1
|
Hyder A, Ali A, Buledi JA, Memon R, Al-Anzi BS, Memon AA, Kazi M, Solangi AR, Yang J, Thebo KH. A NiO-nanostructure-based electrochemical sensor functionalized with supramolecular structures for the ultra-sensitive detection of the endocrine disruptor bisphenol S in an aquatic environment. Phys Chem Chem Phys 2024; 26:10940-10950. [PMID: 38526327 DOI: 10.1039/d4cp00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Herein, NiO nanoparticles (NPs) functionalized with a para-hexanitrocalix[6]arene derivative (p-HNC6/NiO) were synthesized by using a facile method and applied as a selective electrochemical sensor for the determination of bisphenol S (BPS) in real samples. Moreover, the functional interactions, phase purities, surface morphologies and elemental compositions of the synthesized p-HNC6/NiO NPs were investigated via advanced analytical tools, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Additionally, the synthesized p-HNC6/NiO NPs were cast on the surface of a bare glassy carbon electrode (GCE) via a drop casting method, which resulted in uniform deposition of p-HNC6/NiO/GCE over the surface of the GCE. Additionally, the developed p-HNC6/NiO/GCE sensor demonstrated an outstanding electrochemical response to BPS under optimized conditions, including a supporting electrolyte, a Briton-Robinson buffer electrolyte at pH 4, a scan rate of 110 mV s-1 and a potential window of between -0.2 and 1.0 V. The wide linear dynamic range was optimized to 0.8-70 μM to obtain a brilliant linear calibration curve for BPS. The limit of detection (LOD) and limit of quantification (LOQ) of the developed sensor were estimated to be 0.0059 and 0.019 μM, respectively, which are lower than those of reported sensors for BPS. The feasibility of the developed method was successfully assessed by analyzing the content of BPS in waste water samples, and good recoveries were achieved.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jamil Ahmed Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Roomia Memon
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Bader S Al-Anzi
- Department of Environmental Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
| | - Amber Rehana Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Jun Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China.
| |
Collapse
|
2
|
Wei Y, Wang X, Li M, Yu F, Xu R, Qin G, Li Y. Novel electrochemical sensing platform basing on di-functional stimuli-responsive imprinted polymers for simultaneous extraction and determination of metronidazole. Anal Chim Acta 2023; 1260:341219. [PMID: 37121660 DOI: 10.1016/j.aca.2023.341219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
A novel magnetic-controlled electrochemical sensor has been fabricated by combined photo-responsive surface molecular imprinted polymers (P-SMIPs) and electrochemical sensor. In particular, the P-SMIPs were obtained by living radical polymerization of photo-responsive functional monomer onto the magnetic Fe3O4 modified multi-walled carbon nanotubes nanocomposites. The magnetic glassy carbon electrode was introduced to make the anchoring and removal of P-SMIPs onto the magnetic-controlled glassy carbon electrode easy to manipulate. Driven by UV/vis light, the platform performs releasing and absorption of metronidazole basing on conformational variations of the photo-responsive monomer at the receptor sites part in the P-SMIPs. This process can be tested by the photo-responsive variations of metronidazole electrochemical signal. As the consequence, extracting of P-SMIPs sensor can be conveniently triggered by the controllable UV light intervention measure, leading to effectively improve in both analytes mass transfer rate to the receiving media and extraction efficiency. The experimental result indicated that the excellent recoveries of metronidazole were varied between 77.9% and 89.9% with RSDs ≤4.87% in the biological samples. Therefore, the P-SMIPs sensor shows satisfactory potential in reusable extractions that can be recycled several times with no significant loss of activity, and this utilization strategy can be extended to other analytes, achieving manifold applications of pharmaceutical and environmental.
Collapse
Affiliation(s)
- Yubo Wei
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China.
| | - Xin Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Meihong Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Fang Yu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Ruoping Xu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China.
