1
|
Wang Y, Wu W, Liu R, Niu B, Fang X, Chen H, Farag MA, Wang LS, Wang G, Yang H, Chen H, Gao H. Silk protein: A novel antifungal and edible coating for strawberry preservation. Food Chem 2025; 463:141179. [PMID: 39276556 DOI: 10.1016/j.foodchem.2024.141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
In this study, an antimicrobial component, silk protease inhibitors (SPIs), was extracted from discarded silkworm cocoons, and a suitable degumming method for obtaining regenerated silk fibroin (SF) was screened. An edible antimicrobial coating was prepared by mixing SPIs with SF for evaluation of potential in strawberries preservation. Results demonstrated that SPI could effectively inhibit mycelial growth and spore germination. The alkaline protease method exhibited the highest degumming rate of 24.4 %. The SPI-SF coating exhibited excellent mechanical properties, high water vapor permeability, and easy washability. Within 10 days, seedlings treatment with SPI-SF coating solution showed a germination rate of 94.3 %, and exhibited good biocompatibility with HepG2 cells. Coating with SPI-SF led to increase in the storage period of strawberries to 10-14 days, concurrent with considerable reduction in decay rate at room temperature. Conclusively, this study demonstrates the potential of SPI-SF edible coating in strawberries preservation.
Collapse
Affiliation(s)
- Yan Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562 Cairo, Egypt
| | - Li-Shu Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| | - Guannan Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hailong Yang
- College of Life & Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Huizhi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key laboratory of post-harvest handling of fruits, Ministry of Agriculture and Rural Affairs, Key laboratory of postharvest preservation and processing of fruits and vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Yang H, Park M, Lee JH, Kim B, Moon CS, Bae S, Kim Y, Lee HJ, Park CY. New peripherally-restricted CB1 receptor antagonists, PMG-505-010 and -013 ameliorate obesity-associated NAFLD and fibrosis. Biomed Pharmacother 2024; 180:117501. [PMID: 39366030 DOI: 10.1016/j.biopha.2024.117501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The endocannabinoid system plays a crucial role in metabolic regulation, prompting the investigation of cannabinoid type 1 receptor (CB1R) antagonists for obesity and its complications like non-alcoholic fatty liver disease (NAFLD). Concerns over psychiatric side effects led to the development of peripheral CB1R antagonists that circumvent the blood-brain barrier (BBB). In this study, we synthesized PMG-505-010 and PMG-505-013 as peripherally restricted CB1 receptor antagonists by modifying rimonabant to minimize BBB penetration. Physicochemical analysis confirmed their reduced lipophilicity and increased polarity compared to rimonabant, indicating limited brain exposure. Molecular docking studies revealed similar binding modes to rimonabant at CB1R, characterized by robust hydrophobic interactions. Functionally, they acted as CB1R antagonists and inverse agonists, effectively reversing CP55,940-induced cAMP inhibition. In a murine model of obesity-related NAFLD, PMG-505-010 and -013 improved metabolic profiles, including fasting blood glucose levels and dyslipidemia. They also ameliorated hepatic injury, steatosis, and inflammation, evidenced by reduced liver enzymes, lipid peroxidation, hepatic lipid levels, and inflammatory cytokine levels. Notably, these compounds inhibited hepatic fibrosis by reducing extracellular matrix (ECM) deposition and altering fibrosis-related gene and protein expressions. In conclusion, PMG-505-010 and PMG-505-013 hold promise for treating obesity-related liver diseases, including NAFLD and fibrosis, through selective peripheral CB1R targeting, potentially avoiding CNS-related side effects seen with earlier CB1R antagonists.
Collapse
Affiliation(s)
- Hyekyung Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.
| | - Miey Park
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Ji Hye Lee
- PharminoGen Inc., Yongin 16827, Republic of Korea.
| | - Bokyoung Kim
- PharminoGen Inc., Yongin 16827, Republic of Korea.
| | - Chang Sang Moon
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Suyeal Bae
- PharminoGen Inc., Yongin 16827, Republic of Korea.
| | | | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| | - Cheol-Young Park
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea.
