1
|
Piva A, Benvegnù G, Negri S, Commisso M, Ceccato S, Avesani L, Guzzo F, Chiamulera C. Whole Plant Extracts for Neurocognitive Disorders: A Narrative Review of Neuropsychological and Preclinical Studies. Nutrients 2024; 16:3156. [PMID: 39339756 PMCID: PMC11434991 DOI: 10.3390/nu16183156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The incidence of neurodegenerative disorders like Alzheimer's or Parkinson's Disease, characterized by a progressive cognitive decline, is rising worldwide. Despite the considerable efforts to unveil the neuropsychological bases of these diseases, there is still an unmet medical need for effective therapies against cognitive deficits. In recent years, increasing laboratory evidence indicates the potential of phytotherapy as an integrative aid to improve cognitive functions. In this review, we describe the data of plant whole extracts or single compounds' efficacy on validated preclinical models and neuropsychological tests, aiming to correlate brain mechanisms underlying rodent behavioral responses to human findings. After a search of the literature, the overview was limited to the following plants: Dioscorea batatas, Ginkgo biloba, Melissa officinalis, Nigella sativa, Olea europaea, Panax ginseng, Punica granatum, and Vitis vinifera. Results showed significant improvements in different cognitive functions, such as learning and memory or visuospatial abilities, in both humans and rodents. However, despite promising laboratory evidence, clinical translation has been dampened by a limited pharmacological characterization of the single bioactive components of the herbal products. Depicting the contribution of the single phytochemicals to the phytocomplex's pharmacological efficacy could enable the comprehension of their potential synergistic activity, leading to phytotherapy inclusion in the existing therapeutic package against cognitive decline.
Collapse
Affiliation(s)
- Alessandro Piva
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
| | - Giulia Benvegnù
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
| | - Stefano Negri
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Mauro Commisso
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Sofia Ceccato
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
| | - Linda Avesani
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Flavia Guzzo
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Cristiano Chiamulera
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy; (A.P.); (G.B.); (C.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy; (S.N.); (M.C.); (L.A.); (F.G.)
| |
Collapse
|
2
|
Momeni Safarabadi A, Gholami M, Kordestani-Moghadam P, Ghaderi R, Birjandi M. The effect of rosemary hydroalcoholic extract on cognitive function and activities of daily living of patients with chronic obstructive pulmonary disease (COPD): A clinical trial. Explore (NY) 2024; 20:362-370. [PMID: 37758539 DOI: 10.1016/j.explore.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND In patients living with chronic obstructive pulmonary disease (COPD), cognitive impairment and reduced activities of daily living (ADLs) are associated with poor clinical outcomes. AIM The aim of the present study was to determine the effect of rosemary hydroalcoholic extract on cognitive function and ADLs in patients with COPD. METHODS A total of 77 COPD patients aged 40-80 years were assigned to two intervention and control groups by random stratified block method in the current tripleblind clinical trial. The intervention group received 500 mg rosemary capsules and the control group received oral capsules containing corn powder twice a day, one to two hours before breakfast and dinner, for two months. The Montreal Cognitive Assessment-Basic (MoCA-B), London Chest Activity of Daily Living scale (LCADL) and Lawton Instrumental Activities of Daily Living (IADL) were used to measure cognitive function and the measure of basic and instrumental daily life activities, before and after the intervention, respectively. RESULTS The mean total score of cognitive function (P = 0.022) and the two subscales of abstraction (P = 0.003) and naming (P = 0.034) significantly increased after the intervention in the intervention group. There was no significant difference between the intervention and control groups in terms of changes in the mean scores of IADL and LCADL (P < 0.05). The final statistical model showed that the changes in the total mean score of cognitive function (P = 0.014) and IADL (P = 0.047) in intervention group patients are significantly higher than in the control group after adjusting the effect of obstructive sleep apnea (OSA). CONCLUSION The rosemary hydroalcoholic extract can be effective in improving cognitive function and IADL in patients with COPD, but not LCADL. CLINICAL TRIALS REGISTRATION NUMBER IRCT20150919024080N16.
Collapse
Affiliation(s)
| | - Mohammad Gholami
- Social Determinants of Health Research Center, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, 6814993165, Iran.
| | - Parastou Kordestani-Moghadam
- Razi Herbal Medicines Research Center, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Reza Ghaderi
- Department of Pulmonology, Science and Research Branch, Iran Medical Sciences University, Tehran, Iran.
| | - Mehdi Birjandi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
3
|
Su J, Su Q, Hu S, Ruan X, Ouyang S. Research Progress on the Anti-Aging Potential of the Active Components of Ginseng. Nutrients 2023; 15:3286. [PMID: 37571224 PMCID: PMC10421173 DOI: 10.3390/nu15153286] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Aging is a cellular state characterized by a permanent cessation of cell division and evasion of apoptosis. DNA damage, metabolic dysfunction, telomere damage, and mitochondrial dysfunction are the main factors associated with senescence. Aging increases β-galactosidase activity, enhances cell spreading, and induces Lamin B1 loss, which further accelerate the aging process. It is associated with a variety of diseases, such as Alzheimer's disease, Parkinson's, type 2 diabetes, and chronic inflammation. Ginseng is a traditional Chinese medicine with anti-aging effects. The active components of ginseng, including saponins, polysaccharides, and active peptides, have antioxidant, anti-apoptotic, neuroprotective, and age-delaying effects. DNA damage is the main factor associated with aging, and the mechanism through which the active ingredients of ginseng reduce DNA damage and delay aging has not been comprehensively described. This review focuses on the anti-aging mechanisms of the active ingredients of ginseng. Furthermore, it broadens the scope of ideas for further research on natural products and aging.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qiaofen Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China;
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
4
|
Kim HJ, Lee MY, Kim GR, Lee HJ, Sayson LV, Ortiz DMD, Cheong JH, Kim M. Korean red ginseng extract attenuates alcohol-induced addictive responses and cognitive impairments by alleviating neuroinflammation. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
5
|
Nguyen BT, Shin EJ, Jeong JH, Sharma N, Tran NKC, Nguyen YND, Kim DJ, Wie MB, Lee Y, Byun JK, Ko SK, Nah SY, Kim HC. Mountain-cultivated ginseng protects against cognitive impairments in aged GPx-1 knockout mice via activation of Nrf2/ChAT/ERK signaling pathway. J Ginseng Res 2023. [DOI: 10.1016/j.jgr.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
6
|
Abdelghany AK, El-Nahass ES, Ibrahim MA, El-Kashlan AM, Emeash HH, Khalil F. Neuroprotective role of medicinal plant extracts evaluated in a scopolamine-induced rat model of Alzheimer's disease. Biomarkers 2022; 27:773-783. [PMID: 35950787 DOI: 10.1080/1354750x.2022.2112975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BackgroundAlzheimer's disease is a debilitating neurological brain disease with memory impairment among the first signs. Scopolamine (SCO), a muscarinic receptor antagonist that disrupts cognition and memory acquisition, is considered a psychopharmacological AD model. We investigate the effectiveness of medicinal plants in mitigating the SCO-induced neurobehavioural damage in rats.Materials and MethodsAnimals were injected with Scopolamine hydrobromide trihydrate (2.2 mg/kg IP.) daily for 2 months. Each treatment group was administered one of four medicinal spice extracts (Nigella sativa, 400 mg/kg; rosemary, 200 mg/kg; sage, 600 mg/kg and ginseng;200 mg/kg 90 minutes after SCO injection. Animals were subjected to cognitive-behavioral tests (NOR, Y-maze, and MWM). After the experiment, we extracted the brains for histopathological examination and biochemical assessment for oxidative stress (levels of TT, CAT and TBARS) and gene expression of acetylcholinesterase and brain monoamines.ResultsAs expected, SCO treatment impaired memory and cognition, increased oxidative stress, decreased neurotransmitters, and caused severe neurodegenerative changes in the brain.ConclusionSurprisingly, these effects were measurably moderated by the administration of all four plant extracts, indicating a neuroprotective action that we suggest could alleviate AD disease manifestations.
