1
|
Sundararaman S, Adhilimam, Chacko J, D P, M K, Kumar JA, A S, P T, M R, Bokov DO. Noteworthy synthesis strategies and applications of metal-organic frameworks for the removal of emerging water pollutants from aqueous environment. CHEMOSPHERE 2024; 362:142729. [PMID: 38971438 DOI: 10.1016/j.chemosphere.2024.142729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
17 global Sustainable Development Goals (SDGs) were established through the adoption of the 2030 Agenda for Sustainable Development by all United Nations members. Clean water and sanitation (SDG 6) and industry, innovation, and infrastructure (SDG 9) are the SDGs focus of this work. Of late, various new companies delivering metal-organic frameworks (MOFs) have blossomed and moved the field of adsorption utilizing MOFs to another stage. Inside this unique circumstance, this article aims to catch recent advancements in the field of MOFs and the utilizations of MOFs relate to the expulsion of arising contaminations that present huge difficulties to water quality because of their steadiness and possible damage to environments and human wellbeing. Customary water treatment techniques regularly neglect to eliminate these poisons, requiring the advancement of novel methodologies. This study overviews engineering techniques for controlling MOF characteristics for better flexibility, stability, and surface area. A current report on MOFs gathered new perspectives that are amicably discussed in emergent technologies and extreme applications towards environmental sectors. Various applications in many fields that exploit MOFs are being fostered, including gas storage, fluid separation, adsorbents, catalysis, medication delivery, and sensor utilizations. The surface area of a wide range of MOFs ranges from 103 to 104 m2/g, which exceeds the standard permeability of several material designs. MOFs with extremely durable porosity are more significant in their assortment and variety than other classes of porous materials. The work outlines the difficulties encountered in the synthesis steps and suggests ways to make use of MOFs' value in a variety of contexts. This caters to creating multivariate systems enclosed with numerous functionalities, leading to the synthesis of MOFs that offer a synergistic blend of in-built properties and exclusive applications. Additionally, the MOF-related future development opportunities and challenges are discussed.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Adhilimam
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Jobin Chacko
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Prabu D
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Karthikeyan M
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India.
| | - Saravanan A
- Department of Sustainable Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Saveetha University, India
| | - Thamarai P
- Department of Sustainable Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Saveetha University, India
| | - Rajasimman M
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamilnadu, India
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| |
Collapse
|
2
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
3
|
Yu H, Li J, Qu W, Wang W, Wang J. High-efficiency removal of As(iii) from groundwater using siderite as the iron source in the electrocoagulation process. RSC Adv 2024; 14:19206-19218. [PMID: 38882474 PMCID: PMC11178034 DOI: 10.1039/d4ra02716g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
Electrocoagulation technology, due to its simplicity and ease of operation, is often considered for treating arsenic-contaminated groundwater. However, challenges such as anode wear have hindered its development and application. This study aims to develop a siderite-filled anode electrocoagulation system for efficient removal of As(iii) and investigate its effectiveness. The impact of operational parameters on the removal rate of As(iii) was analyzed through single-factor tests, and the stability and superiority of the device were evaluated. The response surface methodology was employed to analyze the interactions between various factors and determine the optimal operational parameters by integrating data from these tests. Under conditions where the removal rate of As reached 99.3 ± 0.37%, with an initial concentration of As(iii) at 400 μg L-1, current intensity at 30 mA, initial solution pH value at 7, and Na2SO4 concentration at 10 mM. The flocculant used was subjected to characterization analysis to examine its structure, morphology, and elemental composition under these optimal operational parameters. The oxidation pathway for As(iii) within this system relies on integrated results from direct electrolysis as well as ˙O2 -, ˙OH, and Fe(iv) mediated oxidation processes. The elimination of arsenic encompasses two fundamental mechanisms: firstly, the direct adsorption of As(iii) by highly adsorbent flocculants like γ-FeOOH and magnetite (Fe3O4); secondly, the oxidation of As(iii) into As(v), followed by its reaction with siderite or other compounds to generate a dual coordination complex or iron arsenate, thus expediting its eradication. The anodic electrocoagulation system employing siderite as a filler exhibits remarkable efficiency and cost-effectiveness, while ensuring exceptional stability, thereby providing robust theoretical underpinnings for the application of electrocoagulation technology in arsenic removal.
Collapse
Affiliation(s)
- Haitao Yu
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Junfeng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Wenying Qu
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Wenhuai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Jiankang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| |
Collapse
|
4
|
Dwivedi S, Mishra S, Kumar V, Agnihotri R, Sharma P, Tiwari RK, Gupta A, Singh AP, Kumar S, Sinam G. A comprehensive review on spatial and temporal variation of arsenic contamination in Ghaghara basin and its relation to probable incremental life time cancer risk in the local population. J Trace Elem Med Biol 2023; 80:127308. [PMID: 37801785 DOI: 10.1016/j.jtemb.2023.127308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Spatial and temporal variations have been found in the levels of arsenic (As) throughout the groundwater of the Ghaghara basin. Fifteen out of twenty-five districts in this basin are reported to be affected by As, where the levels of As in groundwater and soil exceed the permissible limits set by the WHO (10 μgl-1) and FAO (20 mgkg-1) respectively. These districts include a total of four municipalities in Nepal and eighty-six blocks in India, all of which have varying degrees of As contamination. Approximately 17 million people are at risk of As poisoning, with more than two orders of magnitude higher potential lifetime incremental cancer risk, constituting over 153 thousand potential additional cases of cancer due to As-contaminated drinking water. Out of the 90 As-contaminated blocks in the Ghaghara basin, 4 blocks have about 7-fold higher potential risk of developing cancer, 49 blocks have 8-37-fold higher risk, and 37 blocks have up to 375-fold higher risk compared to the upper limit of the USEPA acceptable range, which is 1 × 10-6-1 × 10-4. High accumulation of As has been reported in the nails, hair, and urine of local inhabitants, with higher levels observed in females than males. The toxicity of As is manifested in terms of a higher occurrence of various diseases. Reproductive endpoints, such as increased incidences of preterm birth, spontaneous abortion, stillbirth, low-birth weight, and neonatal death, have also been reported in the basin. The level of As in tube wells has been found to be negatively correlated with the depth (r = -0.906), and tube wells with high levels of As (>150 μgl-1) are generally located within close proximity (<10 km) to abandoned or present meander channels in the floodplain areas of the Ghaghara river. In addition to As contamination, the water quality index (WQI) in the Ghaghara basin is poor according to the BIS standards for drinking water. Groundwater in six out of fifteen districts is unsuitable for drinking purposes, with a WQI exceeding 100. The levels of As in agricultural soil in many villages of Ballia, Bahraich, and Lakhimpur Kheri districts have exceeded the FAO limit. Water from deep tube wells has been found to be relatively safe in terms of As content, and thus can be recommended for drinking purposes. However, the use of surface water needs to be encouraged for irrigation purposes in order to preserve soil health and reduce As contamination in the food chain, thereby minimizing the risk of cancer.
Collapse
Affiliation(s)
- Sanjay Dwivedi
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Seema Mishra
- Department of Chemistry, University of Lucknow, Lucknow 226007, India.
| | - Vishnu Kumar
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Ruchi Agnihotri
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Pragya Sharma
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravi Kumar Tiwari
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Apoorv Gupta
- Department of Chemistry, University of Lucknow, Lucknow 226007, India
| | - Ajay Pratap Singh
- Centre of Advanced Study in Geology, University of Lucknow, Lucknow 226007, UP, India
| | - Sarvesh Kumar
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Geetgovind Sinam
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| |
Collapse
|
5
|
Ugulu I, Khan ZI, Ahmad K, Bashir H, Mehmood N, Zafar A. Arsenic Levels and Seasonal Variation in Pasture Soil, Forage and Horse Blood Plasma in Central Punjab, Pakistan. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:64. [PMID: 37904063 DOI: 10.1007/s00128-023-03819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
The present study aimed to determine the accumulation levels of arsenic in pasture soil, forage and animals. An atomic absorption spectrophotometer was used to determine the concentration of metals in the samples of soil, forage and blood plasma of horses. The level of arsenic ranged between 4.26 mg/kg (summer) and 4.66 mg/kg (winter) in soil samples and 2.67 mg/kg (summer) and 2.94 mg/kg (winter) in forage samples. In blood plasma samples, the mean arsenic (As) values varied between 1.38 and 1.52 mg/L. In the blood plasma samples, the mean As values varied between 1.38 and 1.52 mg/L. No statistically significant changes were observed for arsenic concentrations in plasma samples of horses for sampling seasons (p > 0.05). A positive correlation was observed for forage and blood plasma to a certain degree for arsenic but for other media, arsenic correlations were negative and insignificant. It is therefore suggested that regular monitoring of heavy metals in soils/plants/animals is essential to prevent excessive build-up of arsenic.
Collapse
Affiliation(s)
- Ilker Ugulu
- Faculty of Education, Usak University, Usak, Turkey.