| |
Collapse
|
3
|
Yi YS. Pharmacological potential of ginseng and ginsenosides in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Ginseng Res 2024; 48:122-128. [PMID: 38465218 PMCID: PMC10920004 DOI: 10.1016/j.jgr.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/01/2023] [Accepted: 11/10/2023] [Indexed: 03/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic fat accumulation, while nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by hepatic inflammation, fibrosis, and liver injury, resulting in liver cirrhosis and hepatocellular carcinoma (HCC). Given the evidence that ginseng and its major bioactive components, ginsenosides, have potent anti-adipogenic, anti-inflammatory, anti-oxidative, and anti-fibrogenic effects, the pharmacological effect of ginseng and ginsenosides on NAFLD and NASH is noteworthy. Furthermore, numerous studies have successfully demonstrated the protective effect of ginseng on these diseases, as well as the underlying mechanisms in animal disease models and cells, such as hepatocytes and macrophages. This review discusses recent studies that explore the pharmacological roles of ginseng and ginsenosides in NAFLD and NASH and highlights their potential as agents to prevent and treat NAFLD, NASH, and liver diseases caused by hepatic steatosis and inflammation.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Republic of Korea
| |
Collapse
|
4
|
Lucini Mas A, Canalis AM, Pasqualini ME, Wunderlin DA, Baroni MV. The Effects of Chia Defatted Flour as a Nutritional Supplement in C57BL/6 Mice Fed a Low-Quality Diet. Foods 2024; 13:678. [PMID: 38472791 DOI: 10.3390/foods13050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 03/14/2024] Open
Abstract
Today, consumption of diets rich in saturated fat and fructose, associated with a variety of metabolic deregulations, has increased. The aim of this study was to evaluate the effect of dietary supplementation with a residue of defatted chia seed on a diet with low nutritional quality. To do this, C57BL/6 male mice were fed with the Control (C), Low-Nutritional-Quality (LNQ), or supplemented-with-chia-defatted-flour (LNQ+C) diets. After 12 weeks, the glucose and lactate levels were determined in the serum, liver, and kidney, along with reactive oxygen species (ROS) levels, antioxidant enzyme activity, reduced glutathione (GSH), and protein oxidation (AOPP). The LNQ diet increased the glucose and lactate levels (+25% and +50% approx. in the liver, with respect to the control group) and generated oxidative stress by modifying the levels of ROS and the activity of antioxidant enzymes, causing oxidative damage to proteins (+12% in the liver, with respect to the control). Chia supplementation helped to restore the glucose to control levels and modulate the endogenous antioxidant system, resulting in a decrease in protein oxidation products with no differences compared to the control group. In conclusion, supplementation with chia showed beneficial effects on the general health of mice, even when fed a low-nutritional-quality diet.
Collapse
Affiliation(s)
- Agustin Lucini Mas
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET), SeCyT-Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| | - Alejandra Mariel Canalis
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET), SeCyT-Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Pabellón Biología Celular, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| | - María Eugenia Pasqualini
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Pabellón Biología Celular, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Instituto de Biología Celular (IBC-UNC), Cátedra de Biología Celular, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET), SeCyT-Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| | - María Verónica Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET), SeCyT-Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina
| |
Collapse
|
5
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
6
|
Kim K, Kim MH, Kang JI, Baek JI, Jeon BM, Kim HM, Kim SC, Jeong WI. Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators. J Ginseng Res 2024; 48:89-97. [PMID: 38223828 PMCID: PMC10785242 DOI: 10.1016/j.jgr.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.
Collapse
Affiliation(s)
- Kyurae Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Myung-Ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Internal Korean Medicine, Woosuk University Medical Center, Jeonju, Republic of Korea
| | - Ji In Kang
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jong-In Baek
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Byeong-Min Jeon
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Ho Min Kim
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sun-Chang Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
- KAIST Institutes, KAIST, Daejeon, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Center for the Hepatic Glutamate and Its Function, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Zheng R, Xiang X, Shi Y, Qiu A, Luo X, Xie J, Russell R, Zhang D. Chronic jet lag alters gut microbiome and mycobiome and promotes the progression of MAFLD in HFHFD-fed mice. Front Microbiol 2023; 14:1295869. [PMID: 38130943 PMCID: PMC10733492 DOI: 10.3389/fmicb.2023.1295869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide. Circadian disruptors, such as chronic jet lag (CJ), may be new risk factors for MAFLD development. However, the roles of CJ on MAFLD are insufficiently understood, with mechanisms remaining elusive. Studies suggest a link between gut microbiome dysbiosis and MAFLD, but most of the studies are mainly focused on gut bacteria, ignoring other components of gut microbes, such as gut fungi (mycobiome), and few studies have addressed the rhythm of the gut fungi. This study explored the effects of CJ on MAFLD and its related microbiotic and mycobiotic mechanisms in mice fed a high fat and high fructose diet (HFHFD). Forty-eight C57BL6J male mice were divided into four groups: mice on a normal diet exposed to a normal circadian cycle (ND-NC), mice on a normal diet subjected to CJ (ND-CJ), mice on a HFHFD exposed to a normal circadian cycle (HFHFD-NC), and mice on a HFHFD subjected to CJ (HFHFD-CJ). After 16 weeks, the composition and rhythm of microbiota and mycobiome in colon contents were compared among groups. The results showed that CJ exacerbated hepatic steatohepatitis in the HFHFD-fed mice. Compared with HFHFD-NC mice, HFHFD-CJ mice had increases in Aspergillus, Blumeria and lower abundances of Akkermansia, Lactococcus, Prevotella, Clostridium, Bifidobacterium, Wickerhamomyces, and Saccharomycopsis genera. The fungi-bacterial interaction network became more complex after HFHFD and/or CJ interventions. The study revealed that CJ altered the composition and structure of the gut bacteria and fungi, disrupted the rhythmic oscillation of the gut microbiota and mycobiome, affected interactions among the gut microbiome, and promoted the progression of MAFLD in HFHFD mice.