Collapse
Affiliation(s)
- Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - El-Shymaa El-Nahass
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University
| | - Akram M El-Kashlan
- Biochemistry Department, Faculty of Pharmacy, University of Sadat City, Monufia, Egypt
| | - H H Emeash
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
7
|
Clinical and Preclinical Studies of Fermented Foods and Their Effects on Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11050883. [PMID: 35624749 PMCID: PMC9137914 DOI: 10.3390/antiox11050883] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The focus on managing Alzheimer’s disease (AD) is shifting towards prevention through lifestyle modification instead of treatments since the currently available treatment options are only capable of providing symptomatic relief marginally and result in various side effects. Numerous studies have reported that the intake of fermented foods resulted in the successful management of AD. Food fermentation is a biochemical process where the microorganisms metabolize the constituents of raw food materials, giving vastly different organoleptic properties and additional nutritional value, and improved biosafety effects in the final products. The consumption of fermented foods is associated with a wide array of nutraceutical benefits, including anti-oxidative, anti-inflammatory, neuroprotective, anti-apoptotic, anti-cancer, anti-fungal, anti-bacterial, immunomodulatory, and hypocholesterolemic properties. Due to their promising health benefits, fermented food products have a great prospect for commercialization in the food industry. This paper reviews the memory and cognitive enhancement and neuroprotective potential of fermented food products on AD, the recently commercialized fermented food products in the health and food industries, and their limitations. The literature reviewed here demonstrates a growing demand for fermented food products as alternative therapeutic options for the prevention and management of AD.
Collapse
|
8
|
Chanmanee T, Wongpun J, Tocharus C, Govitrapong P, Tocharus J. The effects of agomelatine on endoplasmic reticulum stress related to mitochondrial dysfunction in hippocampus of aging rat model. Chem Biol Interact 2022; 351:109703. [PMID: 34673010 DOI: 10.1016/j.cbi.2021.109703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Agomelatine, a novel antidepressant, is a melatonin MT receptor agonist and serotonin 5HT2C receptor antagonist. In this study, agomelatine was used to investigate the molecular mechanisms of hippocampal aging associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and apoptosis, all of which led to short-term memory impairment. METHOD Hippocampal aging was induced in male Wistar rats by d-galactose (D-gal) intraperitoneal injection (100 mg/kg) for 14 weeks. During the last 4 weeks of D-gal treatment, rats were treated with agomelatine (40 mg/kg) or melatonin (10 mg/kg). At the end of the experiment, all rats were assessed for short-term memory by using the Morris water maze test. Subsequently, rats were sacrified and the hippocampus was removed from each rat for determination of reactive oxygen species (ROS), malondialdehyde (MDA), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays; and immunohistochemistry related to ER stress, mitochondrial dysfunction, and apoptosis. RESULTS Agomelatine suppressed the expression of the aging-related proteins P16 and receptor for advanced glycation endproducts (RAGE), the expression of NADPH oxidase (NOX) 2 and 4, and ROS production. This treatment also shifted the morphology of astrocytes and microglia toward homeostasis. Furthermore, agomelatine decreased inositol-requiring enzyme 1 (pIRE1), protein kinase R-like endoplasmic reticulum kinase (pPERK), and chaperone binding immunoglobulin protein (BiP), leading to suppression of ER stress markers C/EBP homologous protein (CHOP) and caspase-12. Agomelatine reduced Ca2+ from the ER and stabilized the mitochondrial membrane stability, which was denoted by the BCL2 Associated X (Bax)/B-cell lymphoma 2 (Bcl2) balance. Agomelatine decreased cleaved caspase-3 production and the Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL)-positive area, and glutamate excitotoxicity was prevented via suppression of N-methyl-d-aspartate (NMDA) receptor subunit expression. Agomelatine exhibited effects that were similar to melatonin. CONCLUSION Agomelatine improved neurodegeneration in a rat model of hippocampal aging by attenuating ROS production, ER stress, mitochondrial dysfunction, excitotoxicity, and apoptosis.
Collapse
Affiliation(s)
- Teera Chanmanee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jittiporn Wongpun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Mostafa RE, Shaffie NM, Allam RM. Panax Ginseng alleviates thioacetamide-induced liver injury in ovariectomized rats: Crosstalk between inflammation and oxidative stress. PLoS One 2021; 16:e0260507. [PMID: 34843587 PMCID: PMC8629276 DOI: 10.1371/journal.pone.0260507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
Liver diseases impose a substantial health problem. Female hormones play a crucial role in the protection against chronic inflammatory diseases. Fifty female rats were allocated into five groups (n = 10). Group I comprised sham-operated rats. The remaining groups underwent ovariectomy at the beginning of the experiment. Group II served as the ovariectomy-control group. Groups III, IV & V received thioacetamide (TAA; 300 mg/kg; i.p.) to induce liver injury 6 weeks after ovariectomy. Group III served as the TAA-control group. Groups IV & V received panax ginseng (100 and 300 mg/kg/day, p.o.) for 6 weeks post TAA administration. All groups were investigated for liver function tests along with total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α) and advanced glycation end products (AGEs). Histopathological examination of liver tissues was performed followed by immunohistochemical staining for nuclear factor kappa-B (NF-kβ p65) and myeloperoxidase (MPO). Ovariectomized-rats showed a non-significant change in the measured parameters while TAA administration resulted in significant liver damage. Panax ginseng at both dose levels significantly improved the serum liver function tests and TAC along with decreasing the AGEs and TNF-α. It also restored the histopathological picture of liver tissue and decreased hepatic tissue inflammation via reduction of MPO and NF-kβ p65 immunoreactivity. The current study is the first to elucidate the effect of panax ginseng against TAA-induced liver injury in ovariectomized rats which mimic aged post-menopausal estrogen-deficient females. The study demonstrates the crosstalk between AGEs, NF-kβ and MPO in the modulation of inflammation. Panax ginseng possesses antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Rasha E. Mostafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Nermeen M. Shaffie
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Rasha M. Allam
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Shin SJ, Nam Y, Park YH, Kim MJ, Lee E, Jeon SG, Bae BS, Seo J, Shim SL, Kim JS, Han CK, Kim S, Lee YY, Moon M. Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer's disease. Free Radic Biol Med 2021; 164:233-248. [PMID: 33422674 DOI: 10.1016/j.freeradbiomed.2020.12.454] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
Biological aging provokes morbidity and several functional declines, causing older adults more susceptible to a variety of diseases than younger adults. In particular, aging is a major risk factor contributing to non-communicable diseases, such as neurodegenerative disorders. Alzheimer's disease (AD) is an aging-related neurodegenerative disease that is characterized by cognitive deficits and the formation of amyloid plaques formed by the accumulation of amyloid-β (Aβ) peptides. Non-saponin fraction with rich polysaccharide (NFP) from red ginseng, the largest fraction of the components of red ginseng, perform many biological activities. However, it has not been clarified whether the NFP from Korean red ginseng (KRG) has beneficial effects in the aging and AD. First, proteomics analysis was performed in aged brain to identify the effect of NFP on protein changes, and we confirmed that NFP induced changes in proteins related to the neuroprotective- and neurogenic-effects. Next, we investigated (1) the effects of NFP on AD pathologies, such as Aβ deposition, neuroinflammation, neurodegeneration, mitochondrial dysfunction, and impaired adult hippocampal neurogenesis (AHN), in 5XFAD transgenic mouse model of AD using immunostaining; (2) the effect of NFP on Aβ-mediated mitochondrial respiration deficiency in HT22 mouse hippocampal neuronal cells (HT22) using Seahorse XFp analysis; (3) the effect of NFP on cell proliferation using WST-1 analysis; and (4) the effect of NFP on Aβ-induced cognitive dysfunction in 5XFAD mouse model of AD using Y-maze test. Histological analysis indicated that NFP significantly alleviated the accumulation of Aβ, neuroinflammation, neuronal loss, and mitochondrial dysfunction in the subiculum of 5XFAD mouse model of AD. In addition, NFP treatment ameliorated mitochondrial deficits in Aβ-treated HT22 cells. Moreover, NFP treatment significantly increased the AHN and neuritogenesis of neural stem cells in both healthy and AD brains. Furthermore, NFP significantly increased cell proliferation in the HT22 cells. Finally, NFP administration significantly enhanced and restored the cognitive function of healthy and AD mice, respectively. Taken together, NFP treatment demonstrated changes in proteins involved in central nervous system organization/maintenance in aged brain and ameliorates AD pathology. Collectively, our findings suggest that NFP from KRG could be a potential therapeutic candidate for aging and AD treatments.
