1
|
Chen Q, Zhu J, Jing S, Deng J, Wang Y, Li K, Wang Z, Liu J, Bian S. Theoretical exploration of energetic molecular design strategy: functionalization of C or N and structural selection of imidazole or pyrazole. J Mol Model 2024; 30:384. [PMID: 39446185 DOI: 10.1007/s00894-024-06183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
CONTEXT In researching energetic materials with high energy density, it is an effective method to introduce explosophoric groups. In this study, four series of energetic compounds were designed by functionalizing with C- or N-, introducing energetic groups -CH(NO2)2, -CF(NO2)2, -C(NO2)2(NF2), -C(NO2)3, and-CH(NF2)2 into imidazole and pyrazole structures. Density functional theory was employed to optimize the structure of the target compound and subsequently to predict and evaluate its performance based on this. Meanwhile, the sensitivity of the compounds was predicted based on their electrostatic potential analysis. Following analysis of the geometric structure, detonation performance, and sensitivity of the compounds, three factors were discussed: energetic groups, functionalization methods, and skeleton structure differences. The results indicate that C-functionalization has advantages only in density, but N-functionalization is better in thermal stability, heat of formation, and sensitivity. Meanwhile, the data shows that imidazole-based compounds exhibited greater density and detonation performance in the target compounds designed within this study, while pyrazoles have a higher heat of formation and chemical stability. By analyzing the design strategy of C- or N-functionalization of novel high-energy groups on energetic imidazole or pyrazole rings and selecting a more suitable molecular construction strategy, this study provides a theoretical approach for the development of new energetic materials with excellent performance. METHOD Gaussian 09 and Multiwfn 3.8 packages are the software used for calculation, and the electrostatic potentials were depicted using the VMD program. In this study, the imidazole and pyrazole derivatives were optimized at the B3PW91/6-311G (d, p) level to acquire the relevant data for the compounds.
Collapse
Affiliation(s)
- Qianxiong Chen
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jin Zhu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Suming Jing
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Jiahao Deng
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yuanyuan Wang
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Keyao Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Zhineng Wang
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jia Liu
- Hubei Sanjiang Aerospace Jianghe Chemical Technology Co, Ltd , Hubei, 443000, People's Republic of China
| | - Shuai Bian
- Hubei Sanjiang Aerospace Jianghe Chemical Technology Co, Ltd , Hubei, 443000, People's Republic of China
| |
Collapse
|
2
|
Tariq QUN, Manzoor S, Ling X, Dong WS, Lu ZJ, Wang TW, Xu M, Younis MA, Yu Q, Zhang JG. Fabrication, Characterization, and Performance Evaluation of Thermally Stable [5,6]-Fused Bicyclic Energetic Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52613-52623. [PMID: 39288323 DOI: 10.1021/acsami.4c09078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, there has been considerable interest in investigating advanced energetic materials characterized by high stability and favorable energetic properties. Nevertheless, reconciling the conflicting balance between high energy and the insensitivity of such materials through traditional approaches, which involve integrating fuel frameworks and oxidizing groups into an organic molecule, presents significant challenges. In this study, we employed a promising method to fabricate high-energy-density materials (HEDMs) through the intermolecular assembly of variously substituted purines with a high-energy oxidant. Purines are abundant in nature and are readily available. A series of advanced energetic materials with a good balance between energy and sensitivity were prepared by the simple and effective self-assembly of purines with high-energy oxidants. Notably, these compounds exhibit incredibly improved crystal densities (1.80-2.00 g·cm-3) and good detonation performance (D: 7072-8358 m·s-1; P: 19.82-34.56 GPa). In comparison to RDX, these self-assembled energetic materials exhibit reduced mechanical sensitivities and enhanced thermal stabilities. Compounds 1-5 demonstrate both high energy and low sensitivity, indicating that self-assembly represents a straightforward and effective approach for developing advanced energetic materials with a balanced combination of energy and safety. Moreover, this study offers an avenue for synthesizing energetic materials based on naturally occurring compounds assembled through intermolecular attractions, thereby achieving a balance between energy and sensitivity along with versatile functionality.
Collapse
Affiliation(s)
- Qamar-Un-Nisa Tariq
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Saira Manzoor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Xiang Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060 China
| | - Wen-Shuai Dong
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zu-Jia Lu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ting-Wei Wang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Meiqi Xu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Adnan Younis
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Qiyao Yu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jian-Guo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Kumar P, Mathpati RS, Ghule VD, Dharavath S. Synthesis of C-C bonded trifluoromethyl-based high-energy density materials via the ANRORC mechanism. Dalton Trans 2024; 53:15324-15329. [PMID: 39224089 DOI: 10.1039/d4dt02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A trifluoromethyl group substituted C-C bonded nitrogen rich energetic material 3-(3-nitro-1H-pyrazol-4-yl)-5-(trifluoromethyl)-1,2,4-oxadiazole (4), its hydroxyl amine (5) and 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium (6) salts and hydrazinium 5-(3-nitro-1H-pyrazol-4-yl)-3-(trifluoromethyl)-1,2,4-triazol-1-ide (7) were synthesized and fully characterized using infrared spectroscopy (IR), multinuclear magnetic resonance (NMR) spectroscopy (1H, 13C, and 19F), high-resolution mass spectrometry (HRMS), elemental analysis (EA) and differential scanning calorimetry (DSC) studies. Furthermore, compounds 4 and 7 were confirmed using single-crystal X-ray diffraction studies (SC-XRD). All compounds possess good density (1.70-1.80 g cm-3), detonation velocity (6432-7144 m s-1), pressure (16.38-20.31 GPa), and thermal stability (>170 °C). They are insensitive towards mechanical stimuli, impact (IS > 35 J) and friction (FS > 288 N). Overall, due to their balanced performance, these compounds can be a better replacement for presently used explosives such as trinitrotoluene (TNT).
Collapse
Affiliation(s)
- Parasar Kumar
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Ramling S Mathpati
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Vikas D Ghule
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Srinivas Dharavath
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| |
Collapse
|
4
|
Rosa G, Lacerda LHD, de Lazaro SR. Structural and Electronic Properties of the Magnetic and Nonmagnetic X 0.125Mg 0.875B 2 (X = Nb, Ni, Fe) Materials: A DFT/HSE06 Approach to Investigate Superconductor Behavior. ACS OMEGA 2024; 9:36802-36811. [PMID: 39220542 PMCID: PMC11359628 DOI: 10.1021/acsomega.4c05894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
MgB2 material has a simple composition and structure that is well-reported and characterized. This material has been widely studied and applied in the last 20 years as a superconductor in wire devices and storage material for H in the hydride form. MgB2 doped with transition metals improves the superconductor behavior, such as the critical temperature (T cs) or critical current (J sc) for the superconducting state. The results obtained in this manuscript indicate that Nb-, Fe-, and Ni-doping in the Mg site leads to a contraction of the unit cell through the spin polarization on the electronic resonance of the boron layer. Fe and Ni transition metals doping perturb the electronic resonance because of stronger dopant-boron bonds. The unpaired electrons are transferred from 3d orbitals to the empty 2p z orbitals of the boron atoms, locating α electrons in the σ bonds and β electrons in the π orbitals. The observed influence of magnetic dopants on MgB2 enables the proposal of an electronic mechanism to explain the spin polarization of boron hexagonal rings.
Collapse
|
5
|
Zhang H, Du X, Liu Y, Lei G, Yin P, Pang S. Fused Triazole-Tetrazine Assembled with Different Functional Moieties: Construction of Multipurpose Energetic Materials. ACS OMEGA 2024; 9:33557-33562. [PMID: 39130562 PMCID: PMC11307276 DOI: 10.1021/acsomega.4c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 08/13/2024]
Abstract
Azido, amino, and azo functionalities were introduced into tetrazine backbones to access multifunctional energetic materials. AzNTT demonstrates effective initiation capability (MPC = 50 mg), whereas NTTA balances well between the energy and stability. Azo-functionalized BNTTD has a high density of 1.908 g cm-3, with performance comparable to that of the benchmark material HMX. This work underscores the scope of energetic functionalization and the outstanding comprehensive performance of polycyclic tetrazines.
Collapse
Affiliation(s)
- Hui Zhang
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Xinyu Du
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yongjiang Liu
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Guorong Lei
- State
Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ping Yin
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing
Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Siping Pang
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Sang C, Luo Y. Effect of Metastable Intermolecular Composites on the Thermal Decomposition of Glycidyl Azide Polymer Energetic Thermoplastic Elastomer. Polymers (Basel) 2024; 16:2107. [PMID: 39125134 PMCID: PMC11314548 DOI: 10.3390/polym16152107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
Glycidyl azide polymer energetic thermoplastic elastomer (GAP-ETPE) has become a research hotspot due to its excellent comprehensive performance. In this paper, metastable intermolecular energetic nanocomposites (MICs) were prepared by a simple and safe method, and the catalytic performance for decomposition of GAP-ETPE was studied. An X-ray diffraction (XRD) analysis showed that the MICs exhibited specific crystal formation, which proved that the MICs were successfully prepared. Morphology, surface area, and pore structure analysis showed that the Al/copper ferrite and Al/Fe2O3 MICs had a large specific surface area mesoporous structure. The Al/CuO MICs did not have a mesoporous structure or a large surface area. The structure of MICs led to their different performance for the GAP-ETPE decomposition catalysis. The increase in specific surface area is a benefit of the catalytic performance. Due to the easier formation of complexes, MICs containing Cu have better catalytic performance for GAP-ETPE decomposition than those containing Fe. The conclusions of this study can provide a basis for the adjustment of the catalytic performance of MICs in GAP-ETPE propellants.