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Humayun Bashir
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Naunain Mehmood
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Asma Zafar
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
6
|
Valenzuela-García LI, Alarcón-Herrera MT, Ayala-García VM, Barraza-Salas M, Salas-Pacheco JM, Díaz-Valles JF, Pedraza-Reyes M. Design of a Whole-Cell Biosensor Based on Bacillus subtilis Spores and the Green Fluorescent Protein To Monitor Arsenic. Microbiol Spectr 2023; 11:e0043223. [PMID: 37284752 PMCID: PMC10433799 DOI: 10.1128/spectrum.00432-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
A green fluorescent protein (GFP)-based whole-cell biosensor (WCB-GFP) for monitoring arsenic (As) was developed in Bacillus subtilis. To this end, we designed a reporter gene fusion carrying the gfpmut3a gene under the control of the promoter/operator region of the arsenic operon (Pars::gfpmut3a) in the extrachromosomal plasmid pAD123. This construct was transformed into B. subtilis 168, and the resultant strain was used as a whole-cell biosensor (BsWCB-GFP) for the detection of As. The BsWCB-GFP was specifically activated by inorganic As(III) and As(V), but not by dimethylarsinic acid [DMA(V)], and exhibited high tolerance to the noxious effects of arsenic. Accordingly, after 12 h exposure, B. subtilis cells carrying the Pars::gfpmut3a fusion exhibited 50 and 90% lethal doses (LD50 and LD90) to As(III) of 0.89 mM and As 1.71 mM, respectively. Notably, dormant spores from the BsWCB-GFP were able to report the presence of As(III) in a concentration range from 0.1 to 1,000 μM 4 h after the onset of germination. In summary, the specificity and high sensitivity for As, as well as its ability to proliferate under concentrations of the metal that are considered toxic in water and soil, makes the B. subtilis biosensor developed here a potentially important tool for monitoring environmental samples contaminated with this pollutant. IMPORTANCE Arsenic (As) contamination of groundwater is associated with serious worldwide health risks. Detection of this pollutant at concentrations that are established as permissible for water consumption by WHO is a matter of significant interest. Here, we report the generation of a whole-cell biosensor for As detection in the Gram-positive spore former B. subtilis. This biosensor reports the presence of inorganic As, activating the expression of the green fluorescent protein (GFP) under the control of the promoter/operator of the ars operon. The biosensor can proliferate under concentrations of As(III) that are considered toxic in water and soil and detect this ion at concentrations as low as 0.1 μM. Of note, spores of the Pars-GFP biosensor exhibited the ability to detect As(III) following germination and outgrowth. Therefore, this novel tool has the potential to be directly applied to monitor As contamination in environmental samples.
Collapse
Affiliation(s)
- Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | | - Víctor M. Ayala-García
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | - Marcelo Barraza-Salas
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | - José Manuel Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | | | | |
Collapse
|
7
|
Wang P, Chen Z, Meng Y, Shi H, Lou C, Zheng X, Li G, Li X, Peng W, Kang G. Wheat PHT1;9 acts as one candidate arsenate absorption transporter for phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131219. [PMID: 36940527 DOI: 10.1016/j.jhazmat.2023.131219] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Arsenate (AsV) is one of the most common forms of arsenic (As) in environment and plant high-affinity phosphate transporters (PHT1s) are the primary plant AsV transporters. However, few PHT1s involved in AsV absorption have been identified in crops. In our previous study, TaPHT1;3, TaPHT1;6 and TaPHT1;9 were identified to function in phosphate absorption. Here, their AsV absorption capacities were evaluated using several experiments. Ectopic expression in yeast mutants indicated that TaPHT1;9 had the highest AsV absorption rates, followed by TaPHT1;6, while not for TaPHT1;3. Under AsV stress, further, BSMV-VIGS-mediated TaPHT1;9-silencing wheat plants exhibited higher AsV tolerance and lower As concentrations than TaPHT1;6-silenced plants, whereas TaPHT1;3-silencing plants had similar phenotype and AsV concentrations to control. These suggested that TaPHT1;9 and TaPHT1;6 possessed AsV absorption capacity with the former showing higher activities. Under hydroponic condition, furthermore, CRISPR-edited TaPHT1;9 wheat mutants showed the enhanced tolerance to AsV with decreased As distributions and concentrations, whereas TaPHT1;9 ectopic expression transgenic rice plants had the opposite results. Also, under AsV-contaminated soil condition, TaPHT1;9 transgenic rice plants exhibited depressed AsV tolerance with increased As concentrations in roots, straws and grains. Moreover, Pi addition alleviated the AsV toxicity. These suggested that TaPHT1;9 should be a candidate target gene for AsV phytoremediation.
Collapse
Affiliation(s)
- Pengfei Wang
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Zedong Chen
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanjun Meng
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Huanting Shi
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Chuang Lou
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Xu Zheng
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Gezi Li
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wanxi Peng
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
| | - Guozhang Kang
- Henan Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
8
|
Kanel SR, Das TK, Varma RS, Kurwadkar S, Chakraborty S, Joshi TP, Bezbaruah AN, Nadagouda MN. Arsenic Contamination in Groundwater: Geochemical Basis of Treatment Technologies. ACS ENVIRONMENTAL AU 2023; 3:135-152. [PMID: 37215436 PMCID: PMC10197174 DOI: 10.1021/acsenvironau.2c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is abundant in the environment and can be found in both organic (e.g., methylated) and inorganic (e.g., arsenate and arsenite) forms. The source of As in the environment is attributed to both natural reactions and anthropogenic activities. As can also be released naturally to groundwater through As-bearing minerals including arsenopyrites, realgar, and orpiment. Similarly, agricultural and industrial activities have elevated As levels in groundwater. High levels of As in groundwater pose serious health risks and have been regulated in many developed and developing countries. In particular, the presence of inorganic forms of As in drinking water sources gained widespread attention due to their cellular and enzyme disruption activities. The research community has primarily focused on reviewing the natural occurrence and mobilization of As. Yet, As originating from anthropogenic activities, its mobility, and potential treatment techniques have not been covered. This review summarizes the origin, geochemistry, occurrence, mobilization, microbial interaction of natural and anthropogenic-As, and common remediation technologies for As removal from groundwater. In addition, As remediation methods are critically evaluated in terms of practical applicability at drinking water treatment plants, knowledge gaps, and future research needs. Finally, perspectives on As removal technologies and associated implementation limitations in developing countries and small communities are discussed.
Collapse
Affiliation(s)
- Sushil R. Kanel
- Department
of Chemistry, Wright State University, Dayton, Ohio 45435, United States
| | - Tonoy K. Das
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Rajender S. Varma
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Sudarshan Kurwadkar
- Department
of Civil and Environmental Engineering, California State University, Fullerton, California 92831, United States
| | - Sudip Chakraborty
- Laboratory
of Transport Phenomena & Biotechnology, Department of DIMES, Universita della Calabria, Via Pietro Bucci, Cubo 42/a, Rende 87036, (CS), Italy
| | - Tista Prasai Joshi
- Environment
and Climate Study Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur 44700, Khumaltar, Nepal
| | - Achintya N. Bezbaruah
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mallikarjuna N. Nadagouda
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
9
|
Torres-Quiroz C, Dissanayake J, Park J. Modified oyster shell powder with iron (II) sulfate heptahydrate to improve arsenic uptake in solution and in contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37029-37038. [PMID: 36564695 DOI: 10.1007/s11356-022-24831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Arsenic is a metalloid whose presence can be due to natural or anthropological causes. It is considered as a toxic chemical that puts human health at high risk. In this study, we evaluated a novel modified oyster shell (MOS) that was coated with iron (II) sulfate heptahydrate using two different proportions through batch sorption experiments in an arsenic solution and in arsenic-contaminated soils. The arsenic solution was prepared using As(III)-standard solution. The arsenic contaminated soils were extracted from a contaminated site in Cheonan, South Korea, where the average arsenic concentration of the soil was reported as 136.28 mg/kg. Different doses of oyster shell and modified oyster were used to understand the effect of the addition of iron (II) sulfate heptahydrate via sorption batch experiments in solution and sorption tests in soils. The sorption tests were conducted with 50 g of contaminated soil; then, 150 g of soils was used for the pot cultivation tests, and finally, 150 g of contaminated soils was used for column percolation test. Through the experiments, the authors observed a comparable improvement of arsenic stabilization from 10 to 60% with the addition of iron (II) sulfate heptahydrate to oyster shell.
Collapse
Affiliation(s)
- Cecilia Torres-Quiroz
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea
- DongMyeong Consulting Engineering & Architecture, 15Fl, Gyeongdong Union Building 127, Wangsan-Ro, Dongdaemun-Gu, Seoul, South Korea
| | - Janith Dissanayake
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea
- Newnop Co. Ltd, 22Ho, Bizplant, 18th floor, Building A, 58-1, Giheung-Ro, Giheung-Gu, Yongin-Si, Gyeonggi-Do, South Korea
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.
- Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak- Ro, Gwanak-Gu, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Kong Y, Ma Y, Huang Z, Ma J, Ding L, Nie Y, Chen Z, Shen J, Huang Y. Characteristics and mechanisms of As(III) removal by potassium ferrate coupled with Al-based coagulants: Analysis of aluminum speciation distribution and transformation. CHEMOSPHERE 2023; 313:137251. [PMID: 36395895 DOI: 10.1016/j.chemosphere.2022.137251] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
This study was carried out to investigate the enhanced removal of arsenite (As(III)) by potassium ferrate (K2FeO4) coupled with three Al-based coagulants, which focused innovatively on the distribution and transformation of hydrolyzed aluminum species as well as the mechanism of K2FeO4 interacted with different aluminum hydrolyzed polymers during As(III) removal. Results demonstrated that As(III) removal efficiency could be substantially elevated by K2FeO4 coupled with three Al-based coagulants treatment and the optimum As(III) removal effect was occurred at pH 6 with more than 97%. K2FeO4 showed a great effect on the distribution and transformation of aluminum hydrolyzed polymers and then coupled with a variety of aluminum species produced by the hydrolysis of aluminum coagulants for arsenic removal. During enhanced coagulation, arsenic removal by AlCl3 was main through the charge neutralization of in situ Al13 and the sweep flocculation of Al(OH)3, while PACl1 mainly depended on the charge neutralization of preformed Al13 and the bridging adsorption of Al13 aggregates, whereas PACl2 mainly relied on the sweep flocculation of Al(OH)3. This study provided a new insight into the distribution and transformation of aluminum species for the mechanism of As(III) removal by K2FeO4 coupled with different Al-based coagulants.
Collapse
Affiliation(s)
- Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China
| | - Yaqian Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China
| | - Zhiyan Huang
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China.
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China.
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui, 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui, 243002, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resources and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Yuan Huang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
11
|
Remediation technologies for contaminated groundwater due to arsenic (As), mercury (Hg), and/or fluoride (F): A critical review and way forward to contribute to carbon neutrality. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
12
|
Zhao Y, Shi H, Du Z, Zhou J, Yang F. Removal of As(V) from aqueous solution using modified Fe 3O 4 nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220988. [PMID: 36704249 PMCID: PMC9874269 DOI: 10.1098/rsos.220988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
The removal of arsenic contamination from the aqueous environment is of great importance in the conservation of the Earth's water resources, and surfactants are a promising material used to modify magnetic nanoparticles to improve adsorption properties. Therefore, it is important to develop efficient and selective adsorbents for arsenic. Surface modification of Fe3O4 was carried out using anionic, cationic and zwitterionic surfactants to obtain composite Fe3O4@SDS, Fe3O4@CTAB, Fe3O4@SNC 16 and Fe3O4@NPC 16 (collectively referred to as Fe3O4@surfactants). The synthesized composite Fe3O4@surfactants magnetic nanoparticles were characterized by XRD, TEM and FTIR. The As(V) removal characteristics of the composite magnetic nanoparticles from the aqueous solution were evaluated by adsorption batch experiments which indicated the possibility of effective application of the surfactant-modified Fe3O4 magnetic nanoparticles for the removal of As(V) from aqueous solution. The adsorption equilibrium of the composites was reached in 30 min and the kinetic data followed the pseudo-second-order model. Langmuir equation could represent the adsorption isotherm data very well. Moreover, under the identical conditions, Fe3O4@CTAB showed maximum capacity of adsorption for As(V) (55.671 mg g-1), with its removal efficiency being much higher than that of the other composites. In addition, the Fe3O4@surfactants composite magnetic nanoparticles retained 93.5% of its initial arsenic removal efficiency even after re-using it five times. The mechanism of arsenic adsorption by Fe3O4@surfactants composite magnetic nanoparticles was proved to be complexation via electrostatic attraction, which was mainly innersphere in nature.
Collapse
Affiliation(s)
- Yuling Zhao
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, People's Republic of China
| | - Hao Shi
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, People's Republic of China
| | - Ze Du
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, People's Republic of China
| | - Jinlong Zhou
- College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, People's Republic of China
| | - Fangyuan Yang
- College of Mathematics and Physics, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, People's Republic of China
| |
Collapse
|
13
|
Optimization of Coagulation-Flocculation Process in Efficient Arsenic Removal from Highly Contaminated Groundwater by Response Surface Methodology. Molecules 2022; 27:molecules27227953. [PMID: 36432053 PMCID: PMC9693969 DOI: 10.3390/molecules27227953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Elevated arsenic (As) contamination in water, especially groundwater, has been recognized as a major problem of catastrophic proportions. This work explores As(V) removal via the coagulation-flocculation process by use of ferric chloride coagulant and polyacrylamide k16 co-coagulant as a first time. The effects of major operating variables such as coagulant dosing (50, 125 and 200 mg/L), co-coagulant dosing (5, 12.5 and 20 mg/L), pH (6, 7and 8), fast mixing time (1, 2 and 3 min), and fast mixing speed (110, 200 and 300 rpm) on As(V) removal efficiency were investigated by a Box-Behnken statistical experiment design (BBD) and response surface methodology (RSM). According to factors F values, coagulant dosing, rapid mixing speed, pH, and co-coagulant dosing showed the most effect on As(V) removal efficiency, and the rapid mixing time factor indicated the slightest effect. The proposed quadratic model was significant with a p value < 0.0001 and has satisfactorily described the experimental data with R2 and adjusted R2 values of 0.9855 and 0.9738, respectively. Predicted model optimal conditions with target of complete As(V) removal were coagulant dosing = 197.63 ppm, co-coagulant dosing = 19.55 ppm, pH = 7.37, fast mixing time = 1.43 min and fast mixing speed = 286.77 rpm. The treatment of Nazarabad well water sample with an initial As(V) concentration of 5 mg/L under the optimal conditions removed 100% As(V) with the volume of produced sludge of 10.7 mL/200 mL. Increasing coagulant dosing, co-coagulant dosing, fast mixing time and fast mixing speed operation parameters from low-level to high-level values indicated 78%, 20%, 10.52% and 9.47% increases in volume of the produced sludge, respectively. However, a reduction of 13.63% in volume of the produced sludge resulted via pH increases.
Collapse
|
14
|
Ayala LIM, Aparicio F, Boffa V, Magnacca G, Carlos L, Bosio GN, Mártire DO. Removal of As(III) via adsorption and photocatalytic oxidation with magnetic Fe–Cu nanocomposites. Photochem Photobiol Sci 2022; 22:503-512. [PMID: 36327035 DOI: 10.1007/s43630-022-00330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Magnetic Fe-Cu nanocomposites with high adsorption capacity and photocatalytic properties were prepared via the precursor method using soluble substances isolated from urban biowaste (BBS) as carbon sources and different temperatures of the pyrolysis treatment (400, 600, and 800 °C). BBS is used as complexing agent for the Fe3+ and Cu2+ ions in the precursors. The as-prepared magnetic materials were tested in As(III) removal processes from water. Dark experiments performed with the materials obtained at 400 and 600 °C showed excellent adsorption capacities achieving a significant uptake of 911 and 840 mg g-1 for As(III), respectively. Experiments conducted under steady-state irradiation showed a reduction of 50-71% in As(III) levels evidencing the meaningful photocatalytic capacity of Fe-Cu nanocomposites. The best photocatalytic performance was obtained for the nanocomposite synthesized at the highest pyrolysis temperature, in line with the reported trend of HO· radicals production. Transient absorption spectroscopy experiments revealed the occurrence of an alternative oxidation pathway involving the valence band holes and yielded relevant kinetic information related to the early stages of the As(III) photooxidation. The higher absorption of the electron-hole pairs observed for the samples treated at lower temperature means that controlling the pyrolysis temperature during the synthesis of the Fe-Cu nanocomposites allows tuning the photocatalyst activity for oxidation of substrates via valence band holes, or via HO· radicals.
Collapse
Affiliation(s)
- Lucía I Morán Ayala
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Casilla de Correo 16, Sucursal 4, 1900, La Plata, Argentina
| | - Francisca Aparicio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Casilla de Correo 16, Sucursal 4, 1900, La Plata, Argentina
| | - Vittorio Boffa
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Giuliana Magnacca
- Dipartimento di Chimica and NIS Inter-Departmental Centre, Università di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Luciano Carlos
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-UNCo), Universidad Nacional del Comahue, 8300, Neuquén, Argentina.
| | - Gabriela N Bosio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Casilla de Correo 16, Sucursal 4, 1900, La Plata, Argentina
| | - Daniel O Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Casilla de Correo 16, Sucursal 4, 1900, La Plata, Argentina.