Collapse
Affiliation(s)
- Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Min-Jeong Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Eunbeen Lee
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Seong Gak Jeon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Bong-Seok Bae
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea
| | - Jiho Seo
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea
| | - Sung-Lye Shim
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Chang-Kyun Han
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea.
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon, 34128, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
11
|
Musillo C, Borgi M, Saul N, Möller S, Luyten W, Berry A, Cirulli F. Natural products improve healthspan in aged mice and rats: A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 121:89-105. [PMID: 33309907 DOI: 10.1016/j.neubiorev.2020.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Over the last decades a decrease in mortality has paved the way for late onset pathologies such as cardiovascular, metabolic or neurodegenerative diseases. This evidence has led many researchers to shift their focus from researching ways to extend lifespan to finding ways to increase the number of years spent in good health; "healthspan" is indeed the emerging concept of such quest for ageing without chronic or disabling diseases and dysfunctions. Regular consumption of natural products might improve healthspan, although the mechanisms of action are still poorly understood. Since preclinical studies aimed to assess the efficacy and safety of these compounds are growing, we performed a systematic review and meta-analysis on the effects of natural products on healthspan in mouse and rat models of physiological ageing. Results indicate that natural compounds show robust effects improving stress resistance and cognitive abilities. These promising data call for further studies investigating the underlying mechanisms in more depth.
Collapse
Affiliation(s)
- Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy; PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Marta Borgi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Nadine Saul
- Molecular Genetics Group, Faculty of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Steffen Möller
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057, Rostock, Germany
| | | | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
12
|
Nam YH, Jeong SY, Kim YH, Rodriguez I, Nuankaew W, Bhawal UK, Hong BN, Kang TH. Anti-aging effects of Korean Red Ginseng (KRG) in differentiated embryo chondrocyte (DEC) knockout mice. J Ginseng Res 2020; 45:183-190. [PMID: 33437170 PMCID: PMC7790900 DOI: 10.1016/j.jgr.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 09/11/2020] [Indexed: 01/15/2023] Open
Abstract
Background The circadian rhythm is the internal clock that controls sleep-wake cycles, metabolism, cognition, and several processes in the body, and its disruption has been associated with aging. The differentiated embryo chondrocyte (Dec) gene is related to circadian rhythm. To our knowledge, there are no reports of the relationship between dec gene expression and KRG effect. Therefore, we treated Dec gene knockout (KO) aging mice with KRG to study anti-aging related effects and possible mechanisms. Methods We evaluated KRG and expression of Dec genes in an ototoxicity model. Dec genes expression in livers of aging mice was further analyzed. Then, we assessed the effects of DEC KO on hearing function in mice by ABR. Finally, we performed DNA microarray to identify KRG-related gene expression changes in mouse liver and assessed the results using KEGG analysis. Results KRG decreased the expression of Dec genes in ototoxicity model, which may contribute to its anti-aging efficacy. Moreover, KRG suppressed Dec genes expression in liver of wild type indicating inhibition of senescence. ABR test indicated that KRG improved auditory function in aging mouse, demonstrating KRG efficacy on aging related diseases. Conclusion Finally, in KEGG analysis of 238 genes that were activated and 158 that were inhibited by KRG in DEC KO mice, activated genes were involved in proliferation signaling, mineral absorption, and PPAR signaling whereas the inhibited genes were involved in arachidonic acid metabolism and peroxisomes. Our data indicate that inhibition of senescence-related Dec genes may explain the anti-aging efficacy of KRG.