Collapse
Affiliation(s)
- Ruoyi Zheng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anqi Qiu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Luo
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junyan Xie
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Zheng M, Li Y, Dong Z, Zhang Y, Xi Z, Yuan M, Xu H. Korean red ginseng formula attenuates non-alcoholic fatty liver disease in oleic acid-induced HepG2 cells and high-fat diet-induced rats. Heliyon 2023; 9:e21846. [PMID: 38027623 PMCID: PMC10658318 DOI: 10.1016/j.heliyon.2023.e21846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease. We have developed a Korean Red Ginseng Formula (KRGF) containing extracts of Korean Red Ginseng (KRG), Crataegus Fructus, and Cassiae Semen. In this study, our aims were to investigate the therapeutic potential and underpinning mechanisms of KRGF in NAFLD complicated by hyperlipidemia. Methods In the in vitro assays, HepG2 cells were treated with KRGF for 24 h in the presence or absence of oleic acid (OA). To assess the in vivo protective effect of KRGF against NAFLD, rats fed a high-fat diet (HFD) were given intragastric administration for 30 days. Results KRGF exerted protective effects against NAFLD by reducing lipid accumulation and steatosis in OA-stimulated HepG2 cells and HFD-fed rats. In HFD-fed rats, KRGF effectively decreased triglyceride levels in both blood and liver tissue and modulated the expression of key regulators of lipogenesis and fatty acid oxidation. KRGF downregulated the expression of lipogenesis factors, namely C/EBPα, FAS, SREBP-1c, and PPARγ, while upregulating the expression of PPARα and CPT-1, thus promoting fatty acid oxidation. Additionally, KRGF intensified the phosphorylation of AMPK and ACC, which are two enzymes that suppress fatty acid synthesis and promote fatty acid oxidation. KRGF effectively decreased total cholesterol (TC) levels in both blood and liver tissue, and it modulated the expression of major enzymes related to TC metabolism, namely apoB, ACAT2, CYP7A1, and HMGCR. Conclusion In conclusion, KRGF mitigated NAFLD complicated by hyperlipidemia by modulating triglyceride and cholesterol metabolism, suggesting its potential for future development in the treatment of NAFLD.
Collapse
Affiliation(s)
- Min Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhiying Dong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yibo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
9
|
Askar ME, Ali SI, Younis NN, Shaheen MA, Zaher ME. Raspberry ketone ameliorates nonalcoholic fatty liver disease in rats by activating the AMPK pathway. Eur J Pharmacol 2023; 957:176001. [PMID: 37598925 DOI: 10.1016/j.ejphar.2023.176001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The current study aimed to investigate the effect of orally administered raspberry ketone (RK) on ameliorating nonalcoholic fatty liver disease (NAFLD) induced in rats by high-fat high-fructose diet (HFFD) in comparison to calorie restriction (CR) regimen. Thirty male Wistar rats were divided into two experimental groups; one was fed normal chow diet (NCD, n = 6) for 15 weeks to serve as normal control group and the other group was fed HFFD (n = 24) for 7 weeks to induce NAFLD. After induction, rats in the HFFD group were randomly allocated into four groups (n = 6 rats each). One group continued on HFFD feeding for 8 weeks (NAFLD control group). The remaining 3 groups received NCD, calorie-restricted diet, or NCD along with RK (55 mg/kg/day, orally) for 8 weeks. Like CR, RK effectively attenuated NAFLD and ameliorated the changes attained by HFFD. RK upregulated the expression of the phosphorylated AMP-activated protein kinase (P-AMPK) and fatty acid oxidation factors; peroxisome proliferator-activated receptor alpha (PPAR-α) and carnitine palmitoyltransferase-1 (CPT-1) and downregulated lipogenic factors; sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) in the hepatic tissue. Also, RK improved lipid profile parameters, liver enzymes and both body and liver tissue weights. Altogether, these findings suggest that oral administration of RK, along with normal diet, ameliorated NAFLD in a way similar to CR. This approach could be an alternative to CR in the management of NAFLD, overcoming the poor compliance to long term CR regimen.
Collapse
Affiliation(s)
- Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt.
| | - Mohamed A Shaheen
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519, Egypt
| | - Mahmoud E Zaher
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Egypt
| |
Collapse
|
10
|
Chen H, Ma Y, Qi X, Tian J, Ma Y, Niu T. α-Lactalbumin Peptide Asp-Gln-Trp Ameliorates Hepatic Steatosis and Oxidative Stress in Free Fatty Acids-Treated HepG2 Cells and High-Fat Diet-Induced NAFLD Mice by Activating the PPARα Pathway. Mol Nutr Food Res 2023; 67:e2200499. [PMID: 37354055 DOI: 10.1002/mnfr.202200499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/26/2023] [Indexed: 06/26/2023]
Abstract
SCOPE Dietary intervention has emerged as a promising strategy for the management of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to investigate the ameliorative effects of the α-lactalbumin peptide Asp-Gln-Trp (DQW) against NAFLD and the underlying mechanism. METHODS AND RESULTS The models of lipid metabolism disorders are established both in HepG2 cells and in C57BL/6J mice. The results demonstrate that DQW activates peroxisome proliferator-activated receptor α (PPARα) and subsequently ameliorates lipid deposition and oxidative stress in vitro. Interestingly, GW6471 markedly attenuates the modulatory effects of DQW on the PPARα pathway in HepG2 cells. Moreover, results of in vivo experiments indicate that DQW alleviates body weight gain, dyslipidemia, hepatic steatosis, and oxidative stress in high-fat-diet (HFD)-induced NAFLD mice. At the molecular level, DQW activates PPARα, subsequently enhances fatty acid β-oxidation, and reduces lipogenesis, thereby ameliorating hepatic steatosis. Meanwhile, DQW may ameliorate liver injury and oxidative stress via activating the PPARα/nuclear-factor erythroid 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway. CONCLUSION Those results indicate that α-lactalbumin peptide DQW may be an effective dietary supplement for alleviating NAFLD by alleviating lipid deposition and oxidative stress.