| |
Collapse
|
15
|
Transient Glycolytic Complexation of Arsenate Enhances Resistance in the Enteropathogen Vibrio cholerae. mBio 2022; 13:e0165422. [PMID: 36102515 PMCID: PMC9601151 DOI: 10.1128/mbio.01654-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous presence of toxic arsenate (AsV) in the environment has raised mechanisms of resistance in all living organisms. Generally, bacterial detoxification of AsV relies on its reduction to arsenite (AsIII) by ArsC, followed by the export of AsIII by ArsB. However, how pathogenic species resist this metalloid remains largely unknown. Here, we found that Vibrio cholerae, the etiologic agent of the diarrheal disease cholera, outcompetes other enteropathogens when grown on millimolar concentrations of AsV. To do so, V. cholerae uses, instead of ArsCB, the AsV-inducible vc1068-1071 operon (renamed var for vibrio arsenate resistance), which encodes the arsenate repressor ArsR, an alternative glyceraldehyde-3-phosphate dehydrogenase, a putative phosphatase, and the AsV transporter ArsJ. In addition to Var, V. cholerae induces oxidative stress-related systems to counter reactive oxygen species (ROS) production caused by intracellular AsV. Characterization of the var mutants suggested that these proteins function independently from one another and play critical roles in preventing deleterious effects on the cell membrane potential and growth derived from the accumulation AsV. Mechanistically, we demonstrate that V. cholerae complexes AsV with the glycolytic intermediate 3-phosphoglycerate into 1-arseno-3-phosphoglycerate (1As3PG). We further show that 1As3PG is not transported outside the cell; instead, it is subsequently dissociated to enable extrusion of free AsV through ArsJ. Collectively, we propose the formation of 1As3PG as a transient metabolic storage of AsV to curb the noxious effect of free AsV. This study advances our understanding of AsV resistance in bacteria and underscores new points of vulnerability that might be an attractive target for antimicrobial interventions. IMPORTANCE Even though resistance to arsenate has been extensively investigated in environmental bacteria, how enteric pathogens tolerate this toxic compound remains unknown. Here, we found that the cholera pathogen V. cholerae exhibits increased resistance to arsenate compared to closely related enteric pathogens. Such resistance is promoted not by ArsC-dependent reduction of arsenate to arsenite but by an operon encoding an arsenate transporter (ArsJ), an alternative glyceraldehyde 3-phosphate dehydrogenase (VarG), and a putative, uncharacterized phosphatase (VarH). Mechanistically, we demonstrate that V. cholerae detoxifies arsenate by complexing it with the glycolytic intermediate 3-phosphoglycerate into 1-arseno-3-phosphoglycerate (1As3PG). 1As3PG is not transported outside the cell; instead, it is subsequently dissociated by VarH to enable extrusion of free arsenate through ArsJ. Collectively, this study proposes a novel mechanism for arsenate detoxification, entirely independent of arsenate reduction and arsenite extrusion, that enhances V. cholerae resistance to this metalloid compared to other enteric pathogens.
Collapse
|
16
|
Hu E, Liu M, Wang F, Lv B, Wu J. Effects of phosphate, silicate, humic acid, and calcium on the release of As(V) co-precipitated with Fe(III) and Fe(II) during aging. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129478. [PMID: 35999734 DOI: 10.1016/j.jhazmat.2022.129478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/01/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The effects of phosphate (P), silicate (Si), humic acid (HA), and calcium (Ca) on the release of As(V) co-precipitated with Fe(III) and Fe(II) during aging were investigated. As(V) in synthetic groundwater could be efficiently removed by both Fe(III) and Fe(II) processes. The addition of P remarkably decreased As(V) removal efficiency while no obvious release of As(V) during aging was observed. Si and HA reduced As(V) removal to a less extent than P but caused notable As(V) release during aging. FTIR spectra and particle size of the precipitates before and after aging indicated that As(V) release in the presence of Si was due to the serious structural transformation and particle aggregation of the precipitates during aging. While for HA, As(V) release was caused by sorption of HA on the precipitates and dissolution of the precipitates by HA. The addition of Ca partially counteracted the adverse impacts of P, Si, and HA and promoted As(V) removal efficiency but had limited inhibitory effect on As(V) release as it induced more serious particle aggregation during aging. The results demonstrated that the release of As(V) caused by Si and HA should be considered when using Fe coagulation for in-situ treatment of As(V) contaminated groundwater.
Collapse
Affiliation(s)
- Erdan Hu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China
| | - Meichen Liu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China
| | - Feng Wang
- Hangzhou Urban & Rural Construction Design Institute Co., Ltd, Hangzhou, China
| | - Bosheng Lv
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jun Wu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
17
|
In Situ Remediation of Arsenic-Contaminated Groundwater by Injecting an Iron Oxide Nanoparticle-Based Adsorption Barrier. WATER 2022. [DOI: 10.3390/w14131998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arsenic contamination of groundwater occurs due to both geogenic and anthropogenic processes. Conventional arsenic remediation techniques require extraction of groundwater into pump-and-treat systems, which are expensive and require long operational times. Hence, there is a need for cost-effective remediation. In this study, we assessed and validated the in situ remediation of arsenic contamination in groundwater resources using permeable reactive barriers (PRBs) made of injectable, colloidal iron oxide nanoparticles in the laboratory and in field-scale pilot tests. Sand-packed, flow-through column studies were used in order to assess the sorption behavior of the iron oxide nanoparticles using field materials (sand, groundwater) in the laboratory. The breakthrough curves were analyzed using a reactive transport model considering linear and nonlinear adsorption isotherms and were fitted best with a chemical nonequilibrium consideration. The results were used to design a pilot-scale field test. The injected 28 m3 of nanoparticles (ca. 280 kg dry weight of iron oxide) were successfully delivered to the aquifer via an injection well. No mobile iron was detected downstream, confirming that a stable in situ barrier was formed that did not move with the groundwater flow. Arsenic concentrations in groundwater were reduced to the aimed 50% of the background value, despite the relatively short contact time between arsenic and the iron oxide in the barrier, due to the high flow velocity of 1.21 m/day. We compared the results of the laboratory and field tests and concluded that the single-parameter models based on retardation factor and/or adsorption capacity fail to predict the longevity of the barrier and the evolution of arsenic breakthrough with time, most likely because they do not consider the chemical nonequilibrium effects. Therefore, we propose that upscaling the laboratory findings to field design must be carried out with care and be coupled with detailed reactive transport models.
Collapse
|
18
|
Paul S, Saha S, Chakraborty A, Jana A, Mukherjee S. Co-cultivation as a Strategy to Reduce Food Chain-Mediated Arsenic Contamination in Human Beings. Appl Biochem Biotechnol 2022; 195:2252-2260. [PMID: 35666384 DOI: 10.1007/s12010-022-03987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Arsenic (As) is a highly toxic metalloid present naturally in the earth's crust. In developing countries apart from drinking water, one major reason for arsenic toxicity among human beings is through contaminated crops and vegetables. The nutritional quality of the crops and vegetables grown in the arsenic-infested area gets compromised. A major challenge is to protect the vegetables and crops from arsenic contamination. Attempts have been made through different remediation technologies. The present research is designed to reduce the arsenic load in arsenic-sensitive (non-hyperaccumulator) plants by co-cultivation with hyperaccumulator plants, thus saving food chain contamination to humans. In the present study, done in potted plants, it has been found that co-cultivated B. oleracea has 1.5 times decreased arsenic translocation compared to the control plant; on the contrary, hyperaccumulator B. juncea showed higher translocation. Plant health biomarkers like total chlorophyll and protein contents were two times higher in co-cultivated B. oleracea compared to the As-treated control which actually seconds the fact of less translocation in the co-cultivated plants. The stress marker like proline content, super oxide dimutase, and malondialdehyde content showed a decrease in co-cultivated B. oleracea compared to the control plant grown in arsenic-infested soil which again reflected less stress in co-cultivated plants. From these findings of the research, we can hypothesize that hyperaccumulator B. juncea might save B. oleracea from arsenic-induced toxicity when co-cultivated and thus can save food chain-mediated contamination to human beings.
Collapse
Affiliation(s)
- Sonali Paul
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, 700160, India
| | - Sreshtha Saha
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, 700160, India
| | - Ankit Chakraborty
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, 700160, India
| | - Annapurna Jana
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, 700160, India
| | - Susmita Mukherjee
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No III, B/5, New Town Rd, Action Area III, Kolkata, West Bengal, 700160, India.