Collapse
Affiliation(s)
- Youn Hee Nam
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea
| | - Seo Yule Jeong
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea
| | - Yun Hee Kim
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea
| | - Isabel Rodriguez
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea
| | - Wanlapa Nuankaew
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea
| | - Ujjal K. Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Bin Na Hong
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, Republic of Korea
- Corresponding author. Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi, 17104, Republic of Korea
| |
Collapse
|
13
|
Oizumi H, Miyazaki S, Tabuchi M, Endo T, Omiya Y, Mizoguchi K. Kamikihito Enhances Cognitive Functions and Reward-Related Behaviors of Aged C57BL/6J Mice in an Automated Behavioral Assay System. Front Pharmacol 2020; 11:1037. [PMID: 32765263 PMCID: PMC7379479 DOI: 10.3389/fphar.2020.01037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
The cognitive and psychological domains of frailty in the elderly have drawn increasing attention given the aging of society. However, therapeutics to treat minor deficits in cognition and mental state in the elderly remain an unmet need. Kamikihito (KKT), a traditional Japanese Kampo medicine indicated for neuroses, anxiety, and insomnia, is effective for treating cognitive dysfunction and depressive-like behaviors in animal models, suggesting that it may have therapeutic potential for treating cognitive and/or mental frailty. In this study, we first validated the known anxiolytic effects of KKT in a conventional maze test. We then introduced an automated behavioral assay system, IntelliCage, to evaluate the therapeutic potential of KKT for age-related and diverse central functions by performing sequential behavioral tasks in young and aged mice to assess basal activities, cognitive functions, perseveration, and hedonic-related behaviors. Although young mice treated with KKT did not exhibit changes in diurnal variation, KKT-administered aged mice exhibited an accelerated decline in voluntary activity during the early part of the light period, implying that KKT may promote sleep onset in aged mice. Neither place learning acquisition for gaining rewards nor subsequent behavioral flexibility performance was altered by KKT in the young group, whereas the aged KKT group exhibited significantly enhanced performance in both phases of learning relative to age-matched controls. Conversely, perseverative nose-pokes (NPs) to gain rewards observed during place learning, indicative of compulsivity, were attenuated by KKT in both age groups. Regarding hedonic processing, aged mice exhibited a decreased preference for sweet solutions compared to young mice, which was effectively reversed by KKT treatment. Furthermore, KKT elevated high-effort choices for high-value reward in an effort-based decision-making paradigm in both age groups, implying augmentation of motivational behaviors by KKT. Collectively, KKT exerted various beneficial effects in cognitive and emotional domains, several of which were more evident in aged mice than in young mice, suggesting the potential of KKT for treating cognitive and mental frailty.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Shinji Miyazaki
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Masahiro Tabuchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | | - Yuji Omiya
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | |
Collapse
|
14
|
Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7829842. [PMID: 32685100 PMCID: PMC7350179 DOI: 10.1155/2020/7829842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/18/2022]
Abstract
Tau, a microtubule-associated protein expressed in mature neurons, interacts with tubulin to promote the assembly and stabilization of microtubules. However, abnormally hyperphosphorylated tau dissociates from microtubules and self-aggregates. Tau aggregates, including paired helical filaments and neurofibrillary tangles, promote neuronal dysfunction and death and are the defining neuropathological feature of tauopathies. Therefore, suppressing tau aggregation or stimulating the dissociation of tau aggregates has been proposed as an effective strategy for treating neurodegenerative diseases associated with tau pathology such as Alzheimer's disease (AD) and frontotemporal dementia. Interestingly, ginsenosides extracted from Panax ginseng reduced the hippocampal and cortical expression of phosphorylated tau in a rat model of AD. However, no studies have been conducted into the effect of red ginseng (RG) and its components on tau pathology. Here, we evaluated the effect of Korean red ginseng extract (KRGE) and its components on the aggregation and disassociation of tau. Using the thioflavin T assay, we monitored the change in fluorescence produced by the aggregation or disassociation of tau K18, an aggregation-prone fragment of tau441 containing the microtubule-binding domain. Our analysis revealed that KRGE not only inhibited tau aggregation but also promoted the dissociation of tau aggregates. In addition, the KRGE fractions, such as saponin, nonsaponin, and nonsaponin fraction with rich polysaccharide, also inhibited tau aggregation and promoted the dissociation of tau aggregates. Our observations suggest that RG could be a potential therapeutic agent for the treatment of neurodegenerative diseases associated with tauopathy.
Collapse
|
15
|
Zheng S. Protective effect of Polygonatum sibiricum Polysaccharide on D-galactose-induced aging rats model. Sci Rep 2020; 10:2246. [PMID: 32042011 PMCID: PMC7010663 DOI: 10.1038/s41598-020-59055-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/21/2020] [Indexed: 11/09/2022] Open
Abstract
The polysaccharide of Polygonatum sibiricum (PSP)is one of the main active ingredients of Polygonatum Polygonatum in Liliaceae. It has anti-tumor, anti-aging, immune regulation, and anti-oxidative effects. Recent studies have shown that the Klotho gene and fibroblast growth factor-23 (FGF-23) have a common receptor, which is closely related to aging and highly expressed in kidney and meninges. Our study aimed to investigate the anti-aging effect of PSP on D-galactose-induced rats and its mechanism. D-galactose (120 mg Kg-1) and PSP (100 mg Kg-1) was used to intervene in rats, respectively. Then The changes of indexes of the natural aging-like model rats before and after PSP intervention were observed. We found that PSP could significantly improve the learning and memory abilities of rats and reverse the pathological changes of kidney tissues in rats. At the same time, PSP up-regulated the expression of Klotho mRNA and Klotho protein in the renal cortex, down-regulated the expression of FOXO3a mRNA and p-FOXO3a protein in renal tissue, and inhibited the expression of FGF-23 protein in the femur. Our studies suggest that PSP may play a role by regulating the Klotho-FGF23 endocrine axis, alleviating oxidative stress, and balancing calcium and phosphorus metabolism.
Collapse
Affiliation(s)
- Shaoyan Zheng
- Pharmacy Department, Foshan Women And Children Hospital Affiliated to Southern Medical University, Foshan, P.R. China.
| |
Collapse
|
16
|
Hou W, Pei J, Wang Y, Zhang J, Zheng H, Cui R. Anti-ageing effects of red ginseng on female Drosophila melanogaster. J Cell Mol Med 2020; 24:3751-3755. [PMID: 32022406 PMCID: PMC7131930 DOI: 10.1111/jcmm.15029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 11/30/2022] Open
Abstract
Red ginseng (RG) was recently reported to extend the lifespan of Drosophila melanogaster. However, the mechanism underlying this effect has not yet been elucidated. The present study aimed to elucidate the molecular mechanisms of the RG‐mediated prolongation of the lifespan of female D melanogaster. In this study, protein changes in 36‐day‐old female D melanogaster were identified using isobaric tag for relative and absolute quantitation (iTRAQ), and levels of differentially expressed proteins were verified by quantitative real‐time PCR and Western blotting. Our studies have shown that RG concentrations of 12.5, 15 and 17.5 mg/mL significantly prolonged the lifespan. Eleven proteins were up‐regulated and 46 were down‐regulated between the RG and control groups; and Pebp1 expression was significantly down‐regulated. In addition, AKT and p‐AKT were down‐regulated, and ERK, p‐ERK and Raf1 were up‐regulated by RG. Therefore, RG significantly prolonged the lifespan of female D melanogaster by reducing the expression of Pebp1, up‐regulating ERK and inhibiting the AKT pathway. RG may be a potential drug for anti‐ageing treatment.
Collapse
Affiliation(s)
- Wei Hou
- School of Pharmaceutical Sciences, Jilin University, Changchun, China.,Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jin Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - YingPing Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - HouSheng Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Ryu S, Jeon H, Kim HY, Koo S, Kim S. Korean red ginseng promotes hippocampal neurogenesis in mice. Neural Regen Res 2020; 15:887-893. [PMID: 31719254 PMCID: PMC6990786 DOI: 10.4103/1673-5374.268905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurogenesis in the adult hippocampus plays a major role in cognitive ability of animals including learning and memory. Korean red ginseng (KRG) has long been known as a medicinal herb with the potential to improve learning and memory; however, the mechanisms are still elusive. Therefore, we evaluated whether KRG can promote cognitive function and enhance neurogenesis in the hippocampus. Eight-week-old male C57BL/6 mice received 50 mg/kg of 5-bromo-2'-deoxyuridine (BrdU) intraperitoneally and 100 mg/kg of KRG or vehicle orally once a day for 14 days. Pole, Rotarod and Morris water maze tests were performed and the brains were collected after the last behavioral test. Changes in the numbers of BrdU- and BrdU/doublecortin (DCX; a marker for neuronal precursor cells and immature neurons)-positive cells in the dentate gyrus and the gene expression of proliferating cell nuclear antigen (a marker for cell differentiation), cerebral dopamine neurotrophic factor and ciliary neurotrophic factor in the hippocampus were then investigated. KRG-treated mice came down the pole significantly faster and stood on the rotarod longer than vehicle-treated mice. The Morris water maze test showed that KRG administration enhanced the learning and memory abilities significantly. KRG also significantly increased BrdU- and BrdU/DCX-positive cells in the dentate gyrus as well as the proliferating cell nuclear antigen, cerebral dopamine neurotrophic factor and ciliary neurotrophic factor mRNA expression levels in the hippocampus compared to vehicle. Administration of KRG promotes learning and memory abilities, possibly by enhancing hippocampal neurogenesis. This study was approved by the Pusan National University Institutional Animal Care and Use Committee (approval No. PNU-2016-1071) on January 19, 2016.
