1
|
Song J, Lee N, Yang HJ, Lee MS, Kopalli SR, Kim YU, Lee Y. The beneficial potential of ginseng for menopause. J Ginseng Res 2024; 48:449-453. [PMID: 39263310 PMCID: PMC11385173 DOI: 10.1016/j.jgr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 09/13/2024] Open
Abstract
Korean Red Ginseng (KRG) has long been used not only as a food supplement but also as a treatment for various diseases. Ginseng originated in South Korea, which later spread to China and Japan, has a wide range of pharmacological activities including immune, endocrine, cardiovascular, and central nervous system effects. KRG is produced by repetitions of steaming and drying of ginseng to extend preservation. During this steaming process, the components of ginseng undergo physio-chemical changes forming a variety of potential active constituents including ginsenoside-Rg3, a unique compound in KRG. Pandemic Coronavirus disease 2019 (COVID-19), has affected both men and women differentially. In particular, women were more vulnerable to COVID-related distress which in turn could aggravate menopause-related disturbances. Complementary and alternative medicinal plants could have aided middle-aged women for several menopause-related symptoms during and post COVID-19 pandemic. This review aimed to explore the beneficial effects of KRG on menopausal symptoms and gynecological cancer.
Collapse
Affiliation(s)
- JiHyeon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Namkyu Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
| | - Myeong Soo Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Cosmetics and Pharmaceuticals, Daegu Haany University, Gyeongsan, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Wu X, Yang X, Tian Y, Xu P, Yue H, Sang N. Bisphenol B and bisphenol AF exposure enhances uterine diseases risks in mouse. ENVIRONMENT INTERNATIONAL 2023; 173:107858. [PMID: 36881955 DOI: 10.1016/j.envint.2023.107858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/26/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) analogs, bisphenol B (BPB) and bisphenol AF (BPAF) have been widely detected in the environment and human products with increasing frequency. However, uterine health risks caused by BPB and BPAF exposure need to be further elucidated. The study aimed to explore whether BPB or BPAF exposure will induce adverse outcomes in uterus. Female CD-1 mice were continuously exposed to BPB or BPAF for 14 and 28 days. Morphological examination showed that BPB or BPAF exposure caused endometrial contraction, decreased epithelial height, and increased number of glands. Bioinformatics analysis indicated that both BPB and BPAF disturbed the immune comprehensive landscape of the uterus. In addition, survival and prognosis analysis of hub genes and tumor immune infiltration evaluation were performed. Finally, the expression of hub genes was verified by quantitative real-time PCR (qPCR). Disease prediction found that eight of the BPB and BPAF co-response genes, which participated in the immune invasion of the tumor microenvironment, were associated with uterine corpus endometrial carcinoma (UCEC). Importantly, the gene expression levels of Srd5a1 after 28-day BPB and BPAF exposure were 7.28- and 25.24-fold higher than those of the corresponding control group, respectively, which was consistent with the expression trend of UCEC patients, and its high expression was significantly related to the poor prognosis of patients (p = 0.003). This indicated that Srd5a1 could be a valuable signal of uterus abnormalities caused by BPA analogs exposure. Our study revealed the key molecular targets and mechanisms of BPB or BPAF exposure induced uterine injury at the transcriptional level, providing a perspective for evaluating the safety of BPA substitutes.