| | - Yupeng Li
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Luo X, Wei J, Zhang Y, Jiang M, Wei Q, Chen M, Wang X, Zhang X, Zheng J. Preparation of a Molecularly Imprinted Silica Nanoparticles Embedded Microfiltration Membrane for Selective Separation of Tetrabromobisphenol A from Water. MEMBRANES 2023; 13:571. [PMID: 37367775 DOI: 10.3390/membranes13060571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The ubiquitous presence of tetrabromobisphenol A (TBBPA) in aquatic environments has caused severe environmental and public health concerns; it is therefore of great significance to develop effective techniques to remove this compound from contaminated waters. Herein, a TBBPA imprinted membrane was successfully fabricated via incorporating imprinted silica nanoparticles (SiO2 NPs). The TBBPA imprinted layer was synthesized on the 3-(methacryloyloxy) propyltrimethoxysilane (KH-570) modified SiO2 NPs via surface imprinting. Eluted TBBPA molecularly imprinted nanoparticles (E-TBBPA-MINs) were incorporated onto a polyvinylidene difluoride (PVDF) microfiltration membrane via vacuum-assisted filtration. The obtained E-TBBPA-MINs embedded membrane (E-TBBPA-MIM) showed appreciable permeation selectivity toward the structurally analogous to TBBPA (i.e., 6.74, 5.24 and 6.31 of the permselectivity factors for p-tert-butylphenol (BP), bisphenol A (BPA) and 4,4'-dihydroxybiphenyl (DDBP), respectively), far superior to the non-imprinted membrane (i.e., 1.47, 1.17 and 1.56 for BP, BPA and DDBP, respectively). The permselectivity mechanism of E-TBBPA-MIM could be attributed to the specific chemical adsorption and spatial complementation of TBBPA molecules by the imprinted cavities. The resulting E-TBBPA-MIM exhibited good stability after five adsorption/desorption cycles. The findings of this study validated the feasibility of developing nanoparticles embedded molecularly imprinted membrane for efficient separation and removal of TBBPA from water.
Collapse
Affiliation(s)
- Xingran Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Xiang Luo
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Jiaqi Wei
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Minmin Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Qiaoyan Wei
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Mei Chen
- School of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuehong Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| |
Collapse
|
4
|
Application of Molecularly Imprinted Electrochemical Biomimetic Sensors for Detecting Small Molecule Food Contaminants. Polymers (Basel) 2022; 15:polym15010187. [PMID: 36616536 PMCID: PMC9824611 DOI: 10.3390/polym15010187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Environmental chemical contaminants in food seriously impact human health and food safety. Successful detection methods can effectively monitor the potential risk of emerging chemical contaminants. Among them, molecularly imprinted polymers (MIPs) based on electrochemical biomimetic sensors overcome many drawbacks of conventional detection methods and offer opportunities to detect contaminants with simple equipment in an efficient, sensitive, and low-cost manner. We searched eligible papers through the Web of Science (2000-2022) and PubMed databases. Then, we introduced the sensing mechanism of MIPs, outlined the sample preparation methods, and summarized the MIP characterization and performance. The classification of electrochemistry, as well as its advantages and disadvantages, are also discussed. Furthermore, the representative application of MIP-based electrochemical biomimetic sensors for detecting small molecular chemical contaminants, such as antibiotics, pesticides, toxins, food additives, illegal additions, organic pollutants, and heavy metal ions in food, is demonstrated. Finally, the conclusions and future perspectives are summarized and discussed.
Collapse
|
5
|
Composite Hydrogel Microspheres Encapsulating Hollow Mesoporous Imprinted Nanoparticles for Selective Capture and Separation of 2′-Deoxyadenosine. Molecules 2022; 27:molecules27217444. [DOI: 10.3390/molecules27217444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Hollow mesoporous silica nanoparticles have been widely applied as a carrier material in the molecular imprinting process because of their excellent properties, with high specific surface area and well-defined active centers. However, these kinds of materials face the inevitable problem that they have low mass transfer efficiency and cannot be conveniently recycled. In order to solve this problem, this work has developed a composite hydrogel microsphere (MMHSG) encapsulated with hollow mesoporous imprinted nanoparticles for the selective extraction of 2’-deoxyadenosine (dA). Subsequently, the hollow mesoporous imprinted polymers using dA as template molecule and synthesized 5-(2-carbomethoxyvinyl)-2′-deoxyuridine (AcrU) as functional monomer were encapsulated in hydrogel. MMHSG displayed good performance in specifically recognizing and quickly separating dA, whereas no imprinting effect was observed among 2′-deoxyguanosine (dG), deoxycytidine (dC), or 5′-monophosphate disodium salt (AMP). Moreover, the adsorption of dA by MMHSG followed chemisorption and could reach adsorption equilibrium within 60 min; the saturation adsorption capacity was 20.22 μmol·g−1. The introduction of AcrU could improve selectivity through base complementary pairing to greatly increase the imprinting factor to 3.79. Therefore, this was a successful attempt to combine a hydrogel with hollow mesoporous silica nanoparticles and molecularly imprinted material.