Collapse
Affiliation(s)
- Sun Ryu
- Korean Medicine Research Center for Healthy Aging, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Hyongjun Jeon
- Korean Medicine Research Center for Healthy Aging; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Hee-Young Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Sungtae Koo
- Korean Medicine Research Center for Healthy Aging; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Seungtae Kim
- Korean Medicine Research Center for Healthy Aging; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
18
|
Shin SJ, Jeon SG, Kim JI, Jeong YO, Kim S, Park YH, Lee SK, Park HH, Hong SB, Oh S, Hwang JY, Kim HS, Park H, Nam Y, Lee YY, Kim JJ, Park SH, Kim JS, Moon M. Red Ginseng Attenuates Aβ-Induced Mitochondrial Dysfunction and Aβ-mediated Pathology in an Animal Model of Alzheimer's Disease. Int J Mol Sci 2019; 20:E3030. [PMID: 31234321 PMCID: PMC6627470 DOI: 10.3390/ijms20123030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/19/2019] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aβ) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development. Interestingly, red ginseng (RG) has been demonstrated to have beneficial effects on AD pathology. However, there is no evidence showing whether RG extract (RGE) can inhibit the mitochondrial deficit-mediated pathology in the experimental models of AD. The effects of RGE on Aβ-mediated mitochondrial deficiency were investigated in both HT22 mouse hippocampal neuronal cells and the brains of 5XFAD Aβ-overexpressing transgenic mice. To examine whether RGE can affect mitochondria-related pathology, we used immunohistostaining to study the effects of RGE on Aβ accumulation, neuroinflammation, neurodegeneration, and impaired adult hippocampal neurogenesis in hippocampal formation of 5XFAD mice. In vitro and in vivo findings indicated that RGE significantly improves Aβ-induced mitochondrial pathology. In addition, RGE significantly ameliorated AD-related pathology, such as Aβ deposition, gliosis, and neuronal loss, and deficits in adult hippocampal neurogenesis in brains with AD. Our results suggest that RGE may be a mitochondria-targeting agent for the treatment of AD.
Collapse
Affiliation(s)
- Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Korea.
| | - Yu-On Jeong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Seong-Kyung Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Sua Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Ji-Young Hwang
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - HyunHee Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon 34128, Korea.
| | - Jwa-Jin Kim
- Department of Nephrology, School of Medicine, Chungnam National University, Daejeon 35015, Korea.
| | - Sun-Hyun Park
- R&D center for Advanced Pharmaceuticals & Evaluation, Korea Institute of toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea.
| |
Collapse
|
19
|
Onaolapo AY, Obelawo AY, Onaolapo OJ. Brain Ageing, Cognition and Diet: A Review of the Emerging Roles of Food-Based Nootropics in Mitigating Age-related Memory Decline. Curr Aging Sci 2019; 12:2-14. [PMID: 30864515 PMCID: PMC6971896 DOI: 10.2174/1874609812666190311160754] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Age-related cognitive decline has been suggested to result from an increase in the brain neuron loss, which is attributable to continued derangement of the brain's oxidant/ antioxidant balance. Increased oxidative stress and a concomitant decrease in the brain's antioxidant defense system have been associated with functional senescence and organismal ageing. However, nature has configured certain foods to be rich sources of nootropic agents, with research showing that increased consumption of such foods or food ingredients may be protective against ageing-related memory decline. This knowledge is becoming increasingly valuable in an era when the boundary that separates food from medicine is becoming blurred. In this review, we examine extant literature dealing with the impact of ageing on brain structure and function, with an emphasis on the roles of oxidative stress. Secondly, we review the benefits of food-based antioxidants with nootropic effects and/or food-based nootropic agents in mitigating memory decline; with a view to improving our understanding of likely mechanisms. We also highlight some of the limitations to the use of food-based nootropics and suggest ways in which they can be better employed in the clinical management of age-related cognitive decline. CONCLUSION While it is known that the human brain endures diverse insults in the process of ageing, food-based nootropics are likely to go a long way in mitigating the impacts of these insults. Further research is needed before we reach a point where food-based nootropics are routinely prescribed.
Collapse
Affiliation(s)
| | | | - Olakunle James Onaolapo
- Address correspondence to this author at the Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke
Akintola University of Technology, Osogbo, Osun State, Nigeria;
Tel: 2347031986101; E-mail:
| |
Collapse
|
20
|
Yang Y, Liang X, Jin P, Li N, Zhang Q, Yan W, Zhang H, Sun J. Screening and determination for potential acetylcholinesterase inhibitory constituents from ginseng stem-leaf saponins using ultrafiltration (UF)-LC-ESI-MS 2. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:26-33. [PMID: 30159954 DOI: 10.1002/pca.2787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/01/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Previous studies have demonstrated that several ginsenosides have remarkable inhibitory effect on acetylcholinesterase (AChE). In the present study, ginseng stem-leaf saponins (GSLS) can improve learning and memory of Alzheimer's disease patients. However, much comprehensive information regarding AChE inhibition of GSLS and its metabolites is yet unknown. OBJECTIVE The present study aims to screen and determine the potential of AChE inhibitors (AChEIs) from GSLS. METHODOLOGY The active fraction of the GSLS detected in vitro AChE inhibition assays was selected as a starting material for the screening of the potential of AChEIs using ultrafiltration liquid chromatography coupled to electrospray ionisation tandem mass spectrometry (UF-LC-ESI-MS2 ). RESULTS The results showed that 31 ginsenosides were identified with analysis using rapid resolution liquid chromatography with a diode array detector combined with electrospray ionisation tandem mass spectrometry (RRLC-DAD-ESI-MS2 ) from the active fraction, and there are 27 compounds with AChE binding activity. Among them, 11 ginsenosides were evaluated and confirmed using in vitro enzymatic assay, and ginsenosides F1 , Rd, Rk3 , 20(S)-Rg3 , F2 and Rb2 were found to possess strong AChE inhibitory activities. CONCLUSION The proposed UF-LC-ESI-MS2 method was a powerful tool for the discovery of AChEIs from traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Yinping Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, P. R. China
| | - Xinhe Liang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, P. R. China
| | - Ping Jin
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, P. R. China
| | - Na Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, P. R. China
| | - Qiao Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, P. R. China
| | - Wei Yan
- College of Pharmacy, Jilin Agriculture University, Changchun, Jilin, P. R. China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, P. R. China
| | - Jiaming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, P. R. China
| |
Collapse
|
21
|
Ryu S, Jeon H, Koo S, Kim S. Korean Red Ginseng Enhances Neurogenesis in the Subventricular Zone of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Treated Mice. Front Aging Neurosci 2018; 10:355. [PMID: 30459594 PMCID: PMC6232267 DOI: 10.3389/fnagi.2018.00355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/18/2018] [Indexed: 11/22/2022] Open
Abstract
Regulation of adult neurogenesis plays an important role in therapeutic strategies for various neurodegenerative diseases. Recent studies have suggested that the enhancement of adult neurogenesis can be helpful in the treatment of Parkinson’s disease (PD). In this study, we investigated whether Korean red ginseng (KRG) can enhance neurogenesis in the subventricular zone (SVZ) of a PD mouse model. To accomplish this, male 8-week-old C57BL/6 mice were injected with vehicle or 20 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) four times at 2 h intervals. After the final injection, they were administered water or 100 mg/kg of KRG extract and injected intraperitoneally with 50 mg/kg of 5’-bromo-2’-deoxyuridine-monophosphate (BrdU) once a day for 14 consecutive days. After the last pole test, dopaminergic neuronal survival in the striatum and the substantia nigra (SN), cell proliferation in the SVZ and mRNA expression of neurotrophic factors and dopamine receptors in the striatum were evaluated. KRG administration suppressed dopaminergic neuronal death induced by MPTP in the striatum as well as the SN, augmented the number of BrdU- and BrdU/doublecortin (Dcx)-positive cells in the SVZ and enhanced the expression of proliferation cell nuclear antigen, brain derived neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF), cerebral dopamine neurotrophic factor (CDNF), ciliary neurotrophic factor (CNTF), dopamine receptor D3 (DRD3) and D5 mRNAs. These results suggest that KRG administration augments neurogenesis in the SVZ of the PD mouse model.