Collapse
Affiliation(s)
- Haoran Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yanfeng Ma
- Hainan Mengniu Technology Development Co., Ltd., Haikou, Hainan, 571900, China
- School of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jianjun Tian
- School of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Tianjiao Niu
- Hainan Mengniu Technology Development Co., Ltd., Haikou, Hainan, 571900, China
| |
Collapse
|
11
|
Bao Q, Wang L, Hu X, Yuan C, Zhang Y, Chang G, Chen G. Developmental Changes of Duckling Liver and Isolation of Primary Hepatocytes. Animals (Basel) 2023; 13:1820. [PMID: 37889689 PMCID: PMC10252113 DOI: 10.3390/ani13111820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 10/29/2023] Open
Abstract
The liver is the main site of fat synthesis and plays an important role in the study of fat deposition in poultry. In this study, we investigated the developmental changes of duckling livers and isolated primary duck hepatocytes. Firstly, we observed morphological changes in duckling livers from the embryonic period to the first week after hatching. Liver weight increased with age. Hematoxylin-eosin and Oil Red O staining analyses showed that hepatic lipids increased gradually during the embryonic period and declined post-hatching. Liver samples were collected from 21-day-old duck embryos for hepatocyte isolation. The hepatocytes showed limited self-renewal and proliferative ability and were maintained in culture for up to 7 days. Typical parenchymal morphology, with a characteristic polygonal shape, appeared after two days of culture. Periodic acid-Schiff (PAS) staining analysis confirmed the characteristics of duck embryo hepatocytes. PCR analysis showed that these cells from duck embryos expressed the liver cell markers ALB and CD36. Immunohistochemical staining and immunofluorescence analysis also confirmed ALB and CK18 expression. Our findings provide a novel insight regarding in vitro cell culture and the characteristics of hepatocytes from avian species, which could enable further studies concerning specific research on duck lipid metabolism.
Collapse
Affiliation(s)
- Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Laidi Wang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Xiaodan Hu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Chunyou Yuan
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Guobin Chang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (L.W.); (X.H.); (C.Y.); (G.C.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Cardoso PG, Gonçalves O, Cavalheri T, Amorim VE, Cao W, Alexandrino DAM, Jia Z, Carvalho MF, Vaz-Pires P, Ozório ROA. Combined Effects of Temperature and Dietary Lipid Level on Body Composition, Growth, and Freshness Profile in European Seabass, Dicentrarchus labrax. Animals (Basel) 2023; 13:ani13061068. [PMID: 36978609 PMCID: PMC10044243 DOI: 10.3390/ani13061068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/19/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
A fish trial was carried out to evaluate the combined effects of temperature and dietary lipid level on the body composition, growth performance, and freshness profile of the European seabass (Dicentrarchus labrax). Fish were kept for 56 days at 20 °C and 24 °C and fed on two diets, with 16% and 20% lipid. At the end of the trial, fish were euthanized at two temperature conditions (0.6 °C or −0.6 °C) and kept on ice for 10 days at 4 °C to evaluate their freshness condition. Findings demonstrated that fish reared at 24 °C presented a lower lipid level and a higher daily growth index than those at 20 °C. Additionally, sensory analysis (Quality Index Method—QIM) and microbiological analysis revealed that fish reared at 24 °C showed better freshness conditions than those at 20 °C. However, the 16S rRNA metabarcoding analyses revealed a higher proliferation of genera associated with fish-spoiling bacteria in the skin microbiome of fish reared at 24 °C, i.e., Vibrio and Acinetobacter, which was not observed in the skin microbiome of fish reared at 20 °C. Nevertheless, the dietary lipid level did not have any influence on fish freshness. Therefore, our data suggest that the increase in temperature to 24 °C is beneficial for the growth and freshness profile (lower QIM and lower CFUs/cm2) of this particular species. Additionally, the lower euthanasia temperature (−0.6 °C) seems to lead to higher fish freshness than the normal temperature (0.6 °C).