Collapse
|
6
|
Facile hydrothermal synthesis of manganese sulfide nanoelectrocatalyst for high sensitive detection of Bisphenol A in food and eco-samples. Food Chem 2022; 393:133316. [DOI: 10.1016/j.foodchem.2022.133316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
|
7
|
Jiao J, Zhou Z, Tian S, Ren Z. Facile preparation of molecular-imprinted polymers for selective extraction of theophylline molecular from aqueous solution. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Zeng H, Yu X, Wan J, Cao X. Synthesis of molecularly imprinted polymers based on boronate affinity for diol-containing macrolide antibiotics with hydrophobicity-balanced and pH-responsive cavities. J Chromatogr A 2021; 1642:461969. [PMID: 33735645 DOI: 10.1016/j.chroma.2021.461969] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 11/19/2022]
Abstract
In this research, in order to separate and purify diol-containing macrolide antibiotics, like tylosin, from complex biological samples, molecularly imprinted polymer (MIP) based on boronate affinity for tylosin was synthesized by using precipitation polymerization method with 4-vinylphenylboronic acid (VPBA) and dimethyl aminoethyl methacrylate (DMAEMA) as pH-responsive functional monomers, and N,N'-methylene bisacrylamide (MBAA)/ ethylene glycol dimethacrylate (EGDMA) as the co-crosslinkers that balance the hydrophobicity of the MIP. The synthesized tylosin-MIP had the advantages of high adsorption capacity (120 mg/g), fast pH-responsiveness responsible for the accessibility of imprinted cavities, and high selectivity coefficient towards tylosin versus its analogues (2.8 versus spiramycin, 7.3 versus desmycosin) in an aqueous environment. The mechanism of boronate affinity between tylosin and VPBA in the form of charged hydrogen bonding was analyzed via density functional theory (DFT). MIPs were used to successfully separate diol-containing macrolides through molecularly imprinted solid phase extraction (MISPE). The results show that MIPs prepared in this method have a good application prospect in the separation and purification of the diol-containing macrolide antibiotics.
Collapse
Affiliation(s)
- Hainan Zeng
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Xue Yu
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| |
Collapse
|
9
|
Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01511-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Lien NT, Quoc Hung L, Hoang NT, Thu VT, Ngoc Nga DT, Hai Yen PT, Phong PH, Thu Ha VT. An Electrochemical Sensor Based on Gold Nanodendrite/Surfactant Modified Electrode for Bisphenol A Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:6693595. [PMID: 33457037 PMCID: PMC7785347 DOI: 10.1155/2020/6693595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
In the present work, we reported the simple way to fabricate an electrochemical sensing platform to detect Bisphenol A (BPA) using galvanostatic deposition of Au on a glassy carbon electrode covered by cetyltrimethylammonium bromide (CTAB). This material (CTAB) enhances the sensitivity of electrochemical sensors with respect to the detection of BPA. The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. The results displayed a low detection limit (22 nm) and a linear range from 0.025 to 10 µm along side with high reproducibility (RSD = 4.9% for seven independent sensors). Importantly, the prepared sensors were selective enough against interferences with other pollutants in the same electrochemical window. Notably, the presented sensors have already proven their ability in detecting BPA in real plastic water drinking bottle samples with high accuracy (recovery range = 96.60%-102.82%) and it is in good agreement with fluorescence measurements.
Collapse
Affiliation(s)
- Nguyen Thi Lien
- Department of Chemistry, Hanoi University of Science, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Le Quoc Hung
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Tien Hoang
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Vu Thi Thu
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Dau Thi Ngoc Nga
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Thi Hai Yen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Pham Hong Phong
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Vu Thi Thu Ha
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
11
|
GORDUK O. Poly(glutamic acid) Modified Pencil Graphite Electrode for Voltammetric Determination of Bisphenol A. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2020. [DOI: 10.18596/jotcsa.728165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Colorimetric determination of tetrabromobisphenol A based on enzyme-mimicking activity and molecular recognition of metal-organic framework-based molecularly imprinted polymers. Mikrochim Acta 2020; 187:142. [PMID: 31965326 DOI: 10.1007/s00604-020-4119-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/09/2020] [Indexed: 01/07/2023]
Abstract
A sol-gel method is presented to synthesize molecularly imprinted polymers (MIPs) composed with a copper-based metal-organic framework (referred to as MIP/HKUST-1) on a paper support to selectively recognize tetrabromobisphenol A (TBBPA). The imprinting factor is 7.6 and the maximum adsorption capacity is 187.3 mg g-1. This is much better than data for other MIPs. The degradation of TBBPA is introduced in the procedure. Due to the selective recognition by the MIP, the enzyme-mimicking properties of HKUST-1 under the MIP layer became weak due to the decrease of residue imprinted cavities. And adsorbed TBBPA can be degraded under consumption of hydrogen peroxide (H2O2). The combined effect of H2O2 and HKUST-1 cause the coloration caused by catalytic oxidation of 3,3',5,5'-tetramethylbenzidine to become less distinct. This amplification strategy is used for the ultrasensitive and highly selective colorimetric determination of TBBPA. The gray intensity is proportional to the logarithm concentration of TBBPA in the range of 0.01-10 ng g-1. The limit of detection is as low as 3 pg g-1, and the blank intensities caused by TBBPA analogues are <1% of that caused by TBBPA at the same concentration, this implying excellent selectivity. The spiked recoveries ranged from 94.4 to 106.6% with relative standard deviation values that were no more than 8.6%. Other features include low costs, rapid response, easy operation and on-site testing. Graphical abstractSchematic representation of colorimetric determination of tetrabromobisphenol A (TBBPA) by paper-based metal-organic framework-based molecularly imprinted polymers (MIP/HKUST-1 composites) using 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate.