Collapse
Affiliation(s)
- Sun Ryu
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea
| | - Hyongjun Jeon
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Sungtae Koo
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea.,Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - Seungtae Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, South Korea.,Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| |
Collapse
|
22
|
Sun J, Jiao C, Ma Y, Chen J, Wu W, Liu S. Anti-ageing effect of red ginseng revealed by urinary metabonomics using RRLC-Q-TOF-MS. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:387-397. [PMID: 29573298 DOI: 10.1002/pca.2758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/16/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Red ginseng (RG) is one of the main processed products of the roots and rhizomes of Panax ginseng C.A. Meyer and is used for anti-ageing. But how metabonomic influences of RG on the progress of ageing are less researched. OBJECTIVE A metabonomic method was developed to study the characters of the ageing process and the effects of total ginsenosides of red ginseng (TGRG) on the progress of ageing. METHODS Urine samples from four different ages (4, 12, 18 and 24 months old) of rats and interference after TGRG were analysed by rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS) and multivariate statistical analysis were performed for the pattern recognition and characteristic metabolites identification. RESULTS Fourteen potential biomarkers were found and identified by MS/MS analysis by referring to authentic chemicals. The analysis of metabolic pathways indicated that the reduced energy and lipid metabolism, the decline of kidney function and amino acids metabolism disorders were the main features of ageing. After TGRG administration, lipid and amino acids metabolism of 18 and 24 month-old rats were adjusted to restore a younger level, and nine related biomarkers in the ageing process reset to a younger level were recognised. CONCLUSION These changes showed that TGRG may produce an anti-ageing effect by intervening in the lipid metabolism and correcting the amino acid metabolism disorders in ageing rats.
Collapse
Affiliation(s)
- Jinghui Sun
- College of Pharmacy, Beihua University, Jilin, P. R. China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Chuanxin Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Yue Ma
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Jianguang Chen
- College of Pharmacy, Beihua University, Jilin, P. R. China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| |
Collapse
|
23
|
So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018; 42:549-561. [PMID: 30337816 PMCID: PMC6190493 DOI: 10.1016/j.jgr.2018.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Ginseng has been traditionally used for several millennia in Asian countries, including Korea, China, and Japan, not only as a nourishing and tonifying agent but also as a therapeutic agent for a variety of diseases. In recent years, the various effects of red ginseng including immunity improvement, fatigue relief, memory improvement, blood circulation improvement, antioxidation, mitigation of menopausal women's symptoms, and anticancer an effect have been reported in clinical as well as basic research. Around the world, there is a trend of the rising consumption of health functional foods on the level of disease prevention along with increased interest in maintaining health because of population aging and the awareness of lifestyle diseases and chronic diseases. Red ginseng occupies an important position as a health functional food. But till now, international ginseng monographs including those of the World Health Organization have been based on data on white ginseng and have mentioned red ginseng only partly. Therefore, the red ginseng monograph is needed for component of red ginseng, functionality certified as a health functional food in the Korea Food and Drug Administration, major efficacy, action mechanism, and safety. The present red ginseng monograph will contribute to providing accurate information on red ginseng to agencies, businesses, and consumers both in South Korea and abroad.
Collapse
Affiliation(s)
- Seung-Ho So
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jong Won Lee
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Young-Sook Kim
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| |
Collapse
|
24
|
Protective effects of cultured and fermented ginseng extracts against scopolamine-induced memory loss in a mouse model. Lab Anim Res 2018; 34:37-43. [PMID: 29628975 PMCID: PMC5876162 DOI: 10.5625/lar.2018.34.1.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
This study was performed to investigate the effect of a concentrate of fermented wild ginseng root culture (HLJG0701) on memory improvement in the scopolamine (SPL)-induced memory-deficient mouse model. Eight-week-old male ICR mice were used to evaluate the protective effect of HLJG0701 against the SPL-induced memory loss animal model. The Morris water maze test, which measures hippocampus-dependent learning ability, and the Y-maze test, a short-term memory assessment test, were performed and related markers were analyzed. HLJG0701-treated groups displayed significantly reduced acetylcholinesterase activity and increased acetylcholine level compared with the SPL-administered group (SPL-G) (P<0.05). In the Y-maze test, the spontaneous alternation in al HLJG0711-treated groups was significantly increased compared with that in SPL-G (P<0.05). In the Morris water maze test, the escape latency and time spent in the target quadrant in all HLJG0701-treated groups were significantly decreased and increased, respectively, compared with those in SPL-G (P<0.05). In addition, the brain-derived neurotrophic factor level in groups treated with HLJG0701 300 and 600 mg/kg body weight was significantly increased compared with that in SPL-G (P<0.05). These results suggest that the HLJG0701 may protect against memory loss by inhibiting acetylcholinesterase activity and preventing acetylcholine deficiency.
Collapse
|
25
|
Yang Y, Ren C, Zhang Y, Wu X. Ginseng: An Nonnegligible Natural Remedy for Healthy Aging. Aging Dis 2017; 8:708-720. [PMID: 29344412 PMCID: PMC5758347 DOI: 10.14336/ad.2017.0707] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an irreversible physiological process that affects all humans. Numerous theories have been proposed to regarding the process from a Western medicine perspective; however, ancient Chinese medicine practices and theories have increasingly gained attention, particularly ginseng, a grass that has been studied for the anti-aging properties of its active constituents. This review seeks to analyze current data on ginseng and its anti-aging properties. The plant species, characteristics, and active ingredients will be introduced. The main part of this review is focused on ginseng and its active components with regards to their effects on prolonging lifespan, the regulation of multiple organ systems including cardiovascular, nervous, immune, and skin, as well as the anti-oxidant and anti-inflammatory properties. The molecular mechanisms of these properties elucidated via various studies are summarized as further evidence of the anti-aging effects of ginseng.
