45:22-32. [DOI: 10.1080/01480545.2019.1657885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. O. Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers, Nigeria
| | - C. J. Mgbudom-Okah
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers, Nigeria
| | - C. L. Onuah
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers, Nigeria
| | - A. Ogunlaja
- Department of Biological Sciences, Redeemer’s University, Ede, Osun, Nigeria
| |
Collapse
|
31
|
Liu FJ, Dong WY, Zhao H, Shi XH, Zhang YL. Effect of molybdenum on reproductive function of male mice treated with busulfan. Theriogenology 2019; 126:49-54. [PMID: 30530157 DOI: 10.1016/j.theriogenology.2018.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 01/23/2023]
|
32
|
Ganjalikhan Hakemi S, Sharififar F, Haghpanah T, Babaee A, Eftekhar-Vaghefi SH. The Effects of Olive Leaf Extract on The Testis, Sperm Quality and Testicular Germ Cell Apoptosis in Male Rats Exposed to Busulfan. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:57-65. [PMID: 30644246 PMCID: PMC6334023 DOI: 10.22074/ijfs.2019.5520] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/05/2018] [Indexed: 12/24/2022]
Abstract
Background Busulfan (BU) has a destructive effect on the male reproductive system. The goal of this study was to
assess the effects of olive leaf extract (OLE) as a source of antioxidants and phenolic compounds, on BU-induced
damages in rat testes. Materials and Methods In this experimental study, 40 male Wistar rats were randomly divided into 5 groups. The
control group (CTL) received a single intraperitoneal (i.p.) injection of dimethyl sulfoxide (DMSO), followed by
oral administration of distilled water for 5 weeks. In BU group, BU (10 mg/kg) was administrated i.p. once. In co-
treatment groups, first, received BU (10 mg/kg, a single i.p. injection) then, OLE was administrated orally at different
doses of 250 mg/kg (BU+OLE 250), 500 mg/kg (BU+OLE 500) and 750 mg/kg (BU+OLE 750), for 5 weeks. Next,
blood and sperm samples were collected. The left testis was removed to investigate testicular parameters and apop-
tosis by using H&E and TUNEL staining, respectively. All data were analyzed by SPSS software and a P<0.05 was
considered significant. Results There was a significant decline in sperm viability (P=0.017), number of primary spermatocyte (PS) (P=0.001)
and Leydig cells (P=0.023) in the BU group versus the CTL group. OLE at three doses could repair these defects ver-
sus BU group. Increases in apoptotic spermatogonia cells (SG) due to BU were significantly reduced by OLE 250
and 500 mg/kg (P<0.01). A reduction in germinal epithelium height and an increase in apoptotic SG were observed in
BU+OLE 750 group vs. other groups (P<0.01) and alkaline phosphatase (ALP) was at the highest level, also Aspartate
aminotransferase (AST) increased markedly vs. CTL (P=0.024). Conclusion Oral administration of OLE at the doses of 250 and 500 mg/kg could be helpful in ameliorating BU-
induced toxicity in rat testes, while OLE 750 mg/kg not only did not cause positive effects, but also could exacerbate
the harmful effects.
Collapse
Affiliation(s)
- Sepideh Ganjalikhan Hakemi
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Haghpanah
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. Electronic Address:
| | - Abdolreza Babaee
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Hassan Eftekhar-Vaghefi
- Department of Clinical Biochemistry, Babol University of Medical Science, Babol, lran.,Department of Anatomy, Kerman Branch, Islamic Azad University, Kerman, Iran.Electronic Address:
| |
Collapse
|
33
|
Vafaei A, Mohammadi S, Fazel A, Soukhtanloo M, Mohammadipour A, Beheshti F. Effects of Carob (Ceratonia siliqua) on Sperm Quality, Testicular Structure, Testosterone Level and Oxidative Stress in Busulfan-Induced Infertile Mice. PHARMACEUTICAL SCIENCES 2018. [DOI: 10.15171/ps.2018.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
34
|
Dehghani F, Sotoude N, Bordbar H, Panjeshahin M, Karbalay-Doust S. The use of platelet-rich plasma (PRP) to improve structural impairment of rat testis induced by busulfan. Platelets 2018; 30:513-520. [DOI: 10.1080/09537104.2018.1478400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Farzaneh Dehghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Sotoude
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Bordbar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M.R. Panjeshahin
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Haghi-Aminjan H, Asghari MH, Farhood B, Rahimifard M, Hashemi Goradel N, Abdollahi M. The role of melatonin on chemotherapy-induced reproductive toxicity. J Pharm Pharmacol 2017; 70:291-306. [DOI: 10.1111/jphp.12855] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
Reproductive malfunctions after chemotherapy still are a reason of reducing fertility and need specialized intensive care. The aim of this review was to investigate the effect of melatonin on the reproductive system under threatening with chemotherapeutic drugs.
Methods
To find the role of melatonin in the reproductive system during chemotherapy, a full systematic literature search was carried out based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines in the electronic databases up to 17 April 2017 using search terms in the titles and abstracts. A total of 380 articles are screened according to our inclusion and exclusion criteria. Finally, 18 articles were included in this study.
Key findings
It has been cleared that melatonin has bilateral effects on reproductive cells. Melatonin protects normal cells via mechanisms, including decrease in oxidative stress, apoptosis, inflammation and modulating mitochondrial function, and sexual hormones. Furthermore, melatonin with antiproliferative properties and direct effects on its receptors improves reproductive injury and function during chemotherapy. On the other hand, melatonin sensitizes the effects of chemotherapeutic drugs and enhances chemotherapy-induced toxicity in cancerous cells through increasing apoptosis, oxidative stress and mitochondrial malfunction.