Collapse
|
13
|
Chen L, Dai J, Hu B, Wang J, Wu Y, Dai J, Meng M, Li C, Yan Y. Recent Progresses on the Adsorption and Separation of Ions by Imprinting Routes. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1596134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Li Chen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jingwen Dai
- Department of Battery Materials, China Aviation Lithium Battery Research Institute Co. Ltd, Changzhou, China
| | - Bo Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jixiang Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Minjia Meng
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Meischl F, Kirchler CG, Stuppner SE, Rainer M. Comparative study of substituted poly(4-vinylbenzyl chloride/ethylene glycol dimethacrylate) sorbents for enrichment of selected pharmaceuticals and estrogens from aqueous samples. JOURNAL OF HAZARDOUS MATERIALS 2018; 355:180-186. [PMID: 29800912 DOI: 10.1016/j.jhazmat.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/25/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
This study reports the syntheses of four polymeric sorbents based on nucleophilic substitution of Poly(4-vinylbenzylchloride/ethylene glycol dimethacrylate). Polymerization was executed by a simple thermal initiated bulk polymerization procedure. Ground polymer particles were functionalized through reaction with the nucleophiles triethylamine, imidazole, piperidine and pyrrolidine. Mixed-mode phases were characterized by infrared spectroscopy, nitrogen sorption porosimetry and potentiometric titration for determination of chloride content. Furthermore, materials were tested and evaluated for enrichment of seven pharmaceutical and endocrine-disrupting compounds at low ng mL-1 levels. Results demonstrate that the imidazole modified sorbent led to high and constant recovery rates for nearly all tested compounds. Therefore, this polymer was further tested for applicability with two environmental samples. Spiked tap and river water showed similar results as in evaluation experiments. Moreover, the developed method was validated regarding linearity, repeatability, instrumental limits and stability of analytes according to international guidelines.
Collapse
Affiliation(s)
- Florian Meischl
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Christian G Kirchler
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Stefan E Stuppner
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
15
|
Cáceres C, Bravo C, Rivas B, Moczko E, Sáez P, García Y, Pereira E. Molecularly Imprinted Polymers for the Selective Extraction of Bisphenol A and Progesterone from Aqueous Media. Polymers (Basel) 2018; 10:E679. [PMID: 30966713 PMCID: PMC6404127 DOI: 10.3390/polym10060679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/23/2022] Open
Abstract
This paper describes the development of a novel sorbent for selective extraction of endocrine disruptors (EDs) from aqueous media. The main goal was to obtain sufficient molecularly imprinted polymers (MIPs) for selective detection, preconcentration, and extraction of EDs such as bisphenol A (BPA) and progesterone (PG). Series of MIPs and their analogues, non-molecularly imprinted polymers (NIPs), were synthesised following a non-covalent imprinting strategy based on radical polymerisation. Sets of synthesis were performed in order to optimise variables of the polymerisation including solvent, cross-linker, and template ratio. The retention capacity of MIPs was determined using HPLC in the range of 33.3% to 96.6% and 32.5% to 96% for BPA and PG, respectively. The adsorption mechanism was studied by isothermal and kinetic assays. The kinetic analysis showed a high retention capacity within 15 min of contact. The polymer yield was obtained in the range of 30% to 100%. Additionally, there was no significant cross-reactivity observed upon testing MIPs with structural analogues and other endocrine disruptors instead of target molecules. The results also revealed the high importance of different concentrations of cross-linker and solvent during the polymerisation. Firstly, the pre-organisation of complementary functional groups, which were present in the polymerisation mixture, and secondly, selective cavity formation for target molecules.