Collapse
Affiliation(s)
- Chao Sang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Dezhou 253023, China
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yunjun Luo
- School of Materials Science and Engineering Technology, Beijing Institute of Technology, Beijing 100086, China
| |
Collapse
|
7
|
Li C, Wang S, Li S, Yin H, Ma Q, Chen FX. Construction and Modification of Nitrogen-Rich Polycyclic Frameworks: A Promising Fused Tricyclic Host-Guest Energetic Material with Heat Resistance, High Energy, and Low Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35232-35244. [PMID: 38917334 DOI: 10.1021/acsami.4c07938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The construction and modification of novel energetic frameworks to achieve an ideal balance between high energy density and good stability are a continuous pursuit for researchers. In this work, a fused [5,6,5]-tricyclic framework was utilized as the energetic host to encapsulate the oxidant molecules for the first time. A series of new pyridazine-based [5,6] and [5,6,5] fused polycyclic nitrogen-rich skeletons and their derivatives were designed and synthesized. Two strategies, amino oxidation and host-guest inclusion, were used to modify the skeleton in only one step. All compounds exhibit good comprehensive properties (Td (onset) > 200 °C, ρ > 1.85 g cm-3, Dv > 8400 m s-1, IS > 20 J, FS > 360 N). Benefiting from the pyridazine-based fused tricyclic structure with more hydrogen bonding units and larger conjugated systems, the first example of [5,6,5]-tricyclic host-guest energetic material triamino-9H-pyrazolo[3,4-d][1,2,4]triazolo[4,3-b]pyridazine-diperchloric acid (10), shows high decomposition temperature (Td (onset) = 336 °C), high density and heats of formation (ρ = 1.94 g cm-3, ΔHf = 733.4 kJ mol-1), high detonation performance (Dv = 8820 m s-1, P = 36.2 GPa), high specific impulse (Isp = 269 s), and low sensitivity (IS = 30 J, FS > 360 N). The comprehensive performance of 10 is superior to that of high-energy explosive RDX and heat-resistant explosives such as HNS and LLM-105. 10 has the potential to become a comprehensive advanced energetic material that simultaneously satisfies the requirements of high-energy and low-sensitivity explosives, heat-resistant explosives, and solid propellants. This work may give new insights into the construction and modification of a nitrogen-rich polycyclic framework and broaden the applications of fused polycyclic framework for the development of host-guest energetic materials.
Collapse
Affiliation(s)
- Congcong Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Campus, No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Shaoqing Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Campus, No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Shaojia Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Campus, No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Hongquan Yin
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Campus, No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Qing Ma
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Fu-Xue Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Campus, No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| |
Collapse
|
8
|
Chen F, Li T, Zhao L, Guo G, Dong L, Mi F, Jia X, Ning R, Wang J, Cao D. Thermal decomposition mechanism of HMX/HTPB hybrid explosives studied by reactive molecular dynamics. J Mol Model 2024; 30:224. [PMID: 38907749 DOI: 10.1007/s00894-024-06022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
CONTEXT The thermal decomposition process of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine/hydroxyl-terminated polybutadiene (HMX/HTPB) hybrid explosives and pure HMX explosives at different temperatures (2000 ~ 3500 K) was investigated using the reactive molecular dynamics method. This study aimed to analyze the effect of binders on the thermal decomposition of HMX at the atomic scale and reveal the thermal decomposition mechanism of HMX/HTPB. The results showed that the thermal decomposition process of the HMX molecule in the HMX/HTPB hybrid system involves a continuous denitration followed by the disintegration of the main ring. The HTPB chain will experience dehydrogenation, dehydroxylation, and chain fragmentation. Including HTPB in the hybrid system significantly increased the presence of H and OH radicals. These radicals then interacted with HMX and its decomposition products and produced more of the final products H2O and H2 in the HMX/HTPB hybrid system compared to pure HMX. Additionally, it was observed that the HTPB chain fragments attached to the HMX decomposition products prevented the formation of N2 and CO2. Furthermore, the activation energies (Ea) of the initial and intermediate decomposition stages of the HMX/HTPB hybrid system were 98.45 kJ mol-1 and 90.69 kJ mol-1, respectively. The results showed that the activation energies of the HMX/HTPB hybrid system are lower than the pure HMX system in these two stages. Consequently, HTPB will enhance HMX's thermal decomposition and decreased the system's insensitivity to heat stimuli. METHODS The molecular dynamics simulation of the HMX/HTPB hybrid system was performed using the ReaxFF module in the LAMMPS software, and the ReaxFF/lg force field was used to describe the interatomic interactions as well as the chemical reactions.
Collapse
Affiliation(s)
- Fang Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China.
| | - Tianhao Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
| | - Linxiu Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
| | - Guoqi Guo
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
| | - Ling Dong
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
| | - Fangqi Mi
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
| | - Xiangyu Jia
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
| | - Ruixing Ning
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
| | - Jianlong Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
| | - Duanlin Cao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi, China
| |
Collapse
|
9
|
Ameen R, Biju AR. Theoretical study of a series of 1,2-diazete based trinitromethyl derivatives as potential energetic compounds. J Mol Model 2024; 30:178. [PMID: 38777844 DOI: 10.1007/s00894-024-05971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT Explosive properties of novel potential high energy density materials of a series of 1,2-diazete-based molecules with trinitromethyl functional group were investigated computationally. All the sixty seven molecules were optimised to obtain their molecular geometries and electronic structures. Electrostatic potential analysis was also carried out in the determination of different parameters. The calculations indicate that the majority of the compounds have high positive heat of formations, high density and good detonation performance greater than that of traditional energetic materials like RDX and HMX. They are also having comparable values of impact sensitivity. These features promise their potential to be used as energetic materials for future applications. Most of the designed molecules are having high positive oxygen balance values so that the study of these molecules can also be extended as potential candidates for oxidisers in solid propellants. METHODS Optimisation and vibrational frequency analysis of the studied molecules were done with density functional theory using B3LYP/aug-cc-pVDZ as the basis set to zero imaginary frequencies using Gaussian 09. Electrostatic potential analysis were carried using the Multiwfn program.
Collapse
Affiliation(s)
- Rahana Ameen
- Department of Chemistry, Payyanur College, Edat, Payyanur, Kannur, Kerala, 670327, India
- Department of Chemistry, Sir Syed College, Taliparamba, Karimbam, Kannur, Kerala, 670142, India
| | - A R Biju
- Department of Chemistry, Kannur University, Swami Anandatheertha Campus, Edat, Payyanur, Kerala, 670327, India.
| |
Collapse
|
10
|
Gou Q, Liu J, Su H, Guo Y, Chen J, Zhao X, Pu X. Exploring an accurate machine learning model to quickly estimate stability of diverse energetic materials. iScience 2024; 27:109452. [PMID: 38523799 PMCID: PMC10960145 DOI: 10.1016/j.isci.2024.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
High energy and low sensitivity have been the focus of developing new energetic materials (EMs). However, there has been a lack of a quick and accurate method for evaluating the stability of diverse EMs. Here, we develop a machine learning prediction model with high accuracy for bond dissociation energy (BDE) of EMs. A reliable and representative BDE dataset of EMs is constructed by collecting 778 experimental energetic compounds and quantum mechanics calculation. To sufficiently characterize the BDE of EMs, a hybrid feature representation is proposed by coupling the local target bond into the global structure characteristics. To alleviate the limitation of the low dataset, pairwise difference regression is utilized as a data augmentation with the advantage of reducing systematic errors and improving diversity. Benefiting from these improvements, the XGBoost model achieves the best prediction accuracy with R2 of 0.98 and MAE of 8.8 kJ mol-1, significantly outperforming competitive models.