Collapse
Affiliation(s)
- Patrícia G. Cardoso
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Correspondence:
| | - Odete Gonçalves
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Thais Cavalheri
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Vânia E. Amorim
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Weiwei Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Diogo A. M. Alexandrino
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Department of Environmental Health, School of Health, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Maria F. Carvalho
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo Vaz-Pires
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Rodrigo O. A. Ozório
- CIIMAR—Interdisciplinar Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
13
|
Yang K, Kim HH, Shim YR, Song MJ. The Efficacy of Panax ginseng for the Treatment of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients 2023; 15:nu15030721. [PMID: 36771427 PMCID: PMC9919883 DOI: 10.3390/nu15030721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Although tremendous research has reported the protective effects of natural compounds in nonalcoholic fatty liver disease (NAFLD), there is still no approved drug. This study aimed to examine the efficacy of Panax ginseng in NAFLD in preclinical studies. A total of 41 studies were identified by searching the PubMed, Web of Science, and Cochrane Library databases. The methodological quality was assessed by the risk of bias tool from the Systematic Review Center for Laboratory Animal Experimentation. The standardized mean difference (SMD) with a 95% confidence interval was calculated, and the random effects model was used to examine overall efficacy or heterogeneity. The publication bias was analyzed by Egger's test. The results showed that Panax ginseng treatment significantly reduced the systemic levels of alanine aminotransferase (SMD: -2.15 IU/L; p < 0.0001), aspartate aminotransferase (SMD: -2.86 IU/L; p < 0.0001), triglyceride (SMD: -2.86 mg/dL; p < 0.0001), total cholesterol (SMD: -1.69 mg/dL; p < 0.0001), low-density lipoprotein (SMD: -1.46 mg/dL; p < 0.0001), and fasting glucose (SMD: -1.45 mg/dL; p < 0.0001) while increasing high-density lipoprotein (SMD: 1.22 mg/dL; p = 0.0002) in NAFLD regardless of animal models or species. These findings may suggest that Panax ginseng is a promising therapeutic agent for NAFLD treatment.
Collapse
Affiliation(s)
- Keungmo Yang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee-Hoon Kim
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Young-Ri Shim
- Life Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Myeong Jun Song
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence:
| |
Collapse
|
14
|
Ding SB, Chu XL, Jin YX, Jiang JJ, Zhao X, Yu M. Epigallocatechin gallate alleviates high-fat diet-induced hepatic lipotoxicity by targeting mitochondrial ROS-mediated ferroptosis. Front Pharmacol 2023; 14:1148814. [PMID: 37025486 PMCID: PMC10070829 DOI: 10.3389/fphar.2023.1148814] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic advanced liver disease that is highly related to metabolic disorders and induced by a high-fat diet (HFD). Recently, epigallocatechin gallate (EGCG) has been regarded as a protective bioactive polyphenol in green tea that has the ability to protect against non-alcoholic fatty liver disease, but the molecular mechanism remains poorly deciphered. Ferroptosis plays a vital role in the progression of non-alcoholic fatty liver disease, but experimental evidence of ferroptosis inhibition by epigallocatechin gallate is limited. Hence, our study aimed to investigate the effect and mechanisms of epigallocatechin gallate on hepatic ferroptosis to mitigate hepatic injury in high-fat diet-fed mice. Methods: Fifty male C57BL/6 mice were fed either a standard chow diet (SCD), a high-fat diet, or a high-fat diet and administered epigallocatechin gallate or ferrostatin-1 (a ferroptosis-specific inhibitor) for 12 weeks. Liver injury, lipid accumulation, hepatic steatosis, oxidative stress, iron overload, and ferroptosis marker proteins were examined. In vitro, steatotic L-02 cells were used to explore the underlying mechanism. Results: In our research, we found that epigallocatechin gallate notably alleviated liver injury and lipid accumulation, oxidative stress, hepatic steatosis, decreased iron overload and inhibited ferroptosis in a high-fat diet-induced murine model of non-alcoholic fatty liver disease. In vitro experiments, using ferrostatin-1 and a mitochondrial reactive oxygen species (MtROS) scavenger (Mito-TEMPO), we found that epigallocatechin gallate remarkably alleviated oxidative stress and inhibited ferroptosis by reducing the level of mitochondrial reactive oxygen species in steatotic L-02 cells. Conclusion: Taken together, our results revealed that epigallocatechin gallate may exert protective effects on hepatic lipotoxicity by inhibiting mitochondrial reactive oxygen species-mediated hepatic ferroptosis. Findings from our study provide new insight into prevention and treatment strategies for non-alcoholic fatty liver disease pathological processes.
Collapse
|
15
|
Park M, Sharma A, Baek H, Han JY, Yu J, Lee HJ. Stevia and Stevioside Attenuate Liver Steatosis through PPARα-Mediated Lipophagy in db/db Mice Hepatocytes. Antioxidants (Basel) 2022; 11:antiox11122496. [PMID: 36552704 PMCID: PMC9774531 DOI: 10.3390/antiox11122496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Lipophagy, a type of autophagy that breaks down lipid droplets, is essential in the regulation of intracellular lipid accumulation and intracellular free fatty acid levels in numerous organisms and metabolic conditions. We investigated the effects of Stevia rebaudiana Bertoni (S), a low-calorie sweetener, and stevioside (SS) on hepatic steatosis and autophagy in hepatocytes, as well as in db/db mice. S and SS reduced the body and liver weight and levels of serum triglyceride, total cholesterol, and hepatic lipogenic proteins. In addition, S and SS increased the levels of fatty acid oxidase, peroxisome proliferator-activated receptor alpha (PPARα), and microtubule-associated protein light chain 3 B but decreased that of sequestosome 1 (p62) in the liver of db/db mice. Additionally, Beclin 1, lysosomal associated membrane protein 1, and phosphorylated adenosine monophosphate-activated protein kinase protein expression was augmented following S and SS treatment of db/db mice. Furthermore, the knockdown of PPARα blocked lipophagy in response to SS treatment in HepG2 cells. These outcomes indicate that PPARα-dependent lipophagy is involved in hepatic steatosis in the db/db mouse model and that SS, a PPARα agonist, represents a new therapeutic option for managing associated diseases.