Collapse
Affiliation(s)
- César Cáceres
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas #129, Concepción 4070371, Chile.
| | - Catalina Bravo
- Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas #129, Concepción 4070371, Chile.
| | - Bernabé Rivas
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas #129, Concepción 4070371, Chile.
| | - Ewa Moczko
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Alonso de Rivera #2850, Concepción 4090541, Chile.
| | - Pedro Sáez
- Sección Microanálisis, Laboratorio de Criminalística Central, Policía de Investigaciones de Chile PDI, Carlos Silva Vidósola #9783, La Reina, Santiago 7860379, Chile.
| | - Yadiris García
- Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas #129, Concepción 4070371, Chile.
| | - Eduardo Pereira
- Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas #129, Concepción 4070371, Chile.
| |
Collapse
|
16
|
Teymoori N, Raoof JB, Khalilzadeh MA, Ojani R. An electrochemical sensor based on CuO nanoparticle for simultaneous determination of hydrazine and bisphenol A. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1416-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Zhi K, Wang L, Zhang Y, Jiang Y, Zhang L, Yasin A. Influence of Size and Shape of Silica Supports on the Sol⁻Gel Surface Molecularly Imprinted Polymers for Selective Adsorption of Gossypol. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E777. [PMID: 29751648 PMCID: PMC5978154 DOI: 10.3390/ma11050777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/03/2023]
Abstract
The influence of various silica gel supports with different shapes and sizes on the recognition properties of surface molecular imprinted polymers (MIPs) was investigated. MIPs for selective recognition and adsorption of gossypol were synthesized via the sol⁻gel process with a surface imprinting technique on silica gel substrates. 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were chosen as the functional monomer and the cross-linker. The morphology and structure of the gossypol-MIPs were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a standard Brunauer⁻Emett⁻Teller (BET) analysis. Results indicated that the surface imprinted polymer layer facilitated the removal and rebinding of the template, and thus, achieved fast binding kinetics. Compared with the MIPs prepared on irregularly shaped silica with a broad particle size distribution, the MIPs using regularly-shaped silica of uniform size showed higher imprinting factor (IF), and the MIP made with a relatively larger sized (60 μm) spherical silica, demonstrated higher adsorption capacity compared to the MIPs made with smaller sized, spherical silica. The MIP prepared with 60 μm spherically shaped silica, featured a fast adsorption kinetic of 10 min, and a saturated adsorption capacity of 204 mg·g−1. The gossypol-MIP had higher selectivity (IF = 2.20) for gossypol over its structurally-similar analogs ellagic acid (IF = 1.13) and quercetin (IF = 1.20). The adsorption data of the MIP correlated well with the pseudo-second-order kinetic model and the Freundlich isotherm model, which implied that chemical adsorption dominated, and that multilayer adsorption occurred. Furthermore, the MIP exhibited an excellent regeneration performance, and the adsorption capacity of the MIP for gossypol only decreased by 6% after six reused cycles, indicating good application potential for selective adsorption of gossypol.
Collapse
Affiliation(s)
- Keke Zhi
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lulu Wang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yagang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830026, China.
| | - Yingfang Jiang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Liu SM, Wei MX, Fu X, Zhang XB. Direct Synthesis of Monodisperse Hollow Molecularly Imprinted Polymers Based on Unfunctionalized SiO2for the Recognition of Bisphenol A. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1708164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shao-min Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Meng-xing Wei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xin Fu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xue-bin Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. BIOSENSORS 2018; 8:E35. [PMID: 29614784 PMCID: PMC6022999 DOI: 10.3390/bios8020035] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".
Collapse
Affiliation(s)
- Alisa N Kozitsina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Tatiana S Svalova
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Natalia N Malysheva
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Andrei V Okhokhonin
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
| | - Marina B Vidrevich
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| | - Khiena Z Brainina
- Department of Analytical Chemistry, Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia.
- Scientific and Innovation Center for Sensory Technologies, Ural State University of Economics, 620144 Yekaterinburg, Russia.