Collapse
Affiliation(s)
- Qiaolin Gou
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Haoming Su
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiayi Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xueyan Zhao
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Yadav K, Luo Y, Kaiser RI, Sun R. Initial decomposition pathways of 1,1-diamino-2,2-dinitroethylene (α-FOX-7) in the condensed phase. Phys Chem Chem Phys 2024; 26:11395-11405. [PMID: 38572584 DOI: 10.1039/d4cp00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The initial decomposition pathways of α-FOX-7 in the condensed phase (crystal) were investigated via density functional theory. Calculations were carried out using three FOX-7 systems with increasing complexity from 1-layer (sheet) via 2-layer (surface) to 3-layer (bulk). The encapsulated environment of the central α-FOX-7 molecule, where decomposition takes place, is reconstructed by neighbouring molecules following a crystal structure. A minimal number of neighbouring molecules that have an impact on the energetics of decomposition are identified among all surrounding molecules. The results show that the presence of intermolecular hydrogen bonds due to the encapsulated environment in the condensed phase decreases the sensitivity of α-FOX-7, i.e. it increases the barrier of decomposition, but it does not alter the initial decomposition pathways of the reaction compared to the gas phase. Moreover, increasing the complexity of the system from a single gas phase molecule via sheet and surface to bulk increases the decomposition barriers. The calculations reveal a remarkable agreement with experimental data [A. M. Turner, Y. Luo, J. H. Marks, R. Sun, J. T. Lechner, T. M. Klapötke and R. I. Kaiser, Exploring the Photochemistry of Solid 1, 1-Diamino-2, 2-Dinitroethylene (FOX-7) Spanning Simple Bon Ruptures, Nitro-to-Nitrite Isomerization, and Nonadiabatic Dynamics, J. Phys. Chem. A, 2022, 126, 29, 4747-4761] and suggest that the initial decomposition of α-FOX-7 likely takes place at the surface of the crystal.
Collapse
Affiliation(s)
- Komal Yadav
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA.
| | - Yuheng Luo
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA.
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, HI 96822, USA
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, HI 96822, USA.
| |
Collapse
|
12
|
Wen M, Chang X, Xu Y, Chen D, Chu Q. Determining the mechanical and decomposition properties of high energetic materials (α-RDX, β-HMX, and ε-CL-20) using a neural network potential. Phys Chem Chem Phys 2024; 26:9984-9997. [PMID: 38477375 DOI: 10.1039/d4cp00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Molecular simulations of high energetic materials (HEMs) are limited by efficiency and accuracy. Recently, neural network potential (NNP) models have achieved molecular simulations of millions of atoms while maintaining the accuracy of density functional theory (DFT) levels. Herein, an NNP model covering typical HEMs containing C, H, N, and O elements is developed. The mechanical and decomposition properties of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), hexahydro-1,3,5-trinitro-1,3,5-triazine (HMX), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) are determined by employing the molecular dynamics (MD) simulations based on the NNP model. The calculated results show that the mechanical properties of α-RDX, β-HMX, and ε-CL-20 agree with previous experiments and theoretical results, including cell parameters, equations of state, and elastic constants. In the thermal decomposition simulations, it is also found that the initial decomposition reactions of the three crystals are N-NO2 homolysis, corresponding radical intermediates formation, and NO2-induced reactions. This decomposition trajectory is mainly divided into two stages separating from the peak of NO2: pyrolysis and oxidation. Overall, the NNP model for C/H/N/O elements in this work is an alternative reactive force field for RDX, HMX, and CL-20 HEMs, and it opens up new potential for future kinetic study of nitramine explosives.
Collapse
Affiliation(s)
- Mingjie Wen
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiaoya Chang
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yabei Xu
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Dongping Chen
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Qingzhao Chu
- State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
13
|
Nan H, Su H, Chen C, Bu Y, Niu G, Sun P, Shen F, Wang X. Infrared spectra and electronic structural changes of DNTF under high pressure: experimental and theoretical studies. Phys Chem Chem Phys 2024; 26:9517-9523. [PMID: 38450673 DOI: 10.1039/d3cp04429g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF) is a novel energetic material with an excellent performance and has attracted considerable attention. Motivated by recent theories and experiments, we had carried out experimental and theoretical studies on the high-pressure responses of vibrational characteristics, in conjunction with structural and electronic characteristics. It is found that all observed infrared spectra peaks seem to shift towards higher frequencies. And the peaks attributed to N-Oc (coordinated oxygen atom) stretching vibrations become broader due to the decrease of lattice constants and the free region of DNTF crystals with the increase of pressure, where the a-direction is more sensitive to pressure. In addition, the non-covalent interaction between adjacent DNTF molecules in the same layer changes from the van der Waals interaction to the steric effect with the increase of pressure, and that between layers also changes from the van der Waals interaction to the π-π stacking interaction. More importantly, these results highlight that the increase of pressure may lead to the stability decrease and impact the sensitivity increase of DNTF. This study can deepen the understanding of the energetic material DNTF under high pressure and is of great significance for blasting and detonation applications of DNTF.
Collapse
Affiliation(s)
- Hai Nan
- Xi'an Modern Chemical Research Institute, Xi'an 710065, China
- High-Tech Institute of Xi'an, Xi'an 710025, China.
| | - Haipeng Su
- Xi'an Modern Chemical Research Institute, Xi'an 710065, China
| | - Chunyan Chen
- Xi'an Modern Chemical Research Institute, Xi'an 710065, China
| | - Yufan Bu
- Xi'an Modern Chemical Research Institute, Xi'an 710065, China
| | - Guotao Niu
- Xi'an Modern Chemical Research Institute, Xi'an 710065, China
| | - Peipei Sun
- Xi'an Modern Chemical Research Institute, Xi'an 710065, China
| | - Fei Shen
- Xi'an Modern Chemical Research Institute, Xi'an 710065, China
| | - Xuanjun Wang
- High-Tech Institute of Xi'an, Xi'an 710025, China.
| |
Collapse
|
14
|
Yu C, Gu B, Bao M, Chen J, Shi W, Ye J, Zhang W. In Situ Electrochemical Construction of CuN 3@CuCl Hybrids for Controllable Energy Release and Self-Passivation Ability. Inorg Chem 2024; 63:1642-1651. [PMID: 38198689 DOI: 10.1021/acs.inorgchem.3c03829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Advanced energetic materials (EMs) play a crucial role in the advancement of microenergetic systems as actuation parts, igniters, propulsion units, and power. The sustainable electrosynthesis of EMs has gained momentum and achieved substantial improvements in the past decade. This study presents the facile synthesis of a new type of high-performance CuN3@CuCl hybrids via a co-electrodeposition methodology utilizing porous Cu as the sacrificial template. The composition, morphology, and energetic characteristics of the CuN3@CuCl hybrids can be easily tuned by adjusting the deposition times. The resulting hybrids demonstrate remarkable energy output (1120 J·g-1) and good laser-induced initiating ability. As compared with porous CuN3, the uniform doping of inert CuCl enhances the electrostatic safety of the hybridized material without compromising its overall energetic characteristics. Notably, the special oxidizing behavior of CuCl gradually lowers the susceptibility of the hybrid material to laser and electrostatic stimulation. This has significant implications for the passivation or self-destruction of highly sensitive EMs. Overall, this study pioneers a new path for the development of MEMS-compatible EMs, facilitating further microenergetic applications.
Collapse
Affiliation(s)
- Chunpei Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Bonan Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Minghao Bao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Junhong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Wei Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Jiahai Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Wenchao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing 210094, China
| |
Collapse
|
15
|
Singh K, Aalam U, Mishra A, Dixit N, Bandyopadhyay A, Sengupta A. Spectroscopic and imaging considerations of THz-TDS and ULF-Raman techniques towards practical security applications. OPTICS EXPRESS 2024; 32:1314-1324. [PMID: 38297686 DOI: 10.1364/oe.507941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 02/02/2024]
Abstract
Nitrogen-containing high-energy organic compounds represent a class of materials with critical implications in various fields, including military, aerospace, and chemical industries. The precise characterization and analysis of these compounds are essential for both safety and performance considerations. Spectroscopic characterization in the far-infrared region has great potential for non-destructive investigation of high energetic and related compounds. This research article presents a comprehensive study of common organic energetic materials in the far-infrared region (5-200 cm-1), aiming to enhance security measures through the utilization of cutting-edge spectroscopic techniques. Broadband terahertz time-domain spectroscopy and ultra-low frequency Raman spectroscopy are employed as powerful tools to probe the vibrational and rotational modes of various explosive materials. One of the key objectives of this present work is unveiling the characteristic spectral features and optical parameters of five common nitrogen based high energy organic compounds towards rapid and accurate identification. Further, we have explored the potential of terahertz reflection imaging for non-contact through barrier sensing, a critical requirement in security applications. Based on the spectral features obtained from the spectroscopic studies and using advanced imaging algorithms we have been able to detect these compounds under various barriers including paper, cloth, backpack, etc. Subsequently, this study highlights the capabilities of the two techniques offering a pathway to enhance their utility over a wide range of practical security applications.
Collapse
|
16
|
Sharma K, Maan A, Ghule VD, Dharavath S. Azo-Bridged Triazole Macrocycles: Computational Design, Energy Content, Performance, and Stability Assessment. J Phys Chem A 2023; 127:10128-10138. [PMID: 38015623 DOI: 10.1021/acs.jpca.3c05732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Oxadiazole and triazole are extensively investigated heterocyclic scaffolds in the development of energetic materials. New energetic molecules were designed by replacing 1,2,5-oxadiazole with 2H-1,2,3-triazole in the reported conjugated macrocyclic systems to assess the influence on the energetic properties and stability. In addition, nitro groups were introduced in triazole units (N-functionalization) to improve the energetic performance. Energetic properties, including heat of formation, oxygen balance, density, detonation pressure and velocity, and impact sensitivity, were estimated for these triazole-based macrocycles. The replacement of 1,2,5-oxadiazole with 2H-1,2,3-triazole and 2-nitro-1,2,3-triazole significantly enhances the energy content, detonation performance, and noncovalent interactions. The theoretically computed energetic properties of triazole-based macrocycles reveal high positive heats of formation (1507-2761 kJ/mol), oxygen balance (-88.8 to -22.8%), high densities (1.87-1.90 g/cm3), superior detonation velocities (8.41-9.52 km/s), pressures (26.64-40.55 GPa), acceptable impact sensitivity (27-40 cm), and safety factor (51-290). The overall energetic assessment highlights triazole-based macrocycles as a potential framework that will be useful for developing advanced energetic materials.