Collapse
Affiliation(s)
- Yong Yang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing, 100053, China
| | - Yuan Zhang
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - XiaoDan Wu
- Department of Herbal Formula Science, Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
26
|
Zarrinkalam E, Ranjbar K, Salehi I, Kheiripour N, Komaki A. Resistance training and hawthorn extract ameliorate cognitive deficits in streptozotocin-induced diabetic rats. Biomed Pharmacother 2017; 97:503-510. [PMID: 29091901 DOI: 10.1016/j.biopha.2017.10.138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022] Open
Abstract
It has been shown that diabetic rats display cognitive impairment. The aim of this study was to investigate the effects of resistance training and natural antioxidants on learning and memory in type 1 diabetic rats. For this purpose, fifty male Wistar rats were randomly divided into five groups: (i) Control (Con, n=10), (ii) Diabetic (D, n=10), (iii) Diabetic+Resistance training (DRT, n=10), (iv) Diabetic+natural antioxidants (DHE, n=10), and (v) Diabetic+Resistance training+ natural antioxidants (DRH, n=10). Climbing the ladder for a period of 5days/week for 10 consecutive weeks was considered as the resistance training model in our study. Natural antioxidants (100mg/kg per day) were administered to natural antioxidant groups for a period of 10 weeks. Moreover, spatial and passive avoidance learning and memory function were evaluated by Morris Water Maze (MWM) and shuttle box tests. The results showed that, mean of total escape latency decreased 25% (P<0.0001) in the DRH group compared with the D group in MWM. The percentage of time spent in the target quadrant identically decreased (34%) in the D and DHE groups compared with the Con group (p=0.001). In this regard, time spent in the dark Compartment (TDC) respectively rose 86% and 95% in the D and DHE groups compared with the Con group (p<0.05), and decreased 88% in the DRT and DRH groups compared with the D group in the shuttle box test (p<0.05). Furthermore, we noticed that total antioxidant capacity increase and lipid peroxidation decrease in response to the treatments in the diabetic rats as well. Therefore, the current study indicated that exercise training and natural antioxidants synergistically ameliorated learning and memory deficits in type 1 diabetic rats via reducing oxidative stress. Hence, it may propose a potential role of resistance training and natural antioxidants as an adjuvant therapy for the prevention and treatment of diabetic complications.
Collapse
Affiliation(s)
- Ebrahim Zarrinkalam
- Department of Physical Education, Faculty of Physical Education and Sport Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Kamal Ranjbar
- Department of Physical Education and Sport Science, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nejat Kheiripour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
27
|
Jung J, Lee NK, Paik HD. Bioconversion, health benefits, and application of ginseng and red ginseng in dairy products. Food Sci Biotechnol 2017; 26:1155-1168. [PMID: 30263648 PMCID: PMC6049797 DOI: 10.1007/s10068-017-0159-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Ginseng and red ginseng are popular as functional foods in Asian countries such as Korea, Japan, and China. They possess various pharmacologic effects, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, and anti-viral activities. Ginsenosides are a class of pharmacologically active components in ginseng and red ginseng. Major ginsenosides are converted to minor ginsenosides, which have better bioavailability and cellular uptake, by microorganisms and enzymes. Studies have shown that ginseng and red ginseng can affect the physicochemical and sensory properties, ginsenosides content, and functional properties of dairy products. In addition, lactic acid bacteria in dairy products can convert into minor ginsenosides and ginseng and red ginseng improve functionality of products. This review will discuss the characteristics of ginseng and red ginseng, and their bioconversion, functionality, and application in dairy products.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
- Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
28
|
The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice. Food Res Int 2017; 99:623-629. [PMID: 28784525 DOI: 10.1016/j.foodres.2017.06.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/20/2023]
Abstract
Chemotherapeutics are often used to inhibit the proliferation of cancer cells. However, they can also harm healthy cells and cause side effects such as immunosuppression. Especially traditional oriental medicines long used in Asia, may be beneficial candidates for the alleviation of immune diseases. Cervus nippon mantchuricus extract (NGE) is currently sold in the market as coffee and health drinks. However, NGE was not widely investigated and efficacy remain unclear and essentially nothing is known about their potential immune-regulatory properties. As a result, NGE induced the differentiation of RAW264.7 macrophage cells. NGE-stimulated RAW264.7 macrophage cells elevated cytokines levels and NO production. NGE-stimulated RAW264.7 macrophage cells activated MAPKs and NF-κB signaling pathways. NGE encouraged the immuno-enhancing effects in immunosuppressed short-term treated with NGE mice model. NGE or Red ginseng encouraged the immuno-enhancing effects in immunosuppressed long-term treated with NGE mice model. Our data clearly show that NGE contains immune-enhancing activity and can be used to treat immunodeficiency.
Collapse
|
29
|
Lee MR, Ma JY, Sung CK. Chronic dietary ginseng extract administration ameliorates antioxidant and cholinergic systems in the brains of aged mice. J Ginseng Res 2017; 41:615-619. [PMID: 29021712 PMCID: PMC5628339 DOI: 10.1016/j.jgr.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
Background Black ginseng has a more potent biological activity than non-steamed ginseng. We investigated the effects of long-term intake of dietary black ginseng extract (BG) on antioxidant activity in aged mice. We also compared the effects of BG on cognitive deficits with those of white ginseng extract (WG) and red ginseng extract (RG). Methods Ten-month-old mice were fed an AIN-93G-based diet containing 10 g/kg (low dose, L) or 30 g/kg (high dose, H) WG powder, RG powder, or BG powder for 24 wk. We measured serum lipids, the activities of antioxidant enzymes, and malondialdehyde levels. Additionally, the protein expression levels of choline acetyltransferase and vesicular acetylcholine transporter, which are presynaptic cholinergic markers in the cortex and hippocampus of the brain, were measured by western blotting. Results Triglyceride levels were reduced in all the extract-treated mice, except those in the LBG group. High-density lipoprotein cholesterol levels in the HBG group were higher than those in the control group. Total cholesterol levels were reduced in the LBG group. Additionally, glucose levels in the HBG group were significantly reduced by 41.2%. There were lower levels of malondialdehyde in the LBG group than in the control group. Furthermore, glutathione reductase activity increased in the HWG group and the HRG group. The protein expression levels of choline acetyltransferase and vesicular acetylcholine transporter significantly increased in all the ginseng-treated groups. Conclusion The results suggest that supplementation with the tested ginseng extracts may suppress the cognitive decline associated with aging, via regulation of the cholinergic and antioxidant defense systems.
Collapse
Affiliation(s)
- Mi Ra Lee
- Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Jin Yeul Ma
- Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Chang Keun Sung
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
30
|
Liu QX, Zhang W, Wang J, Hou W, Wang YP. A proteomic approach reveals the differential protein expression in Drosophila melanogaster treated with red ginseng extract ( Panax ginseng). J Ginseng Res 2017; 42:343-351. [PMID: 29983616 PMCID: PMC6026366 DOI: 10.1016/j.jgr.2017.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022] Open
Abstract
Background Red ginseng is a popularly used traditional medicine with antiaging effects in Asian countries. The present study aimed to explore the changes in protein expression underlying the mechanisms of life span extension and antiaging caused by red ginseng extract (RGE) in Drosophila melanogaster. Methods A proteomic approach of two-dimensional polyacrylamide gel electrophoresis (2-DE) was used to identify the differential abundance of possible target proteins of RGE in D. melanogaster. The reliability of the 2-DE results was confirmed via Western blotting to measure the expression levels of selected proteins. Proteins altered at the expression level after RGE treatment (1 mg/mL) were identified by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry and by searching against the National Center for Biotechnology nonredundant and Uniprot protein databases. The differentially expressed proteins were analyzed using bioinformatics methods. Results The average survival life span of D. melanogaster was significantly extended by 12.60% with RGE treatment (1 mg/mL) compared to untreated flies. This followed increased superoxide dismutase level and decreased methane dicarboxylic aldehyde content. Based on the searching strategy, 23 differentially expressed proteins were identified (16 up-regulated and 7 down-regulated) in the RGE-treated D. melanogaster. Transduction pathways were identified using the Kyoto Encyclopedia of Genes and Genomes database, and included the hippo and oxidative phosphorylation pathways that play important roles in life span extension and antiaging process of D. melanogaster. Conclusion Treatment with RGE in D. melanogaster demonstrated that mechanisms of life span extension and antiaging are regulated by multiple factors and complicated signal pathways.