| |
Collapse
|
20
|
Amininasab SM, Holakooei P, Shami Z, Hassanzadeh M. Preparation and evaluation of functionalized goethite nanorods coated by molecularly imprinted polymer for selective extraction of bisphenol A in aqueous medium. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1481-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Li Y, Zhu N, Li B, Chen T, Ma Y, Li Q. l-
Cysteine-modified silver-functionalized silica-based material as an efficient solid-phase extraction adsorbent for the determination of bisphenol A. J Sep Sci 2017; 41:982-989. [DOI: 10.1002/jssc.201700817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University,; Yinchuan China
- College of Chemistry and Chemical Engineering; Ningxia University; Yinchuan China
| | - Nan Zhu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University,; Yinchuan China
- College of Chemistry and Chemical Engineering; Ningxia University; Yinchuan China
| | - Bingxiang Li
- Zhenjiang Entry-exit Inspection and Quarantine Bureau; Zhenjiang China
| | - Tong Chen
- Zhenjiang Entry-exit Inspection and Quarantine Bureau; Zhenjiang China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University,; Yinchuan China
- College of Chemistry and Chemical Engineering; Ningxia University; Yinchuan China
| | - Qiang Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University,; Yinchuan China
- College of Chemistry and Chemical Engineering; Ningxia University; Yinchuan China
| |
Collapse
|
22
|
An amphiphilic and photoswitchable organocatalyst for the aldol reaction based on a product-imprinted polymer. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Brigante TAV, Miranda LFC, de Souza ID, Acquaro Junior VR, Queiroz MEC. Pipette tip dummy molecularly imprinted solid-phase extraction of Bisphenol A from urine samples and analysis by gas chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1067:25-33. [DOI: 10.1016/j.jchromb.2017.09.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/04/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022]
|
24
|
Shao Y, Zhou L, Wu Q, Bao C, Liu M. Preparation of novel magnetic molecular imprinted polymers nanospheres via reversible addition - fragmentation chain transfer polymerization for selective and efficient determination of tetrabromobisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:418-426. [PMID: 28686932 DOI: 10.1016/j.jhazmat.2017.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
A well-defined molecularly imprinted polymer nanospheres with excellent specific recognition ability was prepared on Fe3O4 nanoparticles via the combination of click chemistry and surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and using Tetrabromobisphenol A as template. Concretely, Fe3O4 nanoparticles were prepared by solvothermal method and then modified by 4-vinylbenylchloride through distillation-precipitation, which makes azide groups easily introduced on the surface of magnetic nanoparticles to form the relatively large amount of benzyl chloride groups. With high efficiency, alkyne terminated RAFT chain transfer agent were then immobilized onto the surface of Fe3O4 by means of click chemistry, which is Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The highly uniform imprinted thin film was finally fabricated on the surface of RAFT agent modified Fe3O4 nanoparticles. The binding results demonstrated that as-prepared imprinted beads exhibited remarkable molecular imprinting effects to the template molecule, fast rebinding kinetics and an excellent selectivity to compounds with similar configuration.
Collapse
Affiliation(s)
- Yanming Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China; College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Lincheng Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China; Zhongwei High-tech Institute of Lanzhou University, 755000, PR China.
| | - Qiong Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Chao Bao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
25
|
Viveiros R, Dias FM, Maia LB, Heggie W, Casimiro T. Green strategy to produce large core–shell affinity beads for gravity-driven API purification processes. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Zaidi SA. Molecular imprinting polymers and their composites: a promising material for diverse applications. Biomater Sci 2017; 5:388-402. [DOI: 10.1039/c6bm00765a] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imprinted polymerization is considered one of the most useful preparation strategies to obtain highly selective polymeric materials called molecular imprinted polymers (MIPs).
Collapse
|
27
|
Quartz-Wool-Supported Surface Dummy Molecularly Imprinted Silica as a Novel Solid-Phase Extraction Sorbent for Determination of Bisphenol A in Water Samples and Orange Juice. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0765-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Díaz-Bao M, Regal P, Barreiro R, Fente CA, Cepeda A. A facile method for the fabrication of magnetic molecularly imprinted stir-bars: A practical example with aflatoxins in baby foods. J Chromatogr A 2016; 1471:51-59. [DOI: 10.1016/j.chroma.2016.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/13/2016] [Accepted: 10/08/2016] [Indexed: 11/24/2022]
|
29
|
Surface Molecular Imprinting on Silica-Coated CdTe Quantum Dots for Selective and Sensitive Fluorescence Detection of p-aminophenol in Water. J Fluoresc 2016; 27:181-189. [DOI: 10.1007/s10895-016-1944-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
|
30
|
Sierra-Martin B, Fernandez-Barbero A. Inorganic/polymer hybrid nanoparticles for sensing applications. Adv Colloid Interface Sci 2016; 233:25-37. [PMID: 26782148 DOI: 10.1016/j.cis.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
This paper reviews a wide set of sensing applications based on the special properties associated with inorganic/polymer composite nanoparticles. We first describe optical sensing applications performed with hybrid nanoparticles and hybrid microgels with special emphasis on photoluminescence detection and imaging. Analyte detection with molecularly imprinted polymers and HPLC-based sensing using hybrid nanoparticles as stationary phase is also summarized. The final part is devoted to the study of ultra-sensitive molecule detection by surface-enhanced Raman spectroscopy using core-shell hybrid materials composed of noble metal nanoparticles and cross-linked polymers.