Collapse
Affiliation(s)
- Kalpana Sharma
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Anjali Maan
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Vikas D Ghule
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Srinivas Dharavath
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
17
|
Gupta A, Kaur S, Singh H, Garg S, Kumar A, Malhotra E. Quantum dots: a tool for the detection of explosives/nitro derivatives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6362-6376. [PMID: 37975188 DOI: 10.1039/d3ay01566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nitro derivatives are considered as major environmental pollutants and issues of health concern. In current times, a variety of methods and techniques have been utilized for the sensing of these nitro derivatives. In view of this, the remarkable fluorescence properties of quantum dots (QDs) provide a great opportunity to detect these nitro derivatives. This review highlighted the recent reports of QDs as the sensing material for these nitro derivative explosives. Different modifications in QDs using physical and chemical approaches can be used to improve their sensing output. Various interaction mechanisms have been discussed between QDs and nitro derivatives to change their fluorescence properties. Finally, the current challenges and the perspective for the forthcoming future are provided in the concluding section. We hope this review will be beneficial in guiding the utilization of QDs in sensing applications.
Collapse
Affiliation(s)
- Ankush Gupta
- Department of Chemistry, DAV University, Jalandhar 144012, Punjab, India.
| | - Sharanjeet Kaur
- Department of Chemistry, DAV University, Jalandhar 144012, Punjab, India.
| | - Harminder Singh
- Department of Chemistry, DAV University, Jalandhar 144012, Punjab, India.
| | - Shelly Garg
- Department of Mathematics, DAV University, Jalandhar 144012, Punjab, India
| | - Akshay Kumar
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Jammu 181143, India
| | - Ekta Malhotra
- Department of Chemistry, DAV University, Jalandhar 144012, Punjab, India.
| |
Collapse
|
18
|
Das CK, Manna MS, Roy M, Das N, Nandi NB, Ghanta S. Design of insensitive high explosives based on FOX-7: a theoretical prospectives. J Mol Model 2023; 29:355. [PMID: 37910226 DOI: 10.1007/s00894-023-05769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
CONTEXT This article presents a theoretical study of three insensitive high explosives based on the FOX-7 moiety. A few heterocyclic five- and six-member nitrogen-rich compounds have been created in an effort to better serve as a potential insensitive high explosive. It has been addressed how these molecules should be optimised in terms of stability, sensitivity, detonation properties, IR frequency computations, formal charge calculations, and more. Comprehensive research has been done on these compounds' molecular density and energy of activation associated with the conversion from nitro (C-NO2) to nitrito (C-ONO) during the initial phase of their decomposition. The bond dissociation energy along with BSSE correction for the most reactive C-NO2 bond is examined. The two designed molecules have intra-molecular hydrogen-bonding while other does not have any intra-molecular hydrogen-bonding. The newly designed compounds exhibit higher detonation values compared to TNT, which suggests that they ought to be prepared in a laboratory by skilled experimenters. METHODS The stability of the C-NO2 link and the covalent character of the bonds have both been calculated using the atoms in molecule (AIM) method. The electronic structure calculations have been recovered at DFT method with aug-cc-pVDZ basis set using the Gaussian-16 quantum chemistry programme.
Collapse
Affiliation(s)
- Chandan Kumar Das
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Mriganka Sekhar Manna
- Department of Chemical Engineering, National Institute of Technology, Agartala, Agartala, Tripura, 799046, India
| | - Manas Roy
- Department of Chemistry, National Institute of Technology, Agartala, Agartala, Tripura, 799046, India
| | - Nishan Das
- Department of Chemistry, National Institute of Technology, Agartala, Agartala, Tripura, 799046, India
| | - Nishithendu Bikash Nandi
- Department of Chemistry, National Institute of Technology, Agartala, Agartala, Tripura, 799046, India
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, Agartala, Tripura, 799046, India.
| |
Collapse
|
19
|
Cegłowski M, Otłowski T, Gierczyk B, Smeets S, Lusina A, Hoogenboom R. Explosives removal and quantification using porous adsorbents based on poly(2-oxazoline)s with various degree of functionalization. CHEMOSPHERE 2023; 340:139807. [PMID: 37574087 DOI: 10.1016/j.chemosphere.2023.139807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Polymeric porous adsorbents are reported for removal of explosives, namely picric acid, 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN) and their subsequent quantification using direct analysis with ambient plasma mass spectrometry. The adsorbents are obtained by functionalization of short-chain poly(2-oxazoline)s with methyl ester side chains using 4-(aminomethyl)pyridine with a degree of functionalization equal to 0, 5, 10, and 20%. The subsequent step consist of cross-linking using a high internal phase emulsion procedure by further side-chain amidation with diethylenetriamine as crosslinker. Picric acid, RDX, and PETN were chosen as the model compounds as they belong to three different groups of explosives, in particular nitroaromatics, nitroamines, and nitrate esters, respectively. The adsorption isotherms, kinetics, as well as the influence of pH and temperature on the adsorption process was investigated. The porous adsorbents showed the highest maximum adsorption capacity towards picric acid, reaching 334 mg g-1, while PETN (80 mg g-1) and RDX (17.4 mg g-1) were less efficiently adsorbed. Subsequent quantification of the adsorbed explosives is performed by a specially designed ambient mass spectrometry setup equipped with a thermal heater. The obtained limits of detection were found to be 20-times improved compared to direct analysis of analyte solutions. The effectiveness of the proposed analytical setup is confirmed by successful quantification of the explosives in river water samples. The research clearly shows that functional porous adsorbents coupled directly with ambient mass spectrometry can be used for rapid quantification of explosives, which can be, e.g., used for tracking illegal manufacturing sites of these compounds.
Collapse
Affiliation(s)
- Michał Cegłowski
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Tomasz Otłowski
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Błażej Gierczyk
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Sander Smeets
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Aleksandra Lusina
- Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium.
| |
Collapse
|
20
|
Lindner H, Amberg WM, Carreira EM. Iron-Mediated Photochemical Anti-Markovnikov Hydroazidation of Unactivated Olefins. J Am Chem Soc 2023; 145:22347-22353. [PMID: 37811819 PMCID: PMC10591317 DOI: 10.1021/jacs.3c09122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 10/10/2023]
Abstract
Unactivated olefins are converted to alkyl azides with bench-stable NaN3 in the presence of FeCl3·6H2O under blue-light irradiation. The products are obtained with anti-Markovnikov selectivity, and the reaction can be performed under mild ambient conditions in the presence of air and moisture. The transformation displays broad functional group tolerance, which renders it suitable for functionalization of complex molecules. Mechanistic investigations are conducted to provide insight into the hydroazidation reaction and reveal the role of water from the iron hydrate as the H atom source.
Collapse
Affiliation(s)
- Henry Lindner
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Willi M. Amberg
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Erick M. Carreira
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
21
|
Turner AM, Marks JH, Lechner JT, Klapötke TM, Sun R, Kaiser RI. Ultraviolet-Initiated Decomposition of Solid 1,1-Diamino-2,2-dinitroethylene (FOX-7). J Phys Chem A 2023; 127:7707-7717. [PMID: 37682229 DOI: 10.1021/acs.jpca.3c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
FOX-7 (1,1-diamino-2,2-dinitroethylene) was photolyzed with 202 nm photons to probe reaction energies, leading to the decomposition of this energetic material and to compare results from irradiations using lower-energy 532 and 355 nm photons as well as higher-energy electrons. The photolysis occurred at 5 K to suppress thermal reactions, and the solid samples were monitored using Fourier transform infrared spectroscopy (FTIR), which observed carbon dioxide (CO2), carbon monoxide (CO), cyanide (CN-), and cyanate (OCN-) after irradiation. During warming to 300 K, subliming products were detected using electron-impact quadrupole mass spectrometry (EI-QMS) and photoionization time-of-flight mass spectrometry (PI-ReTOF-MS). Five products were observed in QMS: water (H2O), carbon monoxide (CO), nitric oxide (NO), carbon dioxide (CO2), and cyanogen (NCCN). The ReTOF-MS results showed overlap with electron irradiation products but also included three intermediates for the oxidation of ammonia and nitric oxide: hydroxylamine (NH2OH), nitrosamine (NH2NO), and the largest product at 76 amu with the proposed assignment of hydroxyurea (NH2C(O)NHOH). These results highlight the role of reactive oxygen intermediates and nitro-to-nitrite isomerization as key early reactions that lead to a diverse array of decomposition products.