Collapse
Affiliation(s)
- Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Hana Baek
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Jin-Young Han
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Junho Yu
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
- Correspondence: or ; Tel.: +82-31-750-5968; Fax: +82-31-724-4411
| |
Collapse
|
16
|
Shedding light on non-alcoholic fatty liver disease: Pathogenesis, molecular mechanisms, models, and emerging therapeutics. Life Sci 2022; 312:121185. [PMID: 36375569 DOI: 10.1016/j.lfs.2022.121185] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder globally impacting an estimated 25% of the population associated with severe consequences such as cirrhosis, hepatocellular carcinoma (HCC), and overall mortality. Fatty liver disease is triggered through multiple pathways, but the most prominent cause is either diabetes or obesity, or a combination of both. Therefore, hepatic glucose, insulin and fatty acid signaling becomes a dire need to understand which is well elaborated in this review. This review summarizes the popular two-hit pathogenesis of NAFLD, the molecular mechanisms underlying hepatic insulin resistance. As fatty liver disease gets advanced, it requires in-vitro as well as in-vivo models closer to disease progression in humans for better understanding the pathological state and identifying a novel therapeutic target. This review summarizes in-vitro (2D cell-culture/co-culture, 3D spheroid/organoid/liver-on-a-chip) models as well as in-vivo (genetically/dietary/chemically induced fatty liver disease) research models. Fatty liver disease research has gathered lots of attention recently since there is no FDA approved therapy available so far. However, there have been numerous promising targets to treat fatty liver disease including potential therapeutic targets under clinical trials are listed in this review.
Collapse
|
17
|
Amelioration of hydrolyzed guar gum on high-fat diet-induced obesity: Integrated hepatic transcriptome and metabolome. Carbohydr Polym 2022; 297:120051. [DOI: 10.1016/j.carbpol.2022.120051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
|
18
|
Bioinformatics study of the potential therapeutic effects of ginsenoside Rf in reversing nonalcoholic fatty liver disease. Biomed Pharmacother 2022; 149:112879. [PMID: 35358801 DOI: 10.1016/j.biopha.2022.112879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Ginsenoside Rf, a tetracyclic triterpenoid only present in Panax ginseng, has been proven to relieve lipid metabolism and inflammatory reactions, which can be a potential treatment for nonalcoholic fatty liver disease (NAFLD). Therefore, this study aimed to reveal the underlying mechanisms of ginsenoside Rf in the treatment of early-stage NAFLD (NAFL) by using a bioinformatics method and biological experiments. METHODS Target genes associated with NAFL were screened from the Gene Expression Omnibus (GEO) database, a database repository of high-throughput gene expression data and hybridization arrays, chips, and microarrays. Subsequently, gene set enrichment analysis was performed by using Gene Ontology enrichment analysis tool. Then, the binding capacity between ginsenoside Rf and NAFL-related targets was evaluated by molecular docking. Finally, the FFA-induced HepG2 cell model treated with ginsenoside Rf was adopted to verify the effect of ginsenoside Rf and the related mechanisms. RESULTS There were 41 common differentially expressed genes in the GEO dataset. Gene Ontology and Reactome pathway enrichment analysis of the differentially expressed genes showed that many pathways could be related to the pathogenesis of NAFL, including those participating in the cytokine-mediated signaling pathway, G protein-coupled receptor signaling pathway, and response to lipopolysaccharide. Finally, the qRT-PCR analysis results indicated that ginsenoside Rf therapy could ameliorate the transcription of ANXA2, BAZ1A, DNMT3L and MMP9. CONCLUSION Our research discovered the relevant mechanisms and basic pharmacological effects of ginsenoside Rf in the treatment of NAFL. These results might facilitate the development of ginsenoside Rf as an alternative medication for NAFL.
Collapse
|
19
|
A comprehensive review on phytochemicals for fatty liver: are they potential adjuvants? J Mol Med (Berl) 2022; 100:411-425. [PMID: 34993581 DOI: 10.1007/s00109-021-02170-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and, as such, is associated with obesity. With the current and growing epidemic of obesity, NAFLD is already considered the most common liver disease in the world. Currently, there is no official treatment for the disease besides weight loss. Although there are a few synthetic drugs currently being studied, there is also an abundance of herbal products that could also be used for treatment. With the World Health Organization (WHO) traditional medicine strategy (2014-2023) in mind, this review aims to analyze the mechanisms of action of some of these herbal products, as well as evaluate toxicity and herb-drug interactions available in literature.