Collapse
|
31
|
Barbell-shaped stir bar sorptive extraction using dummy template molecularly imprinted polymer coatings for analysis of bisphenol A in water. Anal Bioanal Chem 2016; 408:5329-35. [DOI: 10.1007/s00216-016-9628-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/03/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022]
|
32
|
Preparation of dummy-imprinted polymers by Pickering emulsion polymerization for the selective determination of seven bisphenols from sediment samples. J Sep Sci 2016; 39:2188-95. [DOI: 10.1002/jssc.201501305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 11/07/2022]
|
33
|
Sohrabi R, Bahramifar N, Javadian H, Agarwal S, Gupta VK. Pre-concentration of trace amount of bisphenol A in water samples by palm leaf ash and determination with high-performance liquid chromatography. Biomed Chromatogr 2016; 30:1256-62. [DOI: 10.1002/bmc.3675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/05/2015] [Accepted: 12/15/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Razieh Sohrabi
- Department of Chemistry; Payame Noor University; PO Box 19395-3697 Tehran Iran
| | - Nader Bahramifar
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences; Tarbiat Modares University; PO Box 46414-356 Noor Mazandaran Iran
| | - Hamedreza Javadian
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
| | - Shilpi Agarwal
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
- Department of Applied Chemistry; University of Johannesburg; Johannesburg South Africa
| | - Vinod Kumar Gupta
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
- Department of Applied Chemistry; University of Johannesburg; Johannesburg South Africa
| |
Collapse
|
34
|
Hu X, Wu X, Yang F, Wang Q, He C, Liu S. Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples. Talanta 2016; 148:29-36. [DOI: 10.1016/j.talanta.2015.10.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
|
35
|
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211. [DOI: 10.1039/c6cs00061d] [Citation(s) in RCA: 1438] [Impact Index Per Article: 159.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This critical review presents a survey of recent developments in technologies and strategies for the preparation of MIPs, followed by the application of MIPs in sample pretreatment, chromatographic separation and chemical sensing.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Wenhui Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaqing Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
36
|
Zheng X, Zhang F, Liu E, Shi W, Yan Y. A lanthanide complex-based molecularly imprinted luminescence probe for rapid and selective determination of λ-cyhalothrin in the environment. NEW J CHEM 2016. [DOI: 10.1039/c5nj03191e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers cladded lanthanide complexes were synthesized via precipitation polymerization.
Collapse
Affiliation(s)
- Xudong Zheng
- School of Chemistry & Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Fusheng Zhang
- School of Chemistry & Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Enli Liu
- School of Chemistry & Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Weidong Shi
- School of Chemistry & Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yongsheng Yan
- School of Chemistry & Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
37
|
Liu L, Zhong T, Xu Q, Chen Y. Efficient Molecular Imprinting Strategy for Quantitative Targeted Proteomics of Human Transferrin Receptor in Depleted Human Serum. Anal Chem 2015; 87:10910-9. [PMID: 26496531 DOI: 10.1021/acs.analchem.5b02633] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Soluble transferrin receptor (sTfR) in serum has been suggested as a marker for breast cancer diagnosis, monitoring and treatment. However, sTfR levels in some situations could be far below the limit of quantification (LOQ) of most assays. Thus, an efficient sample pretreatment strategy is required. In this study, molecularly imprinted polymers (MIPs) were developed and coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics for sTfR measurement. The key to this effort was that the same surrogate peptide of sTfR (VEYHFLSPYVSPK, VK13) was employed in both the enrichment by MIPs and the quantification by targeted proteomics. Specifically, three peptide templates with different lengths were evaluated for the synthesis of MIPs, and the imprinting conditions were optimized. The characteristics of MIPs, including the adsorption capacity, adsorption kinetics, and binding selectivity, were also investigated. As a result, a ∼12-fold enhancement of sensitivity was achieved using MIPs. An LOQ of 200 ng·mL(-1) was obtained. The intra- and interday precision were <10.7 and 7.8%, respectively. The accuracy was 7.5% at the lower limit of quantification (LLOQ) and <8.4% for the other QC levels. After validation, the assay was applied to determine the sTfR levels in breast cancer patients (n = 20) and healthy volunteers (n = 20) using the standard addition method. The corresponding levels of sTfR were 1.59 ± 0.36 μg·mL(-1) (range: 0.96-2.34 μg·mL(-1)) in the volunteers and 1.82 ± 0.42 μg·mL(-1) (range: 0.95-2.47 μg·mL(-1)) in the patients. This study is among the first to combine MIPs and LC-MS/MS targeted proteomics for protein quantification at the peptide level.