Collapse
Affiliation(s)
- Andrew M Turner
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Joshua H Marks
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Jasmin T Lechner
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| |
Collapse
|
22
|
O’Connor D, Bier I, Tom R, Hiszpanski AM, Steele BA, Marom N. Ab Initio Crystal Structure Prediction of the Energetic Materials LLM-105, RDX, and HMX. CRYSTAL GROWTH & DESIGN 2023; 23:6275-6289. [PMID: 38173900 PMCID: PMC10763925 DOI: 10.1021/acs.cgd.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/02/2023] [Indexed: 01/05/2024]
Abstract
Crystal structure prediction (CSP) is performed for the energetic materials (EMs) LLM-105 and α-RDX, as well as the α and β conformational polymorphs of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), using the genetic algorithm (GA) code, GAtor, and its associated random structure generator, Genarris. Genarris and GAtor successfully generate the experimental structures of all targets. GAtor's symmetric crossover scheme, where the space group symmetries of parent structures are treated as genes inherited by offspring, is found to be particularly effective. However, conducting several GA runs with different settings is still important for achieving diverse samplings of the potential energy surface. For LLM-105 and α-RDX, the experimental structure is ranked as the most stable, with all of the dispersion-inclusive density functional theory (DFT) methods used here. For HMX, the α form was persistently ranked as more stable than the β form, in contrast to experimental observations, even when correcting for vibrational contributions and thermal expansion. This may be attributed to insufficient accuracy of dispersion-inclusive DFT methods or to kinetic effects not considered here. In general, the ranking of some putative structures is found to be sensitive to the choice of the DFT functional and the dispersion method. For LLM-105, GAtor generates a putative structure with a layered packing motif, which is desirable thanks to its correlation with low sensitivity. Our results demonstrate that CSP is a useful tool for studying the ubiquitous polymorphism of EMs and shows promise of becoming an integral part of the EM development pipeline.
Collapse
Affiliation(s)
- Dana O’Connor
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Imanuel Bier
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rithwik Tom
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Anna M. Hiszpanski
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Brad A. Steele
- Materials
Science Division, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
23
|
Guo Z, Yu Q, Chen Y, Liu J, Li T, Peng Y, Yi W. Fluorine-Containing Functional Group-Based Energetic Materials. CHEM REC 2023; 23:e202300108. [PMID: 37265346 DOI: 10.1002/tcr.202300108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Molecules featuring fluorine-containing functional groups exhibit outstanding properties with high density, low sensitivity, excellent thermal stability, and good energetic performance due to the strong electron-withdrawing ability and high density of fluorine. Hence, they play a pivotal role in the field of energetic materials. In light of current theoretical and experimental reports, this review systematically focuses on three types of energetic materials possessing fluorine-containing functional groups F- and NF2 - substituted trinitromethyl groups (C(NO2 )2 F, C(NO2 )2 NF2 ), trifluoromethyl group (CF3 ), and difluoroamino and pentafluorosulfone groups (NF2 , SF5 ) and investigates the synthetic methods, physicochemical parameters, and energetic properties of each. The incorporation of fluorine-containing functional moieties is critical for the development of novel high energy density materials, and is rapidly being adopted in the design of energetic materials.
Collapse
Affiliation(s)
- Zihao Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiong Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yucong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuhuang Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
24
|
Chen F, Wang Y, Song S, Wang K, Zhang Q. Design and Synthesis of Energetic Melt-Castable Materials by Substituent-Specific Modification. Chempluschem 2023; 88:e202300397. [PMID: 37661192 DOI: 10.1002/cplu.202300397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
With the increase in the demand for high-performance composite explosives, the search for advanced energetic melt-castable compounds has attracted increasing attention in the field of energetic materials. Herein, two new energetic materials with nitromethyl and azidomethyl substituents (1-(nitromethyl)-3,4-dinitro-1H-pyrazole (NMDNP) and 1-(azidomethyl)-3,4-dinitro-1H-pyrazole (AMDNP) were prepared by the substituent modification of a potential melt-castable molecule ((3,4-dinitro-1H-pyrazol-1-yl) methyl nitrate, MC-4), respectively. NMDNP exhibited a suitable melting point (90 °C), good thermal stability (Td : 185 °C) and excellent detonation performance (8484 m s-1 ) and impact sensitivity (25 J), thereby demonstrating promise as an energetic melt-castable material. Simultaneously, compared with the nitrato-methyl and azidomethyl substituents, the nitromethyl substituent exhibited greater advantages in regulating performance.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yi Wang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Siwei Song
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Kangcai Wang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Qinghua Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| |
Collapse
|
25
|
Yuan X, Huang Y, Zhang S, Gou R, Zhu S, Guo Q. Multi-aspect simulation insight on thermolysis mechanism and interaction of NTO/HMX-based plastic-bonded explosives: a new conception of the mixed explosive model. Phys Chem Chem Phys 2023; 25:20951-20968. [PMID: 37496442 DOI: 10.1039/d3cp00494e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Reactive molecular dynamics (RMDs) calculations were used to determine, for the first time, the process of thermolysis of the mixed explosives, including 3-nitro-1,2,4-triazol-5-one (NTO) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoline (HMX). Significantly, this is the first time that a layered model for mixed explosives, which is an extreme innovation of mixed explosive models was adopted. It is shown that a large amount of NO2 in the HMX and OH groups generated by the decomposition of HNO2 has a favorable effect on the thermolysis of NTO, as further validated by a reduction in the activation energy of NTO/HMX. The amount of H2O and N2 in the resulting products increased significantly, but the amount of NH3 changed slightly. The analysis results correspond to the change in chemical bonds. Whenever there is an increase in temperature, the time for the maximum number of clusters to appear is shortened accordingly. In addition, the acidity of NTO has been considered. An independent gradient model based on Hirshfeld partition (IGMH) and atoms in molecule (AIM) analysis of NTO/HMX was implemented. The relatively strong hydrogen bonds indicate that HMX can inhibit the acidity of NTO and is beneficial for the wide application of NTO/HMX-based plastic-bonded explosives (PBXs).
Collapse
Affiliation(s)
- Xiaofeng Yuan
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Ying Huang
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Shuhai Zhang
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Ruijun Gou
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Shuangfei Zhu
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Qianjin Guo
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| |
Collapse
|
26
|
Xie ZM, Wang TW, Du YB, Lu ZJ, Wu XW, Chen YB, Zhang JG. Structural, vibrational and electronic properties of nitrogen-rich 2,4,6-triazide-1,3,5-triazine under high pressure. J Mol Model 2023; 29:257. [PMID: 37468798 DOI: 10.1007/s00894-023-05651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT AND RESULTS 2,4,6-triazide-1,3,5-triazine (TAT) has received widespread attention for its great potential to synthesize or convert to nitrogen-rich high energy density materials (HEDMs). The TAT structure alteration in the compression process up to 30 GPa has characteristics as follows: (a) [N3] groups straighten; (b) [N3] groups gather toward the six-membered C-N heterocycles. At about 5 GPa, Raman peak split at 700 cm-1 was observed both in calculation and in-situ Raman experiment, which is caused by pressure-induced intramolecular stress. Besides, the broad band of the amorphous two-dimensional C=N network (centered at 1630 cm-1) occurred at about 12 GPa. Meantime, the study on electronic features suggests the pressure-induced deformation in TAT molecular structure cause the discontinuous change of band gap at about 4.5 GPa and 8.0 GPa, respectively. COMPUTATIONAL AND THEORETICAL TECHNIQUES The static compression process of TAT was explored in the range of 0-30 GPa by using dispersion corrected density functional theory (DFT-D) calculations combined with in-situ Raman experiment. The GGA/PBE+G06 method that has less errors than other calculation methods was used to predict the geometry structure, vibrational properties and electronic structure of TAT under pressure.
Collapse
Affiliation(s)
- Zhi-Ming Xie
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Ting-Wei Wang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu-Bing Du
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zu-Jia Lu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao-Wei Wu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Ya-Bin Chen
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jian-Guo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
27
|
Hong D, Zeng W, Liu ZT, Liu FS, Liu QJ. Initial Decomposition of DATB Induced by an External Electric Field. J Phys Chem A 2023. [PMID: 37307408 DOI: 10.1021/acs.jpca.3c01298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
1,3-Diamino-2,4,6-trinitrobenzene (DATB), a nitro aromatic explosive with excellent properties, can be detonated by an electric field. Using first-principles calculation, we have investigated the initial decomposition of DATB under an electric field. In the realm of electric fields, the rotation of the nitro group around the benzene ring will cause deformation of the DATB structure. Furthermore, when an electric field is applied along the [100] or [001] direction, the C4-N10/C2-N8 bonds initiate decomposition due to electron excitation. On the contrary, the electric field along the [010] direction has a weak influence on DATB. These, together with electronic structures and infrared spectroscopy, give us a visual perspective of the energy transfer and the decomposition caused by C-N bond breaking.