| |
Collapse
|
19
|
Ali S, Tyagi A, Mushtaq M, Al-Mahmoudi H, Bae H. Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118940. [PMID: 35122918 DOI: 10.1016/j.envpol.2022.118940] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/08/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal toxicity has become an impediment to agricultural productivity, which presents major human health concerns in terms of food safety. Among them, arsenic (As) a non-essential heavy metal has gained worldwide attention because of its noxious effects on agriculture and public health. The increasing rate of global warming and anthropogenic activities have promptly exacerbated As levels in the agricultural soil, thereby causing adverse effects to crop genetic and phenotypic traits and rendering them vulnerable to other stresses. Conventional breeding and transgenic approaches have been widely adapted for producing heavy metal resilient crops; however, they are time-consuming and labor-intensive. Hence, finding new mitigation strategies for As toxicity would be a game-changer for sustainable agriculture. One such promising approach is harnessing plant microbiome in the era of 'omics' which is gaining prominence in recent years. The use of plant microbiome and their cocktails to combat As metal toxicity has gained widespread attention, because of their ability to metabolize toxic elements and offer an array of perquisites to host plants such as increased nutrient availability, stress resilience, soil fertility, and yield. A comprehensive understanding of below-ground plant-microbiome interactions and their underlying molecular mechanisms in exhibiting resilience towards As toxicity will help in identifying elite microbial communities for As mitigation. In this review, we have discussed the effect of As, their accumulation, transportation, signaling, and detoxification in plants. We have also discussed the role of the plant microbiome in mitigating As toxicity which has become an intriguing research frontier in phytoremediation. This review also provides insights on the advancements in constructing the beneficial synthetic microbial communities (SynComs) using microbiome engineering that will facilitate the development of the most advanced As remedial tool kit in sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Henda Al-Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
20
|
Wang Y, Liu L, Yang X, Suib SL, Qiu G. Removal of As(V) from wastewaters using magnetic iron oxides formed by zero-valent iron electrocoagulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114519. [PMID: 35063763 DOI: 10.1016/j.jenvman.2022.114519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Electrocoagulation of zero-valent iron has been widely applied to the removal of dissolved arsenic, but the solid-liquid separation of arsenic-containing precipitates remains technically challenging. In this work, zero-valent iron was electrochemically oxidized to magnetic iron oxides for the removal of As(Ⅴ) from simulated and actual mining wastewaters. The results indicated that lepidocrocite was formed when zero-valent iron was oxidized by dissolved oxygen, but ferrihydrite and green rust were first formed and then transformed to magnetic iron oxides (mainly magnetite and maghemite) in the electrochemical oxidation from 0 to 0.9 V (vs. SCE), which facilitates the adsorption of As(V) and subsequent solid-liquid separation under a magnetic field. In simulated As(V)-containing solution with initial pH 7.0, zero-valent iron was electrochemically oxidized to magnetite and maghemite at 0.6 V (vs. SCE) for 2 h. The As(V) concentration first decreased from 5127.5 to 26.8 μg L-1 with a removal ratio of 99.5%. In actual mining wastewaters, zero-valent iron was electrochemically oxidized to maghemite at 0.6 V (vs. SCE) for 24 h, and the As(V) concentration decreased from 5486.4 to 3.6 μg L-1 with a removal ratio of 99.9%. The removal ratio of As(V) increased slightly with increasing potential, and increased first and then decreased with increasing initial pH. Compared with that of SO42- and NO3-, the presence of Cl- significantly enhanced the removal of As(V). This work provides a highly efficient, facile and low-cost technique for the treatment of arsenic-containing wastewaters.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Steven L Suib
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut, 06269-3060, United States
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
21
|
Chen CK, Nguyen NT, Le TT, Duong CC, Nguyen CN, Truong DT, Liao CH. Novel design of amine and metal hydroxide functional group modified onto sludge biochar for arsenic removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1384-1399. [PMID: 35290219 DOI: 10.2166/wst.2022.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study involved novel-designed sludge biochar (SB) adsorbed for arsenic removal with lower operating costs and higher adsorption efficiency properties. Generally, biochar only relies on micropores for pollutant adsorption, but physical adsorption is not highly efficient for arsenic removal. Therefore, in order to improve the removal efficiency of arsenic by SB, diethylenetriamine (DETA) and FeCl3 were used in this study to modify the surface of SB by an immersion method. The objectives of this research are to obtain optimum operation conditions by assessing the effect of different Fe content, pH and initial concentration on adsorbing arsenic. This study is the first to use Density Functional Theory (DFT) to simulate and verify the adsorption mechanism of arsenic by SB. Results showed the presence of amine/iron oxyhydroxides functional groups greatly promoted SB surface activity and its arsenic adsorption potential. The surface area, pore volume and pore size of the SB were estimated to be 525 m2 g-1, 0.35 cm3 g-1 and 8.71 nm, respectively. The DFT model result is the same as the result of arsenic adsorption performance with high adsorption energy (-246.3 kJmol-1) and shorter bond distances (1.42 Å), indicating strong chemical adsorption between arsenic and material. The reaction mechanism is divided into four pathways, including oxidation-reduction, complexation, electrostatic adsorption and pore adsorption.
Collapse
Affiliation(s)
- Chih-Kuei Chen
- Department of Environmental Engineering, National I-Lan University, Ilan 26047, Taiwan, China; Continental Water Engineering Corporation, Taipei 10608, Taiwan, China
| | - Nhat-Thien Nguyen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, China
| | - Thuy-Trang Le
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 500000, Viet Nam
| | - Cong-Chinh Duong
- Southern Institute of Water Resources Research, Ho Chi Minh 700000, Viet Nam
| | - Cong-Nguyen Nguyen
- Faculty of Chemistry and Environment, Dalat University, Dalat 66100, Viet Nam
| | | | - Chun-Hsing Liao
- Infectious Disease Divisions, Far Eastern Memorial Hospital, New Tai-Pei 22060, Taiwan, China E-mail:
| |
Collapse
|
22
|
Znad H, Awual MR, Martini S. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules 2022; 27:molecules27041275. [PMID: 35209061 PMCID: PMC8876972 DOI: 10.3390/molecules27041275] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
The presence of heavy metals in water bodies is linked to the increasing number of industries and populations. This has serious consequences for the quality of human health and the environment. In accordance with this issue, water and wastewater treatment technologies including ion exchange, chemical extraction, and hydrolysis should be conducted as a first water purification stage. However, the sequestration of these toxic substances tends to be expensive, especially for large scale treatment methods that require tedious control and have limited efficiency. Therefore, adsorption methods using adsorbents derived from biomass represent a promising alternative due to their great efficiency and abundance. Algal and seaweed biomass has appeared as a sustainable solution for environmentally friendly adsorbent production. This review further discusses recent developments in the use of algal and seaweed biomass as potential sorbent for heavy metal bioremediation. In addition, relevant aspects like metal toxicity, adsorption mechanism, and parameters affecting the completion of adsorption process are also highlighted. Overall, the critical conclusion drawn is that algae and seaweed biomass can be used to sustainably eliminate heavy metals from wastewater.
Collapse
Affiliation(s)
- Hussein Znad
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
- School of Engineering, Edith Cowan University (ECU), Perth, WA 6027, Australia
- Correspondence: (H.Z.); (S.M.)
| | - Md. Rabiul Awual
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
| | - Sri Martini
- Chemical Engineering Department, Universitas Muhammadiyah Palembang, Palembang 30263, Indonesia
- Correspondence: (H.Z.); (S.M.)
| |
Collapse
|
23
|
Density functional theory (DFT) investigation of the oxidative degradation of NaAsO2 via hydroxyl radical. Struct Chem 2022. [DOI: 10.1007/s11224-022-01884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Lu Y, Liao S, Ding Y, He Y, Gao Z, Song D, Tian W, Zhang X. Effect of Stevia rebaudiana Bertoni residue on the arsenic phytoextraction efficiency of Pteris vittata L. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126678. [PMID: 34333410 DOI: 10.1016/j.jhazmat.2021.126678] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Soil contamination by arsenic (As) presents a high risk to public health, necessitating urgent remediation. This study sought to develop an efficient strategy for the phytoremediation of As-contaminated soil. The effects of Stevia rebaudiana Bertoni residue (SR) on the available As (A-As) concentration of soil and As extraction from the soil by Pteris vittata L. were studied by soil simulation, pot, and field experiments. The A-As concentration in the soil simulation experiment increased significantly by 84.20% after 20 days. The biomass, As concentration, and total extracted As of SR-treated P. vittata L. in the pot experiment increased significantly by 50.66%, 120.2%, and 171.2%, respectively, compared to the untreated control. The SR-treated rhizosphere soil in the pot experiment displayed a significant 21.72% decrease in total As concentration. In the one-year field experiment, treatment with SR resulted in a significant 191.1% increase in As extraction by P. vittata L. and a significant 10.26% reduction in rhizosphere soil As concentration compared to the control. This study proposes a potential mechanism for SR-mediated enhancement of P. vittata L. As extraction ability and provides a new, economic, and environmentally friendly method for As-contaminated soil remediation.
Collapse
Affiliation(s)
- Yingying Lu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuijiao Liao
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yiran Ding
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ying He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ziyi Gao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Danna Song
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Tian
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xing Zhang
- Zhejiang shengshi biotechnology Co. LTD, Huzou, Zhejiang 313300, China
| |
Collapse
|
25
|
Activated Carbons for Arsenic Removal from Natural Waters and Wastewaters: A Review. WATER 2021. [DOI: 10.3390/w13212982] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The arsenic pollution of waters and wastewaters is concerning many countries across the world, and because of the effects of arsenic on human health, its removal from waters is of great importance. Adsorption using functionalized activated carbons as a technique for the removal of arsenic from water streams has gained great attention. In the present review, we summarize synthesis technologies, the characterization of materials and arsenic removal capacity, and we clarify the parameters which play a critical role in the removal of arsenic, such as the pH value of the water, the active group in the functionalization and temperature. The review article concludes that most of the experimental data fit both Langmuir and Freundlich isotherms. In this review, the recyclability and reuse of the materials are also reported, and the findings show that for both arsenite and arsenate, even after several adsorption cycles, the material can be further used as an efficient adsorbent for arsenic removal.