Collapse
|
20
|
Park M, Kim KH, Jaiswal V, Choi J, Chun JL, Seo KM, Lee MJ, Lee HJ. Effect of black ginseng and silkworm supplementation on obesity, the transcriptome, and the gut microbiome of diet-induced overweight dogs. Sci Rep 2021; 11:16334. [PMID: 34381138 PMCID: PMC8358025 DOI: 10.1038/s41598-021-95789-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/23/2021] [Indexed: 01/04/2023] Open
Abstract
Like humans, weight control in overweight dogs is associated with a longer life expectancy and a healthier life. Dietary supplements are one of the best strategies for controlling obesity and obesity-associated diseases. This study was conducted to assess the potential of black ginseng (BG) and silkworm (SW) as supplements for weight control in diet-induced overweight beagle dogs. To investigate the changes that occur in dogs administered the supplements, different obesity-related parameters, such as body condition score (BCS), blood fatty acid profile, transcriptome, and microbiome, were assessed in high energy diet (HD) and HD with BG + SW supplementation (HDT) groups of test animals. After 12 weeks of BG + SW supplementation, total cholesterol and triglyceride levels were reduced in the HDT group. In the transcriptome analysis, nine genes (NUGGC, EFR3B, RTP4, ACAN, HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) that are known to be associated with obesity were found to be differentially expressed between the ND (normal diet) and HD groups as well as the HD and HDT groups. Significant changes in some taxa were observed between the HD and ND groups. These data suggest that the BG + SW supplement could be developed as dietary interventions against diet-induced obesity, and obesity-related differential genes could be important candidates in the mechanism of the anti-obesity effects of the BG + SW supplement.
Collapse
Affiliation(s)
- Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Jihee Choi
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Kang Min Seo
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Mi-Jin Lee
- Clinical Nutritional Medicine, Veterinary Medical Teaching Hospital, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea.
| |
Collapse
|
21
|
Jiang G, Ramachandraiah K, Murtaza MA, Wang L, Li S, Ameer K. Synergistic effects of black ginseng and aged garlic extracts for the amelioration of nonalcoholic fatty liver disease (NAFLD) in mice. Food Sci Nutr 2021; 9:3091-3099. [PMID: 34136174 PMCID: PMC8194913 DOI: 10.1002/fsn3.2267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease that can lead to carcinoma, cirrhosis, and death. Since no approved medications are available, dietary interventions that include bioactive compounds have been recommended. This study investigated the effects of black ginseng extracts (BGE) and aged black garlic extracts (AGE) on high-fat diet (HFD)-induced obese mice. Micrograph of liver tissues of mice fed with BGE and AGE showed less lipid droplets. The BGE and AGE supplements individually and in combination lowered the marker enzymes, aminotransferase (AST), and alanine aminotransferase (ALT) levels indicating their hepatoprotective effects. Compared to the plants extracts alone, the combination of the extracts resulted in lower total cholesterol (TC) and low-density lipoproteins cholesterol (LDL-C), which are risk markers for cardiovascular morbidity and mortality. Diets with the combination of BGE and AGE supplements had higher superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities, and lower malondialdehyde indicating the synergistic effects of the extracts. Irrespective of the diet type, all treated groups showed lower tumor necrosis factor (TNF-α) values as compared to HFD, which indicated overall immunomodulatory effect of both extracts. Therefore, the innovative formulation formed by the combination of BGE and AGE can provide hepatoprotective effects via modulating glycometabolism, lipometabolism, oxidative stress, and inflammation in mice.
Collapse
Affiliation(s)
- Guihun Jiang
- School of Public HealthJilin Medical UniversityJilinChina
| | - Karna Ramachandraiah
- School of Life SciencesDepartment of Food Science and BiotechnologySejong UniversitySeoulSouth Korea
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Lili Wang
- School of Public HealthJilin Medical UniversityJilinChina
| | - Shanji Li
- School of Public HealthJilin Medical UniversityJilinChina
| | - Kashif Ameer
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
- Department of Food Science and Technology and BK 21 Plus ProgramGraduate School of Chonnam National UniversityGwangjuSouth Korea
| |
Collapse
|
22
|
Effect of Bombyx mori on the Liver Protection of Non-Alcoholic Fatty Liver Disease Based on In Vitro and In Vivo Models. Curr Issues Mol Biol 2021; 43:cimb43010003. [PMID: 33925122 PMCID: PMC8929127 DOI: 10.3390/cimb43010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Edible insects, Bombyx mori (silkworm; SW), which feed on mulberry leaves, have been consumed by humans for a long time as supplements or traditional medication. Non-alcoholic fatty liver disease (NAFLD) is a liver metabolic disorder that affects many people worldwide. We examined the hepatoprotective effects of SW using in vitro and high-fat and high-fructose (HFHF) diet-induced obese in vivo model mice by real-time PCR, immunoblot analysis, and fecal microbiota analysis. SW significantly reduced lipid accumulation and expression of the lipogenic genes in HepG2 cells and the livers of HFHF-induced mice. SW caused significant reductions in triglycerides, and total cholesterol in serum and upregulation of fatty acid oxidation markers compared to the HFHF group. Besides, SW significantly induced phosphorylation of AMPK and ACC in both models, suggesting roles in AMPK activation and the ACC signaling pathway. Furthermore, the gut microbiota analysis demonstrated that SW treatment reduced Firmicutes to Bacteroidetes ratios and the relative abundance of the Lachnospiraceae family compared to HFHF-induced obese mice. These results provide a novel therapeutic agent of hepatoprotective effects of SW for non-alcoholic hepatic steatosis that targets hepatic AMPK and ACC-mediated lipid metabolism.