Collapse
Affiliation(s)
- Dan Hong
- School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031, People's Republic of China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, People's Republic of China
| | - Wei Zeng
- Teaching and Research Group of Chemistry, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, People's Republic of China
| | - Zheng-Tang Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Fu-Sheng Liu
- School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031, People's Republic of China
| | - Qi-Jun Liu
- School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031, People's Republic of China
| |
Collapse
|
28
|
Fang ZX, Wang C, Wei YL, Wang QY, Zang SQ. Constructing Highly Reliable and Adaptive Primary Explosive Composites for Micro-Initiator Assisting by a Hybrid Template of Metal-Organic Frameworks and Cross-Linked Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300157. [PMID: 36916694 DOI: 10.1002/smll.202300157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/22/2023] [Indexed: 06/15/2023]
Abstract
Primary explosive, as a reliable initiator for secondary explosives, is the central component of micro-initiators for modern aerospace systems and military operations. However, they are typically prepared as powders, posing potential safety risks because of the inevitable particles scattering issues in the actual working environments. Here, the fabrication of a highly adaptive bulk material of copper azide (CA)-based safe primary explosive for micro-initiators is demonstrated. This bulk material, as derived by a complete azidation reaction of the carbonized metal-organic framework/cross-linked polymer hybrid template, enables the firm embedding of active CA species in a cross-linked carbon network (denoted as CA-C). Interestingly, this CA-C bulk material demonstrates multifarious mechanical stabilities (e.g., good shock and vibration resistance, and anti-overload capacity) in the simulated working conditions. Meanwhile, the CA contents in the CA-C bulk material reached as high as 70.3%, ensuring its detonation power. As a proof of concept, CA-C bulk material assembling in a micro-detonator can efficiently detonate the secondary explosive of CL-20 under laser irradiation. This work hereby advances the fabrication of safe and powerful primary explosives for the fulfillment of safe micro-initiator in a broad range of applications in aerospace systems.
Collapse
Affiliation(s)
- Zi-Xin Fang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chao Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yong-Li Wei
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qian-You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
29
|
Fan J, Wang P, Gao N. Pressure-dependent structure and electronic properties of energetic NTO crystals dominated by hydrogen-bonding interactions. Phys Chem Chem Phys 2023; 25:14359-14367. [PMID: 37183725 DOI: 10.1039/d3cp01518a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
3-Nitro-1,2,4-trihydroxy-5-one (NTO), a highly potential high-performance explosive with good thermal stability and low sensitivity, has attracted much attention for its physicochemical properties in recent years. In this work, the pressure effect of the vibrational and electronic properties is investigated to understand the intermolecular interaction of NTO under hydrostatic compression. From the pressure-dependent Raman and infrared spectra, we found that the red-shifts of high-wavenumber N-H stretching modes and the discontinuous shifts of all Raman modes occur at 3 and 6 GPa, indicating an evident change of molecular configuration and intermolecular interaction upon compression. Based on structural analysis, the changes of intra- and intermolecular hydrogen bonds (HBs) are closely relevant to the anomalous rotation of the nitro group and the lengthening of N-H bonds, which can be treated as an important step of a potential structural transformation of NTO. Moreover, intermolecular hydrogen-bonding interaction leads to the shrinkage of the band gap at 6 GPa, caused by the fast charge transfer of 0.07 e from the nitrogen heterocycle to the nitro group. These results manifest a non-covalent interaction mechanism for modulating the molecular configuration of EMs under pressure loading and provide vital insights into understanding the pressure effects for energetic molecular crystals.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Physics, Taiyuan Normal University, Jinzhong, 030619, China
- Institute of Computational and Applied Physics, Taiyuan Normal University, Jinzhong, 030619, China
| | - Pengju Wang
- Zhejiang Laboratory, Hangzhou 311100, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, 116024, China
| | - Nan Gao
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
30
|
Turner AM, Marks JH, Luo Y, Lechner JT, Klapötke TM, Sun R, Kaiser RI. Electron-Induced Decomposition of Solid 1,1-Diamino-2,2-dinitroethylene (FOX-7) at Cryogenic Temperatures. J Phys Chem A 2023; 127:3390-3401. [PMID: 37027514 DOI: 10.1021/acs.jpca.3c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Solid FOX-7 (1,1-diamino-2,2-dinitroethylene), an energetic material of interest due to its high stability and low shock/thermal sensitivity, was exposed to energetic electrons at 5 K to explore the fundamental mechanisms leading to decomposition products and provide a better understanding of the reaction pathways involved. As a result of the radiation exposure, infrared spectroscopy revealed carbon dioxide (CO2) and carbon monoxide (CO) trapped in the FOX-7 matrix, while these compounds along with water (H2O), nitrogen monoxide (NO), and cyanogen (C2N2) were detected exploiting quadrupole mass spectrometry both during irradiation and during the warming phase from 5 to 300 K. Photoionization reflectron time-of-flight mass spectrometry detected small molecules such as ammonia (NH3), nitrogen monoxide (NO), and nitrogen dioxide (NO2) as well as more complex molecules up to 96 amu. Potential reaction pathways are presented and assignments are discussed. Among the reaction mechanisms, the importance of an initial nitro-to-nitrite isomerization is highlighted by the observed decomposition products.
Collapse
Affiliation(s)
- Andrew M Turner
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Joshua H Marks
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Yuheng Luo
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Jasmin T Lechner
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| |
Collapse
|
31
|
Ma X, Fei W, Zhang X, Ji J, Zhou X. Preparation of Mesoporous Si Nanoparticles by Magnesiothermic Reduction for the Enhanced Reactivity. Molecules 2023; 28:molecules28073274. [PMID: 37050037 PMCID: PMC10096974 DOI: 10.3390/molecules28073274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, mesoporous silicon nanoparticles (M-Si) were successfully prepared by a magnesiothermic reduction of mesoporous silica nanoparticles, which were synthesized by a templated sol-gel method and used as the precursors. M-Si exhibited a uniform size distribution with an average diameter of about 160 nm. The measured BET surface area was 93.0 m2 g-1, and the average pore size calculated by the BJH method was 16 nm. The large internal surface area provides rich reaction sites, resulting in unique interfacial properties and reduced mass diffusion limitations. The mechanism of the magnesiothermic reduction process was discussed. The reactivity of prepared M-Si was compared with that of commercially available non-porous Si nanopowder (with the average diameter of about 30 nm) by performing simultaneous thermogravimetry and differential scanning calorimetry in the air. The results showed that the reaction onset temperature indicated by weight gain was advanced from 772 °C to 468 °C, indicating the promising potential of M-Si as fuel for metastable intermolecular composites.
Collapse
Affiliation(s)
- Xinwen Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiduo Fei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiandie Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Ji
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiang Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
32
|
Zhang Q, Chen J, Jin B, Peng R. A new linear heptafluoro glycidyl ether binder: synthesis, characterization, and mechanical properties. Macromol Res 2023. [DOI: 10.1007/s13233-023-00162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
33
|
Duarte JC, da Rocha RD, Borges I. Which molecular properties determine the impact sensitivity of an explosive? A machine learning quantitative investigation of nitroaromatic explosives. Phys Chem Chem Phys 2023; 25:6877-6890. [PMID: 36799468 DOI: 10.1039/d2cp05339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We decomposed density functional theory charge densities of 53 nitroaromatic molecules into atom-centered electric multipoles using the distributed multipole analysis that provides a detailed picture of the molecular electronic structure. Three electric multipoles, (the charge of the nitro groups), (the total dipole, i.e., polarization, of the nitro groups), (the total electron delocalization of the C ring atoms), and the number of explosophore groups (#NO2) were selected as features for a comprehensive machine learning (ML) investigation. The target property was the impact sensitivity h50 (cm) values quantified by drop-weight measurements, with a large h50 (e.g., 150 cm) indicating that an explosive is insensitive and vice versa. After a preliminary screening of 42 ML algorithms, four were selected based on the lowest root mean square errors: Extra Trees, Random Forests, Gradient Boosting, and AdaBoost. Compared to experimental data, the predicted h50 values of molecules having very different sensitivities for the four algorithms have differences in the range 19-28%. The most important properties for predicting h50 are the electron delocalization in the ring atoms and the polarization of the nitro groups with averaged weights of 39% and 35%, followed by the charge (16%) and number (10%) of nitro groups. A significant result is how the contribution of these properties to h50 depends on their actual sensitivities: for the most sensitive explosives (h50 up to ∼50 cm), the four properties contribute to reducing h50, and for intermediate ones (∼50 cm ≲ h50 ≲ 100 cm) #NO2 and contribute to increasing it and the other two properties to reducing it. For highly insensitive explosives (h50 ≳ 200 cm), all four properties essentially contribute to increasing it. These results furnish a consistent molecular basis of the sensitivities of known explosives that also can be used for developing safer new ones.