Collapse
|
26
|
Enriching Trace Level Adsorption Affinity of As3+ Ion Using Hydrothermally Synthesized Iron-Doped Hydroxyapatite Nanorods. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02103-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Rathi BS, Kumar PS. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126299. [PMID: 34102361 DOI: 10.1016/j.jhazmat.2021.126299] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 05/10/2023]
Abstract
Arsenic liberation and accumulation in the groundwater environment are both affected by the presence of primary ions and soluble organic matter. The most important influencing role in the co-occurrence is caused by human activity, which includes logging, agricultural runoff stream, food, tobacco, and fertilizers. Furthermore, it covers a wide range of developed and emerging technologies for removing arsenic impurities from the ecosystem, including adsorption, ion exchangers, bio sorption, coagulation and flocculation, membrane technology and electrochemical methods. This review thoroughly explores various arsenic toxicity to the atmosphere and the removal methods involved with them. To begin, the analysis focuses on the general context of arsenic outbreaks in the area, health risks associated with arsenic, and measuring techniques. The utilization of innovative functional substances such as graphite oxides, metal organic structures, carbon nanotubes, and other emerging types of composite materials, as well as the ease, reduced price, and simple operating method of the adsorbent material, are better potential alternatives for arsenic removal. The aim of this article is to examine the origins of arsenic, as well as identification and treatment methods. It also addressed recent advancements in Arsenic removal using graphite oxides, carbon nanotubes, metal organic structures, magnetic nano composites, and other novel types of usable materials. Under ideal conditions for the above methods, the arsenic removal will achieve nearly 99% in lab scale.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| |
Collapse
|
28
|
Anirudhan T, Shainy F, Sekhar VC, Athira V. Highly efficient photocatalytic degradation of chlorpyrifos in aqueous solutions by nano hydroxyapatite modified CFGO/ZnO nanorod composite. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Thakur LS, Varma AK, Goyal H, Sircar D, Mondal P. Simultaneous removal of arsenic, fluoride, and manganese from synthetic wastewater by Vetiveria zizanioides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44216-44225. [PMID: 33851293 DOI: 10.1007/s11356-021-13898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Main aim of the present research is to explore the potential use of Vetiveria zizanioides L. for phytoremediation of arsenic, fluoride, and manganese simultaneously from synthetic wastewater in a batch scale floating platform unit. Half strength Hoagland's nutrient solution spiked with arsenic, fluoride, and manganese concentrations of 1, 20, and 10 mg/L, respectively has been used. The effects of pH and treatment time on simultaneous removal of arsenic, fluoride, and manganese have been performed. V. zizanioides has exhibited optimum growth at pH 8 and the removal of arsenic and fluoride is observed to be 59.6 and 38.1%, respectively. This plant has successfully removed all of the manganese (99.3%). The uptake of manganese is found to be faster than the arsenic and fluoride. The trend of arsenic, fluoride, and manganese accumulation in various parts of V. zizanioides is found as roots > stems > leaves. Result showed that the use of V. zizanioides would be appropriate to treat arsenic, fluoride, and manganese contaminated wastewater.
Collapse
Affiliation(s)
- Lokendra Singh Thakur
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Department of Chemical Engineering, Ujjain Engineering College, Ujjain, Madhya Pradesh, India
| | - Anil Kumar Varma
- Department of Chemical Engineering, Assam Energy Institute (A centre of RGIPT, Jais, Amethi), Sivasagar, Assam, 785697, India
| | - Hemant Goyal
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Debabrata Sircar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Prasenjit Mondal
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
30
|
Wang Z, Fu Y, Wang L. Abiotic oxidation of arsenite in natural and engineered systems: Mechanisms and related controversies over the last two decades (1999-2020). JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125488. [PMID: 33676246 DOI: 10.1016/j.jhazmat.2021.125488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Abiotic oxidation of toxic As(III) to As(V) is being deemed as a necessary step for the overall arsenic decontamination in both natural and engineered systems. Direct oxidation of As(III) by chemical oxidants, such as ozone, permanganate, ferrate, chlorine and chloramine, or naturally occurring minerals like Mn, Fe oxides, seems straightforward. Both O2 and H2O2 are ineffective for arsenite oxidation, but they can be activated by reducing substances like Fe2+, Fe0 to increase the oxidation rates. Photo-induced oxidation of As(III) has been demonstrated effective in Fe complexes or minerals, NO3-/NO2-, dissolved organic matter (DOM), peroxygens and TiO2 systems. Although a variety of oxidation methods have been developed over the past two decades, there remain many scientific and technical challenges that must be overcome before the rapid progress in basic knowledge can be translated into environmental benefits. To better understand the trends in the existing data and to identify the knowledge gaps, this review describes in detail the complicated mechanisms for As(III) oxidation by various methods and emphasizes on the conflicting data and explanation. Some prevailing concerns and challenges in the sphere of As(III) oxidation are also pointed out so as to appeal to researchers for further investigations.
Collapse
Affiliation(s)
- Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China.
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
31
|
Seynnaeve B, Folens K, Krishnaraj C, Ilic IK, Liedel C, Schmidt J, Verberckmoes A, Du Laing G, Leus K, Van Der Voort P. Oxygen-rich poly-bisvanillonitrile embedded amorphous zirconium oxide nanoparticles as reusable and porous adsorbent for removal of arsenic species from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125356. [PMID: 33618269 DOI: 10.1016/j.jhazmat.2021.125356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
A new oxygen-rich porous polymer based on bisvanillonitrile was synthesized and characterized. This polymer was employed as support for the anchoring of 14.5 w% amorphous zirconium oxide nanoparticles. The formation of homogeneously dispersed nanoparticles in the poly-bisvanillonitrile (PBVN) host material was confirmed using N2-sorption, XRPD, XPS and electron microscopy. The combination of zirconium oxide nanoparticles having active adsorption sites with the porous supporting material showed excellent adsorption of arsenic species. The resulting adsorption capacities of the hybrid material extend to 245 mg g-1 for arsenite (AsIII) and 115 mg g-1 for arsenate (AsV). Moreover, adsorption kinetics showed a fast removal of both arsenic species with initial adsorption rate h of 0.0646 mg g-1 min-1 for arsenite and 0.0746 mg g-1 min-1 for arsenate. The immobilization was not interfered by the presence of other compounds in solution, indicating the applicability in real working environments. The material could be regenerated in a continuous mode using a 0.1 mol L-1 sodium hydroxide solution at 70 °C to desorb arsenic.
Collapse
Affiliation(s)
- Bram Seynnaeve
- Krijgslaan 281, Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Ghent 9000, Belgium; Coupure Links 653, Ecochem, Department of Green Chemistry and Technology, Ghent University, Ghent 9000, Belgium.
| | - Karel Folens
- Coupure Links 653, Ecochem, Department of Green Chemistry and Technology, Ghent University, Ghent 9000, Belgium
| | - Chidharth Krishnaraj
- Krijgslaan 281, Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Ghent 9000, Belgium
| | - Ivan K Ilic
- Am Mühlenberg 1, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Clemens Liedel
- Am Mühlenberg 1, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | | | - An Verberckmoes
- Valentin Vaerwyckweg 1, Department of Materials Textiles and Chemical Engineering, Ghent University, Ghent 9000, Belgium
| | - Gijs Du Laing
- Coupure Links 653, Ecochem, Department of Green Chemistry and Technology, Ghent University, Ghent 9000, Belgium
| | - Karen Leus
- Krijgslaan 281, Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Ghent 9000, Belgium
| | - Pascal Van Der Voort
- Krijgslaan 281, Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
32
|
Zeng XC, Xu Y, He Z, Wang Y, Chen X. A powerful arsenite-oxidizing biofilm bioreactor derived from a single chemoautotrophic bacterial strain: Bioreactor construction, long-term operations and kinetic analysis. CHEMOSPHERE 2021; 273:129672. [PMID: 33524754 DOI: 10.1016/j.chemosphere.2021.129672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/13/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Microbial oxidation of As(III) by biofilm bioreactors followed by adsorption is a promising and environment friendly approach to remediate As(III) contaminated groundwater; however, poor activity, stability and expandability of the bioreactors hampered their industrious applications. To resolve this issue, we constructed a new biofilm bioreactor using a powerful chemoautotrophic As(III)-oxidizing bacterium Rhizobium sp. A219. This strain has strong ability to form biofilms and possesses very high As(III)-oxidizing activities in both planktonic and biofilm forms. Perlites were used as the biofilm carriers. Long-term operations suggest that the bioreactor has very high efficiency, stability and scalability under different geochemical conditions, and it is cheap and easy to construct and operate. During the operations, it is only required to supply air, nothing else. All the common contaminants in groundwater slightly affected the bioreactor As(III)-oxidizing activity. The common contaminants in groundwater can be largely removed through assimilation by the bacterial cells as nutrition. The bioreactor completely oxidize 1.0, 5.0, 10.0, 20.0 and 30.0 mg/L As(III) in 12, 18, 20, 25 and 30 min, respectively. Approximately 18, 18, 12, 12 and 21 min were needed to oxidize 1.1 mg/L As(III) at 20, 25, 30, 35 and 40 °C, respectively. The bioreactor works well under the pH values of 5-8, and the most optimal was 7.0. The data suggest that this bioreactor possesses the highest efficiency and stability, and thus has the great potential for industrial applications among all the described As(III)-oxidizing bioreactors derived from a single bacterium.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China.
| | - Yifan Xu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| | - Zhong He
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| |
Collapse
|
33
|
Artificial Floating Island with Vetiver for Treatment of Arsenic-Contaminated Water: A Real Scale Study in High-Andean Reservoir. WATER 2020. [DOI: 10.3390/w12113086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic found in agriculture water reservoirs represents a threat to water security and safe agricultural products in developing countries. Small farms do not implement traditional water treatments due to the high cost; hence, a nature-based solution is an alternative to tackling this challenge. This paper investigated the potential of artificial floating island with Vetiver (AFIV) for the geogenic arsenic removal present in the reservoir of the Ilinizas páramo in Ecuador. We constructed two AFIV systems using PVC pipes in a reservoir batch type with a 3.6 m3 treatment capacity. Arsenic and iron were analyzed in duplicated every 30 days at the affluent and effluent through 120 days. The average remediation of arsenic was recorded as 97% in water and 84% in sediment, while the average remediation of iron was 87% in sediment. The survival rate of macrophytes was 92%; they accumulated arsenic in its roots that acted as a barrier against the translocation. The research demonstrated that the use of AFIV has the potential to rehabilitate reservoirs contaminated with arsenic under adverse climatic conditions such as the páramo ecosystem.