Collapse
Affiliation(s)
- Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
3
|
Lee N, Lee JH, Won JE, Lee YJ, Hyun SH, Yi YD, In G, Han HD, Lee Y. KRG and its major ginsenosides do not show distinct steroidogenic activities examined by the OECD test guideline 440 and 456 assays. J Ginseng Res 2022; 47:385-389. [DOI: 10.1016/j.jgr.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 03/12/2023] Open
|
4
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
5
|
Yu S, Chun E, Ji Y, Lee YJ, Jin M. Effects of red ginseng on gut, microbiota, and brain in a mouse model of post-infectious irritable bowel syndrome. J Ginseng Res 2021; 45:706-716. [PMID: 34764725 PMCID: PMC8569328 DOI: 10.1016/j.jgr.2021.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/21/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background Irritable bowel syndrome (IBS), the most common functional gastrointestinal disorder, is characterized by chronic abdominal pain and bowel habit changes. Although diverse complicated etiologies are involved in its pathogenesis, a dysregulated gut–brain axis may be an important factor. Red ginseng (RG), a traditional herbal medicine, is proven to have anti-inflammatory effects and improve brain function; however, these effects have not been investigated in IBS. Methods Three-day intracolonic zymosan injections were used to induce post-infectious human IBS-like symptoms in mice. The animals were randomized to receive either phosphate-buffered saline (CG) or RG (30/100/300 mg/kg) for 10 days. Amitriptyline and sulfasalazine were used as positive controls. Macroscopic scoring was performed on day 4. Visceral pain and anxiety-like behaviors were assessed by colorectal distension and elevated plus maze and open field tests, respectively, on day 10. Next-generation sequencing of gut microbiota was performed, and biomarkers involved in gut–brain axis responses were analyzed. Results Compared to CG, RG significantly decreased the macroscopic score, frequency of visceral pain, and anxiety-like behavior in the IBS mice. These effects were comparable to those after sulfasalazine and amitriptyline treatments. Moreover, RG significantly increased the proliferation of beneficial microbes, including Lactobacillus johnsonii, Lactobacillus reuteri, and Parabacteroides goldsteinii. RG significantly suppressed expression of IL-1β and c-fos in the gut and prefrontal cortex, respectively. Further, it restored the plasma levels of corticosterone to within the normal range, accompanied by an increase in adrenocorticotropic hormone. Conclusion RG may be a potential therapeutic option for the management of human IBS.
Collapse
Affiliation(s)
- Seonhye Yu
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Eunho Chun
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Yeounjung Ji
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Young Joo Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
6
|
Song H, Won JE, Lee J, Han HD, Lee Y. Korean red ginseng attenuates Di-(2-ethylhexyl) phthalate-induced inflammatory response in endometrial cancer cells and an endometriosis mouse model. J Ginseng Res 2021; 46:592-600. [PMID: 35818422 PMCID: PMC9270657 DOI: 10.1016/j.jgr.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background Di-(2-ethylhexyl) phthalate (DEHP) is the most common endocrine disrupting chemical used as a plasticizer. DEHP is associated with the development of endometrium-related diseases through the induction of inflammation. The major therapeutic approaches against endometrial cancer and endometriosis involve the suppression of inflammatory response. Korean Red Ginseng (KRG) is a natural product with anti-inflammatory and anti-carcinogenic properties. Thus, the purpose of this study is to investigate the effects of KRG on DEHP-induced inflammatory response in endometrial cancer Ishikawa cells and a mouse model of endometriosis. Methods RNA-sequencing was performed and analyzed on DEHP-treated Ishikawa cells in the presence and absence of KRG. The effects of KRG on DEHP-induced cyclooxygenase-2 (COX-2) mRNA levels in Ishikawa cells were determined by RT-qPCR. Furthermore, the effects of KRG on the extracellular signal-regulated kinases (ERKs) pathway, COX-2, and nuclear factor-kappa B (NF-κB) p65 after DEHP treatment of Ishikawa cells were evaluated by western blotting. In the mouse model, the severity of endometriosis induced by DEHP and changes in immunohistochemistry were used to assess the protective effect of KRG. Results According to the RNA-sequencing data, DEHP-induced inflammatory response-related gene expression was downregulated by KRG. Moreover, KRG significantly inhibited DEHP-induced ERK1/2/NF-κB/COX-2 levels in Ishikawa cells. In the mouse model, KRG administration significantly inhibited ectopic endometriosis growth after DEHP-induced endometriosis. Conclusions Overall, these results suggest that KRG may be a promising lead for the treatment of endometrial cancer and endometriosis via suppression of the inflammatory response.
Collapse
Affiliation(s)
- Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Ji Eun Won
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Jeonggeun Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
- Corresponding author. Department of Immunology, School of Medicine, Konkuk University, Chungwondae-Ro, Chungju, Republic of Korea.
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
- Corresponding author. Department of Integrative Bioscience and Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Kim JK, Shin KK, Kim H, Hong YH, Choi W, Kwak YS, Han CK, Hyun SH, Cho JY. Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice. J Ginseng Res 2021; 45:717-725. [PMID: 34764726 PMCID: PMC8569327 DOI: 10.1016/j.jgr.2021.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. METHODS The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. RESULTS KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. CONCLUSION The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.