Collapse
Affiliation(s)
- Julio Cesar Duarte
- Departamento de Engenharia de Computação, Instituto Militar de Engenharia, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Urca, Rio de Janeiro (RJ), 22290-270, Brazil. .,Programa de Pós-Graduação em Engenharia de Defesa, Militar de Engenharia, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Urca, Rio de Janeiro (RJ), 22290-270, Brazil
| | - Romulo Dias da Rocha
- Programa de Pós-Graduação em Engenharia de Defesa, Militar de Engenharia, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Urca, Rio de Janeiro (RJ), 22290-270, Brazil
| | - Itamar Borges
- Departamento de Engenharia de Computação, Instituto Militar de Engenharia, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Urca, Rio de Janeiro (RJ), 22290-270, Brazil. .,Departamento de Química, Militar de Engenharia, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Urca, Rio de Janeiro (RJ), 22290-270, Brazil
| |
Collapse
|
34
|
Qasem A, Zhang X, Xie Z, Zhang Q, Sun H, Gao Z, Yang J, Khan H, Zhang W, Hu B, Zhang G. Triazine-Augmented Catalytic Activity of Cyclobutadiene Tricarbonyl Fe(0) Complexes for Thermal Decomposition of Ammonium Perchlorate. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Ashwaq Qasem
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, Xi’an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Xiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, Xi’an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Zunyuan Xie
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, Xi’an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Qinsheng Zhang
- State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, People’s Republic of China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, Xi’an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, Xi’an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Jun Yang
- CAS Key Laboratory of Energy Regulation Materials, Shanghai Organic Chemistry, CAS, Shanghai 200032, People’s Republic of China
| | - Huma Khan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, Xi’an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, Xi’an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
- CAS Key Laboratory of Energy Regulation Materials, Shanghai Organic Chemistry, CAS, Shanghai 200032, People’s Republic of China
| | - Bin Hu
- State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, People’s Republic of China
| | - Guofang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, Xi’an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| |
Collapse
|
35
|
Yang X, Li N, Li Y, Pang S. Insensitive High-Energy Density Materials Based on Azazole-Rich Rings: 1,2,4-Triazole N-Oxide Derivatives Containing Isomerized Nitro and Amino Groups. Int J Mol Sci 2023; 24:3918. [PMID: 36835326 PMCID: PMC9962610 DOI: 10.3390/ijms24043918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
It is an arduous and meaningful challenge to design and develop new energetic materials with lower sensitivity and higher energy. How to skillfully combine the characteristics of low sensitivity and high energy is the key problem in designing new insensitive high-energy materials. Taking a triazole ring as a framework, a strategy of N-oxide derivatives containing isomerized nitro and amino groups was proposed to answer this question. Based on this strategy, some 1,2,4-triazole N-oxide derivatives (NATNOs) were designed and explored. The electronic structure calculation showed that the stable existence of these triazole derivatives was due to the intramolecular hydrogen bond and other interactions. The impact sensitivity and the dissociation enthalpy of trigger bonds directly indicated that some compounds could exist stably. The crystal densities of all NATNOs were larger than 1.80 g/cm3, which met the requirement of high-energetic materials for crystal density. Some NATNOs (9748 m/s for NATNO, 9841 m/s for NATNO-1, 9818 m/s for NATNO-2, 9906 m/s for NATNO-3, and 9592 m/s for NATNO-4) were potential high detonation velocity energy materials. These study results not only indicate that the NATNOs have relatively stable properties and excellent detonation properties but also prove that the strategy of nitro amino position isomerization coupled with N-oxide is an effective means to develop new energetic materials.
Collapse
Affiliation(s)
- Xinbo Yang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nan Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuchuan Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Siping Pang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
36
|
Gao C, Li X, Wang J, Sun X, Liu S, Zhang Z. Molecular conformation evolutions of trans HNS under high pressure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121994. [PMID: 36283205 DOI: 10.1016/j.saa.2022.121994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The molecular conformation evolution of Hexanitrostilbene (HNS) under high pressure was systematically investigated using Raman and Fourier transform infrared (FTIR) spectroscopy. The vibration modes of HNS associated with C-H, nitro groups, CC and the ring have been analyzed and clarified in detail under ambient conditions. trans-HNS is symmetrically distributed about -CHCH-, and six nitro groups are symmetrically distributed under ambient conditions. Two molecular conformation changes of HNS were observed at 1.4 GPa and 5 GPa due to the variations of hydrogen-bond interaction between C-H (in the ring) and N-O and the distortion of trans olefin, respectively. The hydrogen-bond interaction between C-H (in the ring) and N-O strengthened at 1.4 GPa. It induced the degenerated symmetry of the nitro groups and the Raman changes of νas (NO2), ν(CC), ν(C-C) and ν(C-H). In addition, the nonplanarity property of HNS and the sensitivity of trans olefin to pressure promoted the deformation of trans olefin, as well as the hydrogen bond interaction between C-H (in trans olefin) and N-O at about 5 GPa. When further loading pressure on HNS, the variations in the hydrogen-bond interaction between C-H and N-O restricted the vibrations of C-H, NO2 and the ring. It blocked the nonradiative pathway and activated the strong fluorescent background in the Raman spectra as the pressure increased above 5.7 GPa. These current results reveal that there is no structural transformation and only conformational changes under high pressure for HNS.
Collapse
Affiliation(s)
- Chan Gao
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Xiangdong Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junke Wang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyu Sun
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Liu
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Zengming Zhang
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
37
|
Li C, Deng H, Liu Z, Lv X, Gao W, Gao Y, Gao J, Hu L. Salidroside protect Chinese hamster V79 cells from genotoxicity and oxidative stress induced by CL-20. Toxicol Res (Camb) 2023; 12:133-142. [PMID: 36866208 PMCID: PMC9972843 DOI: 10.1093/toxres/tfad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Hexanitrohexaazaisowurtzitane (CL-20) is a high-energy elemental explosive widely used in chemical and military fields. CL-20 harms environmental fate, biosafety, and occupational health. However, there is little known about the genotoxicity of CL-20, in particular its molecular mechanisms. Therefore, this study was framed to investigate the genotoxic mechanisms of CL-20 in V79 cells and evaluate whether the genotoxicity could be diminished by pretreating the cells with salidroside. The results showed that CL-20-induced genotoxicity in V79 cells primarily through oxidative damage to DNA and mitochondrial DNA (mtDNA) mutation. Salidroside could significantly reduce the inhibitory effect of CL-20 on the growth of V79 cells and reduce the levels of reactive oxygen species (ROS), 8-hydroxy-2 deoxyguanosine (8-OHdG), and malondialdehyde (MDA). Salidroside also restored CL-20-induced superoxide dismutase (SOD) and glutathione (GSH) in V79 cells. As a result, salidroside attenuated the DNA damage and mutations induced by CL-20. In conclusion, oxidative stress may be involved in CL-20-induced genotoxicity in V79 cells. Salidroside could protect V79 cells from oxidative damage induced by CL-20, mechanism of which may be related to scavenging intracellular ROS and increasing the expression of proteins that can promote the activity of intracellular antioxidant enzymes. The present study for the mechanisms and protection of CL-20-mediated genotoxicity will help further to understand the toxic effects of CL-20 and provide information on the therapeutic effect of salidroside in CL-20-induced genotoxicity.
Collapse
Affiliation(s)
- Cunzhi Li
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, NO.127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Hui Deng
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Xiaoqiang Lv
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Wenzhi Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Yongchao Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065, China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, NO.127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072, China
| |
Collapse
|
38
|
Li HY, Wei D, Du YH, Liu ZT, Bai ZX, Liu FS, Liu QJ. Effects of pressure on structural, electronic, optical, and mechanical properties of nitrogen-rich energetic material: 6-azido-8-nitrotetrazolo[1,5-b]pyridazine-7-amine (3at). J Mol Model 2023; 29:43. [PMID: 36653549 DOI: 10.1007/s00894-022-05440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
CONTEXT AND RESULTS 6-Azido-8-nitrotetrazolo[1,5-b]pyridazine-7-amine (3at) is a promising green energetic material, which meets the development requirements of environment-friendly explosives. By discussing the relationship between lattice parameters and pressure, it is found that the compression ratio indicates anisotropy of compressibility. And bond lengths get shorter under pressure, resulting in stronger intermolecular bonds. The N3 group rotates under pressure. And then, the optical properties basically change regularly with the change of pressure. As the pressure increases, the absorption range widens. In the low energy interval, it shows transparency, and then with the increase of energy and pressure, it shows better optical activity. With the increase of pressure and energy, the absorption coefficient increases, representing that the optical activity becomes high. Finally, according to the analysis of mechanical properties, 3at exhibited brittle behavior at 0 GPa and 100 GPa, while at 10 to 90 GPa, the values of ν and B/G are malleable. COMPUTATIONAL AND THEORETICAL TECHNIQUES Based on density functional theory, the crystal parameters, electronic properties, optical properties, and elastic and mechanical properties of 3at under different pressures were studied theoretically. The GGA-PW91+OBS method was used to calculate the physical parameters under pressure, such as lattice parameters, energy band structures, dielectric function, refractive index, absorption coefficient, and elastic constants. Physical properties under (3at) pressure are predicted.