Collapse
|
34
|
Zoroufchi Benis K, Motalebi Damuchali A, McPhedran KN, Soltan J. Treatment of aqueous arsenic - A review of biosorbent preparation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111126. [PMID: 32734895 DOI: 10.1016/j.jenvman.2020.111126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) is a worldwide human health issue with the major exposure route being the consumption of As-contaminated drinking water. Sorption is considered to be an efficient treatment method, among other technologies, for As removal from various water and wastewater matrices. There are common commercially available sorbents, however, the use of locally or regionally available biomasses have recently been of interest as potentially cost-effective and environmentally friendly alternatives. Despite these benefits, untreated biomasses often show low sorption capacity, can be too fragile, and can lead to coloration of waters when used in treatment processes. Treatment methods of biomasses can include chemical processes using acid or alkaline solutions, developing of biomass composite by deposition of activating agents, and preparation of biochars. This review includes an overview of 53 recent studies that assess a variety of biomass modification methods meant to overcome these issues such as activation with acids or bases and biomass-based composites. Furthermore, future perspectives have been provided to assist in the further optimization of methods for biomass modifications to enhance their As sorption capacities.
Collapse
Affiliation(s)
- Khaled Zoroufchi Benis
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ali Motalebi Damuchali
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerry N McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Jafar Soltan
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
35
|
Majumder S, Jha AK. Removal of Cr and Mn from aqueous medium using bentonites and their derivatives. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01838-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Chemical Treatment of Highly Toxic Acid Mine Drainage at A Gold Mining Site in Southwestern Siberia, Russia. MINERALS 2020. [DOI: 10.3390/min10100867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The critical environmental situation in the region of southwestern Siberia (Komsomolsk settlement, Kemerovo region) is the result of the intentional displacement of mine tailings with high sulfide concentrations. During storage, ponds of acidic water with incredibly high arsenic (up to 4 g/L) and metals formed on the tailings. The application of chemical methods to treat these extremely toxic waters is implemented: milk of lime Ca(OH)2, sodium sulfide Na2S, and sodium hydroxide NaOH. Field experiments were carried out by sequential adding pre-weighed reagents to the solutions with control of the physicochemical parameters and element concentrations for each solution/reagent ratio. In the experiment with Ca(OH)2, the pH increased to neutral values most slowly, which is contrary to the results from the experiment with NaOH. When neutralizing solutions with NaOH, arsenic-containing phases are formed most actively, arsenate chalcophyllite Cu18Al2(AsO4)4(SO4)3(OH)24·36H2O, a hydrated iron arsenate scorodite, kaatialaite FeAs3O9·8H2O and Mg(H2AsO4)2. A common specificity of the neutralization processes is the rapid precipitation of Fe hydroxides and gypsum, then the reverse release of pollutants under alkaline conditions. The chemistry of the processes is described using thermodynamic modeling. The main species of arsenic in the solutions are iron-arsenate complexes; at the end of the experiments with Ca(OH)2, Na2S, and NaOH, the main species of arsenic is CaAsO4−, the most toxic acid H3AsO3 and AsO43−, respectively. It is recommended that full-scale experiments should use NaOH in the first stages and then Ca(OH)2 for the subsequent neutralization.
Collapse
|
37
|
Verma B, Goel S, Balomajumder C. Multiwalled
CNTs
for
Cr(VI)
removal from industrial wastewater: An advanced study on adsorption, kinetics, thermodynamics for the comparison between the embedded and non‐embedded carboxyl group. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bharti Verma
- Department of Chemical Engineering IIT Roorkee Roorkee India
| | - Shreyank Goel
- Department of Chemical Engineering BIET Jhansi Jhansi India
| | | |
Collapse
|
38
|
Zhang Y, Jiang D, Wang Y, Zhang TC, Xiang G, Zhang YX, Yuan S. Core–Shell Structured Magnetic γ-Fe2O3@PANI Nanocomposites for Enhanced As(V) Adsorption. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b07080] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yan Zhang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Debin Jiang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tian C. Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, Nebraska 68182-0178, United States
| | - Gang Xiang
- College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
| | - Yu-Xin Zhang
- State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
39
|
|
40
|
Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules 2020; 10:biom10020235. [PMID: 32033229 PMCID: PMC7072575 DOI: 10.3390/biom10020235] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
High arsenic (As) levels in food and drinking water, or under some occupational conditions, can precipitate chronic toxicity and in some cases cancer. Millions of people are exposed to unacceptable amounts of As through drinking water and food. Highly exposed individuals may develop acute, subacute, or chronic signs of poisoning, characterized by skin lesions, cardiovascular symptoms, and in some cases, multi-organ failure. Inorganic arsenite(III) and organic arsenicals with the general formula R-As2+ are bound tightly to thiol groups, particularly to vicinal dithiols such as dihydrolipoic acid (DHLA), which together with some seleno-enzymes constitute vulnerable targets for the toxic action of As. In addition, R-As2+-compounds have even higher affinity to selenol groups, e.g., in thioredoxin reductase that also possesses a thiol group vicinal to the selenol. Inhibition of this and other ROS scavenging seleno-enzymes explain the oxidative stress associated with arsenic poisoning. The development of chelating agents, such as the dithiols BAL (dimercaptopropanol), DMPS (dimercapto-propanesulfonate) and DMSA (dimercaptosuccinic acid), took advantage of the fact that As had high affinity towards vicinal dithiols. Primary prevention by reducing exposure of the millions of people exposed to unacceptable As levels should be the prioritized strategy. However, in acute and subacute and even some cases with chronic As poisonings chelation treatment with therapeutic dithiols, in particular DMPS appears promising as regards alleviation of symptoms. In acute cases, initial treatment with BAL combined with DMPS should be considered.
Collapse
|
41
|
Rahaman MS, Akter M, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki M. Investigating the protective actions of D-pinitol against arsenic-induced toxicity in PC12 cells and the underlying mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103302. [PMID: 31786496 DOI: 10.1016/j.etap.2019.103302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is awfully toxic metalloid responsible for many human diseases all over the world. Contrastingly, D-pinitol is a naturally occurring bioactive dietary compound has antioxidant properties. The objective of this study is to elucidate the protective actions of D-pinitol on arsenic-induced cytotoxicity and explore its controlling role in biomolecular mechanisms in PC12 cells. Obtained results demonstrated that co-exposure of D-pinitol with arsenic increases cell viability, decreases DNA damage and protects PC12 cells from arsenic-induced cytotoxicity by increasing glutathione (GSH) level and glutathione reductase (GR). Protein expression of western blot analysis showed that co-exposure of D-pinitol and arsenic significantly inhibited arsenic-induced autophagy which further suppressed apoptosis through up-regulation of survival factors; mTOR, p-mTOR, Akt, p-Akt, NF-кB, Nrf2, ERK1, GR, Bcl-x and down-regulation of death factors; p53, Bax, cytochrome c, LC3, although arsenic regulated those factors negatively. These results of this study suggested that D-pinitol protects PC12 cells from arsenic-induced cytotoxicity.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mahmuda Akter
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0808, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
42
|
Sun D, Feng H, Li X, Ai H, Sun S, Chen Y, Xu G, Rathinasabapathi B, Cao Y, Ma LQ. Expression of New Pteris vittata Phosphate Transporter PvPht1;4 Reduces Arsenic Translocation from the Roots to Shoots in Tobacco Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1045-1053. [PMID: 31825207 DOI: 10.1021/acs.est.9b05486] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in As uptake, probably through phosphate transporters (Pht). Here, for the first time, we cloned a new PvPht1;4 gene from P. vittata and investigated its role in arsenate (AsV) uptake and transport in yeast and transgenic tobacco plants. On the basis of quantitative real-time polymerase chain reaction (qRT-PCR), PvPht1;4 was abundantly expressed in P. vittata fronds and roots, with its transcripts in the roots being induced by both P deficiency and As exposure. PvPht1;4 was localized to the plasma membrane, which complemented a yeast-mutant defective in P uptake and showed higher P transport affinity than PvPht1;3. Under AsV exposure, PvPht1;4 yeast transformants showed comparable tolerance as PvPht1;3, but higher As accumulation than PvPht1;2 transformants, indicating that PvPht1;4 had considerable AsV and P transport activity. However, in soil and hydroponic experiments, PvPht1;4 expressing tobacco lines accumulated 26-44 and 37-55% lower As in the shoots than wild type plants, with lower root-to-shoot As translocation. In the roots of PvPht1;4 lines, higher glutathione (GSH) contents and expression levels of GSH synthetase gene NtGSH2 were observed. In addition, the transcripts of AsIII-GSH transporter NtABCC1 in PvPht1;4 lines were upregulated. The data suggested that PvPht1;4 lines probably detoxified As by reducing AsV to AsIII, which was then complexed with GSH and stored in the root vacuoles, thereby reducing As translocation in transgenic tobacco. Given its strong AsV transport capacity, expression of PvPht1;4 provides a new molecular approach to reduce As accumulation in plant shoots.