Conclusions
The study provides evidence of the bilateral role of melatonin in the reproductive system during chemotherapy.
Collapse
Affiliation(s)
- Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Kang Z, Qiao N, Tan Z, Tang Z, Li Y. Expression patterns and changes of the LCN2 gene in the testes of induced cryptorchidism and busulfan-treated mice. Syst Biol Reprod Med 2017; 63:364-369. [PMID: 28771045 DOI: 10.1080/19396368.2017.1355416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lipocalin-2 (LCN2) was known to play various roles in different type cells; however, little was known about the effect of LCN2 in male fertility. In this study, we aimed to explore the expression pattern of LCN2 with increasing age in mice, and to obtain insight into the role of LCN2 in mice testes by induced cryptorchidism and busulfan-treated infertility. In situ hybridization showed that LCN2 was localized primarily in Leydig cells, but was absent in Sertoli and germ cells. Its expression in testes exhibited an age-related increase from day 1 to 8 months, then reduced by the twelth month. The mRNA and protein levels of LCN2 in the testes of both infertile models increased as measured by real-time PCR and western blotting, respectively. LCN2 mRNA and protein levels were higher (p<0.05) in busulfan treated mice than that of cryptorchidism. These observations have shown that LCN2 is developmentally regulated and highly expressed in the Leydig cells of mouse testes.
Collapse
Affiliation(s)
- Zhenlong Kang
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Na Qiao
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Zhigang Tan
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Zhaoxin Tang
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China
| | - Ying Li
- a College of Veterinary Medicine , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases , Guangzhou , China
| |
Collapse
|
37
|
Abd-Elrazek AM, Ahmed-Farid OAH. Protective effect of L-carnitine and L-arginine against busulfan-induced oligospermia in adult rat. Andrologia 2017; 50. [DOI: 10.1111/and.12806] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2017] [Indexed: 01/21/2023] Open
Affiliation(s)
- A. M. Abd-Elrazek
- Physiology Department; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| | - O. A. H. Ahmed-Farid
- Physiology Department; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| |
Collapse
|
38
|
Lee BH, Kim HK, Jang M, Kim HJ, Choi SH, Hwang SH, Kim HC, Rhim H, Cho IH, Nah SY. Effects of Gintonin-Enriched Fraction in an Atopic Dermatitis Animal Model: Involvement of Autotaxin Regulation. Biol Pharm Bull 2017; 40:1063-1070. [DOI: 10.1248/bpb.b17-00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| | - Ho-Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| |
Collapse
|
39
|
Lee D, Kang KS, Yu JS, Woo JY, Hwang GS, Eom DW, Baek SH, Lee HL, Kim KH, Yamabe N. Protective effect of Korean Red Ginseng against FK506-induced damage in LLC-PK1 cells. J Ginseng Res 2016; 41:284-289. [PMID: 28701868 PMCID: PMC5489745 DOI: 10.1016/j.jgr.2016.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/09/2016] [Accepted: 05/15/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Compound FK506 is an immunosuppressant agent that is frequently used to prevent rejection of solid organs upon transplant. However, nephrotoxicity due to apoptosis and inflammatory response mediated by FK506 limit its usefulness. In this study, the protective effect of Korean Red Ginseng (KRG) against FK506-induced damage in LLC-PK1 pig kidney epithelial cells was investigated. METHODS LLC-PK1 cells were exposed to FK506 with KRG and cell viability was measured. Western blotting and RT-PCR analyses evaluated protein expression of MAPKs, caspase-3, and KIM-1. TLR-4 gene expression was assessed. Caspase-3 activities were also determined. The number of apoptotic cells was measured using an image-based cytometric assay. RESULTS The reduction in LLC-PK1 cell viability by 60μM FK506 was recovered by KRG cotreatment in a dose-dependent manner. The phosphorylation of p38, p44/42 MAPKs (ERK), KIM-1, cleaved caspase-3, and TLR-4 mRNA expression was increased markedly in LLC-PK1 cells treated with 60μM FK506. However, with the exception of p-ERK, elevated levels of p-p38, KIM-1, cleaved caspase-3, and TLR-4 mRNA expression were significantly decreased after cotreatment with KRG. Activity level of caspase-3 was also attenuated by KRG cotreatment. Moreover, image-based cytometric assay showed that apoptotic cell death was increased by 60μM FK506 treatment, whereas it was decreased after cotreatment with KRG. CONCLUSION Taken together, these results suggest that the molecular mechanism of KRG in the FK506-induced nephrotoxicity may lead to the development of an adjuvant for the inhibition of adverse effect FK506 in the kidney.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung-Yoon Woo
- The Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Dae-Woon Eom
- Department of Pathology, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, Republic of Korea
| | - Seung-Hoon Baek
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Hye Lim Lee
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author. School of Pharmxacy, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea.
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
- Corresponding author. College of Korean Medicine, Gachon University, 1342 Seongnamdaero, Seongnam 13120, Republic of Korea.
| |
Collapse
|
40
|
Effect of human recombinant granulocyte colony-stimulating factor on rat busulfan-induced testis injury. J Mol Histol 2015; 47:59-67. [DOI: 10.1007/s10735-015-9647-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/15/2015] [Indexed: 02/08/2023]
|