Collapse
Affiliation(s)
- Qing-Xiu Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Wei Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.,State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, Jilin, China
| | - Jia Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Wei Hou
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Ying-Ping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
31
|
Yayeh T, Yun K, Jang S, Oh S. Morphine dependence is attenuated by red ginseng extract and ginsenosides Rh2, Rg3, and compound K. J Ginseng Res 2016; 40:445-452. [PMID: 27746699 PMCID: PMC5052441 DOI: 10.1016/j.jgr.2016.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Red ginseng and ginsenosides have shown plethoric effects against various ailments. However, little is known regarding the effect of red ginseng on morphine-induced dependence and tolerance. We therefore investigated the effect of red ginseng extract (RGE) and biotransformed ginsenosides Rh2, Rg3, and compound K on morphine-induced dependence in mice and rats. METHODS While mice were pretreated with RGE and then morphine was injected intraperitoneally, rats were infused with ginsenosides and morphine intracranially for 7 days. Naloxone-induced morphine withdrawal syndrome was estimated and conditioned place preference test was performed for physical and psychological dependence, respectively. Western blotting was used to measure protein expressions. RESULTS Whereas RGE inhibited the number of naloxone-precipitated jumps and reduced conditioned place preference score, it restored the level of glutathione in mice. Likewise, ginsenosides Rh2, Rg3, and compound K attenuated morphine-dependent behavioral patterns such as teeth chattering, grooming, wet-dog shake, and escape behavior in rats. Moreover, activated N-methyl-D-aspartate acid receptor subunit 1 and extracellular signal-regulated kinase in the frontal cortex of rats, and cultured cortical neurons from mice were downregulated by ginsenosides Rh2, Rg3, and compound K despite their differential effects. CONCLUSION RGE and biotransformed ginsenosides could be considered as potential therapeutic agents against morphine-induced dependence.
Collapse
Affiliation(s)
| | | | | | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
32
|
Ghisoni K, Aguiar AS, de Oliveira PA, Matheus FC, Gabach L, Perez M, Carlini VP, Barbeito L, Mongeau R, Lanfumey L, Prediger RD, Latini A. Neopterin acts as an endogenous cognitive enhancer. Brain Behav Immun 2016; 56:156-64. [PMID: 26916218 DOI: 10.1016/j.bbi.2016.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 12/13/2022] Open
Abstract
Neopterin is found at increased levels in biological fluids from individuals with inflammatory disorders. The biological role of this pteridine remains undefined; however, due to its capacity to increase hemeoxygenase-1 content, it has been proposed as a protective agent during cellular stress. Therefore, we investigated the effects of neopterin on motor, emotional and memory functions. To address this question, neopterin (0.4 and/or 4pmol) was injected intracerebroventricularly before or after the training sessions of step-down inhibitory avoidance and fear conditioning tasks, respectively. Memory-related behaviors were assessed in Swiss and C57BL/6 mice, as well as in Wistar rats. Moreover, the putative effects of neopterin on motor and anxiety-related parameters were addressed in the open field and elevated plus-maze tasks. The effects of neopterin on cognitive performance were also investigated after intraperitoneal lipopolysaccharide (LPS) administration (0.33mg/kg) in interleukin-10 knockout mice (IL-10(-/-)). It was consistently observed across rodent species that neopterin facilitated aversive memory acquisition by increasing the latency to step-down in the inhibitory avoidance task. This effect was related to a reduced threshold to generate the hippocampal long-term potentiation (LTP) process, and reduced IL-6 brain levels after the LPS challenge. However, neopterin administration after acquisition did not alter the consolidation of fear memories, neither motor nor anxiety-related parameters. Altogether, neopterin facilitated cognitive processes, probably by inducing an antioxidant/anti-inflammatory state, and by facilitating LTP generation. To our knowledge, this is the first evidence showing the cognitive enhancer property of neopterin.
Collapse
Affiliation(s)
- Karina Ghisoni
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Aderbal S Aguiar
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Paulo Alexandre de Oliveira
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88049-900, Brazil
| | - Filipe Carvalho Matheus
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88049-900, Brazil
| | - Laura Gabach
- Departamento de Farmacologia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET, Córdoba, Argentina
| | - Mariela Perez
- Departamento de Farmacologia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET, Córdoba, Argentina
| | - Valeria P Carlini
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Raymond Mongeau
- INSERM UMR S894, Centre de Psychiatrie et Neurosciences, Paris 75014, France; Université Paris Descartes EA 4475, Paris 75005, France
| | - Laurence Lanfumey
- INSERM UMR S894, Centre de Psychiatrie et Neurosciences, Paris 75014, France
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88049-900, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
33
|
Asseburg H, Schäfer C, Müller M, Hagl S, Pohland M, Berressem D, Borchiellini M, Plank C, Eckert GP. Effects of Grape Skin Extract on Age-Related Mitochondrial Dysfunction, Memory and Life Span in C57BL/6J Mice. Neuromolecular Med 2016; 18:378-95. [DOI: 10.1007/s12017-016-8428-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023]
|
34
|
Zarrinkalam E, Heidarianpour A, Salehi I, Ranjbar K, Komaki A. Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats. Life Sci 2016; 157:19-24. [DOI: 10.1016/j.lfs.2016.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/23/2022]
|
35
|
Role of the Red Ginseng in Defense against the Environmental Heat Stress in Sprague Dawley Rats. Molecules 2015; 20:20240-53. [PMID: 26569207 PMCID: PMC6331845 DOI: 10.3390/molecules201119692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/21/2023] Open
Abstract
Global temperature change causes heat stress related disorders in humans. A constituent of red ginseng has been known the beneficial effect on the resistance to many diseases. However, the mechanism of red ginseng (RG) against heat stress still remains unclear. To determine the effect of RG on heat stress, we examined the effect of the RG on the gene expression profiles in rats subjected to environmental heat stress. We evaluated the transcripts associated with hepatic lipid accumulation and oxidative stress in rats subjected to heat stress. We also analyzed the reactive oxygen species (ROS) contents. Our results suggested RG inhibited heat stress mediated altering mRNA expressions include HSPA1, DEAF1, HMGCR, and FMO1. We also determined RG attenuated fat accumulation in the liver by altering C/EBPβ expression. RG promoted to repress the heat stress mediated hepatic cell death by inhibiting of Bcl-2 expression in rats subjected to heat stress. Moreover, RG administered group during heat stress dramatically decreased the malondialdehyde (MDA) contents and ROS associated genes compared with the control group. Thus, we suggest that RG might influence inhibitory effect on environmental heat stress induced abnormal conditions in humans.
Collapse
|