Collapse
Affiliation(s)
- Dan Sun
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Huayuan Feng
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Xinyuan Li
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River , Nanjing Agricultural University , Nanjing 210095 , China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River , Nanjing Agricultural University , Nanjing 210095 , China
| | - Yanshan Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- School of the Environment , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River , Nanjing Agricultural University , Nanjing 210095 , China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department , University of Florida , Gainesville , Florida 32611 , United States
| | - Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Lena Q Ma
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
43
|
Kumar R, Kang CU, Mohan D, Khan MA, Lee JH, Lee SS, Jeon BH. Waste sludge derived adsorbents for arsenate removal from water. CHEMOSPHERE 2020; 239:124832. [PMID: 31726524 DOI: 10.1016/j.chemosphere.2019.124832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Aqueous arsenate [As(V)] was removed using an aluminum-based adsorbent (ABA) and coal mine drainage sludge coated polyurethane (CMDS-PU) prepared using alum and coal mine sludge, respectively. Their As(V) removal efficiencies were compared with each other and granular ferric hydroxide (GFH). The mineralogy and surface chemistry of materials were determined using wavelength dispersive X-ray fluorescence (WD XRF) and Fourier transform infrared spectroscopy (FTIR), respectively. The angle-resolved X-ray photoelectron spectroscopy (AR-XPS) studies confirmed As(V) retention on the adsorbent surfaces. The adsorption kinetics data were fitted to pseudo second-order rate equation. The faster As(V) uptake kinetics of GFH and ABA (GFH > ABA > CMDS-PU) were attributed to their large pore volume and mesoporous nature. Langmuir adsorption capacities of 22, 31 and 10 mg/g, were achieved for GFH, ABA and CMDS-PU, respectively. As(V) adsorption on GFH, ABA and CMDS-PU was endothermic. GFH and ABA were efficient over a wide pH range (3-10). In column studies, GFH, ABA, and CMDS-PU successfully treated 23625, 842, and 158 bed volumes (BVs) and 2094, 6400, and 17 BVs of As(V)-contaminated water with 9.5 and 27 EBCT, respectively (at pH = 6.0, Asi = 600 μg/L). The GFH and ABA have a potential to be used at large-scale aqueous phase As(V) remediation.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; School of Environmental Sciences (SES), Jawaharlal Nehru University (JNU), New Delhi, 110067, India; Department of Chemistry & Centre for Bio-Nanotechnology (COBS & H), CCS Haryana Agricultural University, Hisar, 125004, India
| | - Chan-Ung Kang
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Dinesh Mohan
- School of Environmental Sciences (SES), Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Moonis Ali Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Joon-Hak Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sean S Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
44
|
Huo JB, Gupta K, Lu C, Bruun Hansen HC, Fu ML. Recyclable high-affinity arsenate sorbents based on porous Fe2O3/La2O2CO3 composites derived from Fe-La-C frameworks. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Mitigating the Risk of Arsenic and Fluoride Contamination of Groundwater Through a Multi-model Framework of Statistical Assessment and Natural Remediation Techniques. EMERGING ISSUES IN THE WATER ENVIRONMENT DURING ANTHROPOCENE 2020. [DOI: 10.1007/978-981-32-9771-5_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
46
|
Podder M, Majumder C. Bacteria immobilization on neem leaves/MnFe2O4 composite surface for removal of As(III) and As(V) from wastewater. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
47
|
Kumar R, Patel M, Singh P, Bundschuh J, Pittman CU, Trakal L, Mohan D. Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133427. [PMID: 31756815 DOI: 10.1016/j.scitotenv.2019.07.233] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 05/21/2023]
Abstract
Providing drinking water with safe arsenic levels in Latin American (LA) countries (a total of 22 countries) is a major current challenge. Arsenic's presence in water has been neglected for many decades since it was first reported ~100 years ago in Argentina. The major arsenic source in this region is geogenic. So far, arsenic has been reported in 15 LA countries. Arsenic concentrations in drinking water have been reported up to >200 fold (2000 μg/L) the WHO limit of 10 μg/L. About 14 million people in the arsenic affected LA countries depend on contaminated water characterized by >10 μg/L of arsenic. Low-cost, easy to use, efficient, and sustainable solutions are needed to supply arsenic safe water to the rural and peri-urban population in the affected areas. In the present study, >250 research articles published on various emerging technologies used for arsenic remediation in rural and peri-urban areas of LA countries are critically reviewed. Special attention has been given to arsenic adsorption methods. The manuscript focuses on providing insights into low cost emergent adsorbents with an implementation potential in Latin America. Natural, modified and synthetic adsorbents used for arsenic decontamination were reviewed and compared. Advantages and disadvantages of treatment methods are summarized. Adsorbent selection criteria are developed. Recommendations concerning emerging adsorbents for aqueous arsenic removal in LA countries have also been made.
Collapse
Affiliation(s)
- Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prachi Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jochen Bundschuh
- Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, 165 00 Suchdol , Czech Republic
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
48
|
Cortes-Arriagada D, Mella A. Performance of doped graphene nanoadsorbents with first-row transition metals (Sc Zn) for the adsorption of water-soluble trivalent arsenicals: A DFT study. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Sarkar A, Sarkar A, Paul B, Khan GG. Designing of Functionalized MWCNTs/Anodized Stainless Steel Heterostructure Electrode for Anodic Oxidation of Low Concentration As(III) in Drinking Water. ChemistrySelect 2019. [DOI: 10.1002/slct.201901239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arpan Sarkar
- Department of Environmental Science and EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad 826 004, Jharkhand India
| | - Ayan Sarkar
- Centre for Research in Nanoscience and NanotechnologyUniversity of Calcutta, Sector-III, Block- JD2, Salt Lake Kolkata 700 106 India
- Centre for Advanced Functional Materials and Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata, Mohanpur Nadia 741 246, West Bengal India
| | - Biswajit Paul
- Department of Environmental Science and EngineeringIndian Institute of Technology (Indian School of Mines) Dhanbad Dhanbad 826 004, Jharkhand India
| | - Gobinda Gopal Khan
- Department of Material Science and EngineeringTripura University (A Central University), Suryamaninagar, Agartala Tripura 799 022 India
| |
Collapse
|
50
|
Aslam A, Thomas-Hall SR, Mughal T, Zaman QU, Ehsan N, Javied S, Schenk PM. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO 2 concentrations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:243-250. [PMID: 31005725 DOI: 10.1016/j.jenvman.2019.03.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/15/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Sustainability assessments have revealed that integration of CO2 from coal-fired flue gas with microalgae cultivation systems could reduce greenhouse gas emissions. The technical goal of this integration is to utilize exhaust from coal power plants to enhance microalgae cultivation processes by capturing and recycling of carbon dioxide from a more toxic to a less toxic form. However, heavy metals are also introduced along with CO2 to the cultivation system which could contaminate biomass and have deleterious effects on products derived from such systems. The present study aimed at shedding some light on capability of microalgae to sustain their diversity and propagate them under different CO2 concentrations from coal-fired flue gas. Mixed microalgal culture was grown in nutrient rich medium and heavy metals (Al, Cu, Fe, Mn and Zn) are expected to be introduced from flue gas. Three concentrations (1%, 3% and 5.5%) of CO2 were evaluated (reference concentrations from flue gas). Comparative studies were carried out by flue gas and control systems in photobioreactors. Under the 3% CO2 (30% flue gas), the highest fraction of B, Mn and Zn were found to be internalized by the cells (46.8 ±9.45 gL-1, 253.66 ± 40.62 gL-1 and 355.5 ±50.69 gL-1 respectively) during their cultivation period into biomass. Hence, microalgae may offer solution to two major challenges: providing potential biofuel feedstock for energy security and reducing heavy metal pollution to the air.
Collapse
Affiliation(s)
- Ambreen Aslam
- Environmental Science Department, University of Lahore (UOL), Raiwind Road, Lahore, Pakistan; Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Skye R Thomas-Hall
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tahira Mughal
- Environmental Science Department, Lahore College for Women University (LCWU), Lahore, Pakistan
| | - Qamar-Uz Zaman
- Environmental Science Department, University of Lahore (UOL), Raiwind Road, Lahore, Pakistan
| | - Nusrat Ehsan
- Environmental Science Department, University of Lahore (UOL), Raiwind Road, Lahore, Pakistan
| | - Sabiha Javied
- Environmental Science Department, University of Lahore (UOL), Raiwind Road, Lahore, Pakistan
| | - Peer M Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|