Collapse
|
23
|
Liang W, Zhou K, Jian P, Chang Z, Zhang Q, Liu Y, Xiao S, Zhang L. Ginsenosides Improve Nonalcoholic Fatty Liver Disease via Integrated Regulation of Gut Microbiota, Inflammation and Energy Homeostasis. Front Pharmacol 2021; 12:622841. [PMID: 33679403 PMCID: PMC7928318 DOI: 10.3389/fphar.2021.622841] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Ginseng, the root and rhizome of Panax ginseng C. A. Mey., is a famous herbal medicine, and its major ginsenosides exert beneficial effects on nonalcoholic fatty liver disease (NAFLD). Due to the multicomponent and multitarget features of ginsenosides, their detailed mechanisms remain unclear. This study aimed to explore the role of ginsenosides on NAFLD and the potential mechanisms mediated by the gut microbiota and related molecular processes. C57BL/6J mice were fed a high-fat diet (HFD) supplemented or not supplemented with ginsenoside extract (GE) for 12 weeks. A strategy that integrates bacterial gene sequencing, serum pharmacochemistry and network pharmacology was applied. The results showed that GE significantly alleviated HFD-induced NAFLD symptoms in a dose-dependent manner. Furthermore, GE treatment modulated the HFD-induced imbalance in the gut microbiota and alleviated dysbiosis-mediated gut leakage and metabolic endotoxemia. Additionally, 20 components were identified in the mouse plasma after the oral administration of GE, and they interacted with 82 NAFLD-related targets. A network analysis revealed that anti-inflammatory effects and regulation of the metabolic balance might be responsible for the effects of GE on NAFLD. A validation experiment was then conducted, and the results suggested that GE suppressed NF-κB/IκB signaling activation and decreased the release and mRNA levels of proinflammatory factors (TNF-α, IL-1β and IL-6). Additionally, GE promoted hepatic lipolytic genes (CPT-1a), inhibited lipogenic genes (SREBP-1c, FAS, ACC-1) and improved leptin resistance. These findings imply that the benefits of GE are involved in modulating the gut microbiota, enhancing the gut barrier function, restoring the energy balance, and alleviating metabolic inflammation. Moreover, GE might serve as a potential agent for the prevention of NAFLD through the integration of prebiotic, anti-inflammatory and energy-regulatory effects.
Collapse
Affiliation(s)
- Wenyi Liang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Jian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihao Chang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiunan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqi Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanzhen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Antioxidant and Anti-Inflammatory Effects of Korean Black Ginseng Extract through ER Stress Pathway. Antioxidants (Basel) 2021; 10:antiox10010062. [PMID: 33419084 PMCID: PMC7825445 DOI: 10.3390/antiox10010062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
The excessive release of reactive oxygen species (ROS) can result in the development of chronic inflammation. The mechanisms involved in inflammation are various, with endoplasmic reticulum (ER) stress known to be among them. We have previously shown that black ginseng (BG) reduced lipid accumulation in and enhanced the antioxidant function of the liver in vitro and in vivo mostly due to ginsenoside Rb1, Rg3 and Rk1 components. Therefore, this study investigated the antioxidant effect of BG on the intestines and its possible mechanistic pathway through ER stress. The results showed that BG extract decreased ROS and nitric oxide (NO) production and reduced inducible nitric oxide synthase (iNOS) expression levels in vitro, and these results were confirmed by zebrafish embryos in vivo. However, this phenotype was abolished in the absence of inositol-requiring enzyme 1 (IRE1α) but not in the absence of protein kinase RNA (PKR)-like ER-resistant kinase (PERK) or X-box-binding protein 1 (XBP1) in the mouse embryo fibroblast (MEF) knockout (KO) cells, suggesting that BG elicits an antioxidant effect in an IRE1α-dependent manner. Antioxidant and anti-inflammatory effects were assessed in the liver and intestines of the mouse model affected by nonalcoholic fatty liver disease (NAFLD), which was induced by a high-fat/high-fructose diet. In the liver, BG treatment rescued NAFLD-induced glutathione (GSH), catalase (CAT), tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 expression. In the intestines, BG also rescued NAFLD-induced shortened villi, inflammatory immune cell infiltration, upregulated IL-6, cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer-binding homologous protein (CHOP) and binding immunoglobulin protein (BiP) expression. In conclusion, our results show that BG reduces ROS and NO production followed by inflammation in an IRE1α-dependent and XBP1-independent manner. The results suggest that BG provides antioxidant and anti-inflammatory effects through an ER stress mechanism.
Collapse
|
25
|
Immune-Enhancing Effects of Red Platycodon grandiflorus Root Extract via p38 MAPK-Mediated NF-κB Activation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Platycodongrandiflorus (PG) root extract has been widely used as an oriental herbal medicine. Red PG root extract (RPGE), which is made by steaming and drying PG several times, contains more saponin than raw (white) PG. Although RPGE has been known to have anti-inflammatory activity, the effects of RPGE on the immune-enhancing response remain unclear. In this study, we aimed to investigate the immune-enhancing effects of RPGE and its mechanism in macrophage cells and splenocytes. Our results revealed that cell proliferation of both macrophages and splenocytes correlate positively with the concentration of RPGE. Moreover, RPGE treatment increased the phagocytic activity of macrophage cells, as well as nitric oxide and cytokines production. Furthermore, RPGE induced phosphorylation of the p38 mitogen-activated protein kinase, which contributed to nuclear factor-kappa B activation. Thus, our findings suggest that RPGE may be a potential functional food for improving immune function.
Collapse
|