Collapse
Affiliation(s)
- Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yi-Seong Kwak
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Zhou J, Zhang J, Li J, Guan Y, Shen T, Li F, Li X, Yang X, Hu W. Ginsenoside F2 Suppresses Adipogenesis in 3T3-L1 Cells and Obesity in Mice via the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9299-9312. [PMID: 34342980 DOI: 10.1021/acs.jafc.1c03420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ginsenoside F2 (GF2) is a protopanaxdiol saponin from Panax ginseng leaves and possesses many potential pharmacological properties. GF2 may prevent obesity by directly binding to the peroxisome proliferator-activated receptor-γ (PPARγ) and inhibiting adipocyte differentiation. However, the mechanism by which GF2 alleviates obesity is unknown. We therefore explored the anti-adipogenesis and anti-obesity effects of GF2 in vitro and in vivo. GF2 inhibited differentiation and reduced the triglyceride (TG) content of 3T3-L1 preadipocytes in the early stage of adipogenesis. Administration of GF2 (50 and 100 mg/kg) to obese mice for 4 weeks reduced the body weight gain, weight of adipose tissues, adipocyte size, and total cholesterol, TG, and AST levels in serum. RNA sequencing and real-time quantitative PCR indicated that GF2 decreased the expression levels of adipokines, including PPARγ, fatty acid synthase, and adiponectin. KEGG enrichment and western blot analyses demonstrated that GF2 accelerated the phosphorylation of AMPK and ACC in vitro and in vivo. Moreover, GF2 promoted the biosynthesis of mitochondria in 3T3-L1 adipocytes and increased the expression of antioxidant enzymes such as SOD and GSH-Px in the liver of obese mice. Therefore, GF2 suppressed adipogenesis and obesity by regulating the expression of adipokines and activating the AMPK pathway. Hence, the findings suggest that GF2 may have potential therapeutic implications to treat obesity.
Collapse
Affiliation(s)
- Jing Zhou
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Jiayi Li
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Yiqiu Guan
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Ting Shen
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
| | - Fu Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Chengdu PhytoElite Bio-Technology Company Limited, Chengdu 610213, China
| | - Xueqin Li
- Department of General Practice, The Affiliated Huaian NO. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Xiaojun Yang
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi 830052, China
| | - Weicheng Hu
- School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China
- College of Food Science and Pharmacology, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
9
|
Yang L, Guo X, Mao X, Jia X, Zhou Y, Hu Y, Sun L, Guo J, Xiao H, Zhang Z. Hepatic toxicity of fluorene-9-bisphenol (BHPF) on CD-1 mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112298. [PMID: 33989918 DOI: 10.1016/j.ecoenv.2021.112298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Fluorene-9-bisphenol (BHPF), a substitute for bisphenol A (BPA), has been widely used in the synthesis of polyester polymers. Studies have reported multiple BHPF toxicities but its effect on the liver remains unknown. In this study, we performed short-term and subchronic toxicity tests, as well as primary hepatocyte experiments, to investigate the hepatic toxicity of BHPF using CD-1 mice. And microarray was used to analyze the changes of global gene expression in the liver of mice treated with BHPF. The results showed that the liver coefficient and the activities of serum aminotransferases were obviously elevated by BHPF at doses of 27.8 mg/kg body weight (bw)/day or higher in mice treated for 10 days. Histological analysis showed obvious changes, including narrowed hepatic sinuses, dilated central vein, leucocyte infiltration, and cytoplasmic vacuolation, in the livers of mice treated with BHPF at dosages of 2 mg/kg bw/3-day and higher for 36 days. Microarray analyses revealed 2623 differentially expressed genes (DEGs) in the livers of mice treated with 50 mg/kg bw/day of BHPF for 3 days, which could be enriched in GO terms of T cell activation, leukocyte migration, and leukocyte chemotaxis and KEGG pathways of natural killer cell-mediated cytotoxicity and autoimmune thyroid disease. The top 10 hub DEGs, including LTF and MMP8, were observed in the protein-protein interaction network obtained via STRING database analysis, and are proposed as potential biomarkers for liver injury studies. Primary hepatocyte experiments demonstrated the hepatotoxicity of BHPF at concentrations of 10-6 M and higher. This study indicates that BHPF could cause liver injury at relatively low levels, suggesting that the risk of human BHPF exposure should be of concern.
Collapse
Affiliation(s)
- Lei Yang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xuan Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xingtai Mao
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Xiaojing Jia
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Ying Zhou
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Ying Hu
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Libei Sun
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Jilong Guo
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Han Xiao
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing 100871, China.
| |
Collapse
|