Collapse
Affiliation(s)
- Hong-Yan Li
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Ding Wei
- Xi'an Modern Chemistry Research Institute, Xi'an, 710065, People's Republic of China
| | - Yi-Hua Du
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Zheng-Tang Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Zhi-Xin Bai
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Fu-Sheng Liu
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Qi-Jun Liu
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| |
Collapse
|
39
|
Li D, Zhang S, Jia H, Song M, Zhang Y, Li H, Zhou M. High pressure Raman study of LiClO 4. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121914. [PMID: 36183538 DOI: 10.1016/j.saa.2022.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Lithium perchlorate (LiClO4), as one of the new high-energy oxidizers, is chosen for high pressure Raman research to gain a better understanding of the structure and stability, which is very important for the performance of an explosive. Raman spectra of LiClO4 crystal have been measured from ambient to 25.07 GPa with diamond anvil cells (DACs) at room temperature to investigate the structural stability of this system. Raman vibrational modes of LiClO4 crystal at ambient pressure were resolved comprehensively on the basis of our experimental and calculated results. Upon increase of pressure on LiClO4 crystal sample to 1.96 GPa, it was found that the LiClO4 crystal exhibited a pressure-induced first-order phase transformation behavior. The occurrence of a second phase transformation of LiClO4 crystal induced by pressure was observed at about 5.09 GPa. Both phase transformations were demonstrated based on the detailed spectroscopic analysis of the variations in the number of lattice modes, splitting of Raman bands and frequency jumps of the Raman vibrational modes of LiClO4 crystal.
Collapse
Affiliation(s)
- DongFei Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin Province, PR China; State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, Jilin Province, PR China
| | - Shuo Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin Province, PR China
| | - Hongsheng Jia
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin Province, PR China; School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Mingxing Song
- College of Information and Technology, Jilin Normal University, Siping 136000, Jilin Province, PR China.
| | - Ying Zhang
- College of Physics, Changchun University of Science and Technology, Changchun 130013, China
| | - Haibo Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, Jilin Province, PR China
| | - Mi Zhou
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, Jilin Province, PR China.
| |
Collapse
|
40
|
Guo QJ, Zhang SH, Gou RJ, Yuan XF, Huang Y, Liang YT. Insight into the adsorption and decomposition mechanism of MTNP on the Al (111) surface: A DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Feng S, Guo F, Yuan C, Cheng X, Wang Y, Zhang H, Chen J, Su L. Effect of neutron irradiation on structure and decomposition of α-RDX: a ReaxFF molecular dynamics study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Comprehensive theoretical study on safety performance and mechanical properties of 3-nitro-1,2,4-triazol-5-one (NTO)–based polymer-bonded explosives (PBXs) via molecular dynamics simulation. J Mol Model 2022; 28:406. [DOI: 10.1007/s00894-022-05393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
|
43
|
Theoretical research on performances of CL-20/HMX cocrystal explosive and its based polymer bonded explosives (PBXs) by molecular dynamics method. J Mol Model 2022; 28:385. [DOI: 10.1007/s00894-022-05380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
|
44
|
Şen FB, Bener M, Aşçı YS, Lalikoglu M, Apak R. Selective determination of 2,4,6-Trinitrotoluene (TNT) with cysteamine in deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Coupling Effect of Non-Ignition Impact and Heat on the Decay of FOX-7. Molecules 2022; 27:molecules27238255. [PMID: 36500351 PMCID: PMC9737319 DOI: 10.3390/molecules27238255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Non-ignition impact and heat stimuli are the most common external stimuli loaded on energetic materials. Nevertheless, there is thereby an urgent need, but it is still a significant challenge to comprehend their coupling effects on the decay and safety mechanisms of energetic materials. Then, reactive molecular dynamics simulation was employed to mimic practical situations and reveal the impact heat coupling effect on the decay mechanism of FOX-7. The temperature and the degree of compression of the crystal caused by the impact are considered variables in the simulation. Both increasing the degree of compression and elevating the temperature promotes the decay of FOX-7. However, their underlying response mechanism is not the same. The acceleration of decomposition is due to the elevated potential energy of the FOX-7 molecules because of elevating the temperature. In addition to the elevated potential energy of the molecule, the main contribution to the decomposition from the compression is to change the decomposition path. The results of the analysis show that compression reduces the stability of the C=C bond, so that chemical reactions related to the double bond occur. In addition, interestingly, the compression along the c direction has an almost equal effect on the final product as the compression along the b direction. Finally, the decay reaction networks are proposed to provide insights into the decomposition mechanism on atomic level. All these findings are expected to pave a way to understand the underlying response mechanism for the FOX-7 against external stimuli.
Collapse
|
46
|
Yu C, Gu B, Wang J, Chen J, Zhang W, Shi W, Yang G, Lei X, Zhu J. Valence-Oriented Electrosynthesis Strategies of Cu-Based 5-Nitrotetrazolate for Environmentally Acceptable Primary Explosives. Inorg Chem 2022; 61:19379-19387. [DOI: 10.1021/acs.inorgchem.2c03183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chunpei Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Bonan Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Jiaxin Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Junhong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Wenchao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Wei Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Gexing Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Xiaoting Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Junwu Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| |
Collapse
|
47
|
Paromov AE, Sysolyatin SV, Shchurova IA. Condensation of 4-Tert-butyl-2,6-dimethylbenzenesulfonamide with Glyoxal and Reaction Features: A New Process for Symmetric and Asymmetric Aromatic Sulfones. Molecules 2022; 27:7793. [PMID: 36431894 PMCID: PMC9697454 DOI: 10.3390/molecules27227793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The synthesis of substituted aza- and oxaazaisowurtzitanes via direct condensation is challenging. The selection of starting ammonia derivatives is very limited. The important step in developing alternative synthetic routes to these compounds is a detailed study on their formation process. Here, we explored an acid-catalyzed condensation between 4-tert-butyl-2,6-dimethylbenzenesulfonamide and glyoxal in aqueous H2SO4, aqueous acetonitrile and acetone, and established some new processes hindering the condensation. In particular, an irreversible rearrangement of the condensation intermediate was found to proceed and be accompanied by the 1,2-hydride shift and by the formation of symmetric disulfanes and sulfanes. It has been shown for the first time that aldehydes may act as a reducing agent when disulfanes are generated from aromatic sulfonamides, as is experimentally proved. The condensation between 4-tert-butyl-2,6-dimethylbenzenesulfonamide and formaldehyde resulted in 1,3,5-tris((4-(tert-butyl)-2,6-dimethylphenyl)sulfonyl)-1,3,5-triazinane. It was examined if diimine could be synthesized from 4-tert-butyl-2,6-dimethylbenzenesulfonamide and glyoxal by the most common synthetic procedures for structurally similar imines. It has been discovered for the first time that the Friedel-Crafts reaction takes place between sulfonamide and the aromatic compound. A new synthetic strategy has been suggested herein that can reduce the stages in the synthesis of in-demand organic compounds of symmetric and asymmetric aromatic sulfones via the Brønsted acid-catalyzed Friedel-Crafts reaction, starting from aromatic sulfonamides and arenes activated towards an electrophilic attack.
Collapse
Key Words
- 1,2-hydride shift
- 1,3,5-triazinane
- 2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03,11.05,9]dodecane
- aromatic disulfanes
- aromatic sulfanes
- aromatic sulfonamides
- aromatic sulfones
- condensation
- domino reactions
Collapse
Affiliation(s)
- Artyom E. Paromov
- Laboratory for Chemistry of Nitrogen Compounds, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
| | | | | |
Collapse
|
48
|
Theoretical investigation on interface interaction and properties of 3-nitro-1,2,4-triazol-5-one (NTO)/fluoropolymer polymer-bonded explosives (PBXs). Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
49
|
Dave PN, Sirach R, Chaturvedi S, Thakkar R. Kinetic investigation of the thermal decomposition of both NTO, and nNTO in the presence of Nickel-Zinc-Copper ferrite. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Fan J, Gao N, Wang P. Theoretical investigation of vibrational and electronic properties of HMX crystal under uniaxial compression. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:505405. [PMID: 36228627 DOI: 10.1088/1361-648x/ac9a27] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is a typical energetic molecular crystal with excellent detonation performance and good thermal stability, has been widely used in military and civilian purposes. In this work, the vibrational properties of HMX combined with structure and electronic properties are studied to understand its pressure response against uniaxial compressions. The calculated eigenvalues of stress tensors show significant anisotropy of intermolecular interactions. Especially, the direction of shear stressτxyandτxzin [100] compression have an abrupt change nearV/V0= 0.84. Further, Raman spectra under each uniaxial compression are simulated to inspect the molecular configuration of HMX. Compared to the blue shifts of [010] and [001] orientations, the discontinuous Raman shifts of atV/V0= 0.86-0.84 in [100] orientation suggest that HMX would undergoes a possible structural transformation at the pressure of 6.82-9.15 GPa. Structural analysis implies that the subtle rotation of NO2group is changed by intermolecular interactions of HMX. Moreover, the abnormal evolution of band gap is observed atV/V0= 0.84 in [100] orientation, which is associated with the structure modification of HMX. Overall, the compression behaviors of HMX under uniaxial compressions would provide a useful insight for the actual shock compression conditions.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Physics, Taiyuan Normal University, Jinzhong 030619, People's Republic of China
- Institute of Computational and Applied Physics, Taiyuan Normal University, Jinzhong 030619, People's Republic of China
| | - Nan Gao
- School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, People's Republic of China
| | - Pengju Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, People's Republic of China
| |
Collapse
|