Collapse
Affiliation(s)
- Liang Liu
- School of Pharmacy, Nanjing Medical University , 818 Tian Yuan East Road, Nanjing, 211166, China
| | - Ting Zhong
- School of Pharmacy, Nanjing Medical University , 818 Tian Yuan East Road, Nanjing, 211166, China
| | - Qingqing Xu
- School of Pharmacy, Nanjing Medical University , 818 Tian Yuan East Road, Nanjing, 211166, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University , 818 Tian Yuan East Road, Nanjing, 211166, China
| |
Collapse
|
38
|
Chen F, Zhang J, Wang M, Kong J. Magnetic molecularly imprinted polymers synthesized by surface-initiated reversible addition-fragmentation chain transfer polymerization for the enrichment and determination of synthetic estrogens in aqueous solution. J Sep Sci 2015; 38:2670-6. [DOI: 10.1002/jssc.201500407] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Fangfang Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology,MOE Key Laboratory of Space Applied Physics and Chemistry; School of Science, Northwestern Polytechnical University; Xi'an P. R. China
| | - Jingjing Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology,MOE Key Laboratory of Space Applied Physics and Chemistry; School of Science, Northwestern Polytechnical University; Xi'an P. R. China
| | - Minjun Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology,MOE Key Laboratory of Space Applied Physics and Chemistry; School of Science, Northwestern Polytechnical University; Xi'an P. R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology,MOE Key Laboratory of Space Applied Physics and Chemistry; School of Science, Northwestern Polytechnical University; Xi'an P. R. China
| |
Collapse
|
39
|
Zhang X, Wu L, Zhou J, Zhang X, Chen J. A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.02.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Huang DL, Wang RZ, Liu YG, Zeng GM, Lai C, Xu P, Lu BA, Xu JJ, Wang C, Huang C. Application of molecularly imprinted polymers in wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:963-77. [PMID: 25280502 DOI: 10.1007/s11356-014-3599-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/11/2014] [Indexed: 05/13/2023]
Abstract
Molecularly imprinted polymers are synthetic polymers possessing specific cavities designed for target molecules. They are prepared by copolymerization of a cross-linking agent with the complex formed from a template and monomers that have functional groups specifically interacting with the template through covalent or noncovalent bonds. Subsequent removal of the imprint template leaves specific cavities whose shape, size, and functional groups are complementary to the template molecule. Because of their predetermined selectivity, molecularly imprinted polymers (MIPs) can be used as ideal materials in wastewater treatment. Especially, MIP-based composites offer a wide range of potentialities in wastewater treatment. This paper reviews the latest applications of MIPs in wastewater treatment, highlights the development of MIP-based composites in wastewater, and offers suggestions for future success in the field of MIPs.
Collapse
Affiliation(s)
- Dan-Lian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
42
|
Qin L, Liu W, Yang Y, Liu X. Functional monomer screening and preparation of dibenzothiophene-imprinted polymers on the surface of carbon microsphere. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1311-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Sun X, Wang J, Li Y, Jin J, Yang J, Li F, Shah SM, Chen J. Highly class-selective solid-phase extraction of bisphenols in milk, sediment and human urine samples using well-designed dummy molecularly imprinted polymers. J Chromatogr A 2014; 1360:9-16. [DOI: 10.1016/j.chroma.2014.07.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 11/16/2022]
|
44
|
Joshi S, Rao A, Lehmler HJ, Knutson BL, Rankin SE. Interfacial molecular imprinting of Stöber particle surfaces: a simple approach to targeted saccharide adsorption. J Colloid Interface Sci 2014; 428:101-10. [PMID: 24910041 DOI: 10.1016/j.jcis.2014.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/19/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
The use of surfactant headgroups for interfacial imprinting is established as a simple and tunable approach to create molecularly imprinted silica nanoparticles based on a modification of the Stöber method. Adsorption of D-glucose and D-xylose (initial concentrations ranging from 0.139 to 1.67 mol/l) is measured on silica nanoparticles created by the addition of a glucose-based surfactant (n-octyl-β-D-glucopyranoside (C8G1)) or surfactant mixtures (C8G1 and cetyltrimethylammonium bromide (CTAB)) to Stöber particles shortly after their precipitation. Silica particles synthesized in the presence of C8G1 as an imprinting surfactant have a significantly higher affinity for glucose over xylose (as much as 3.25 times greater at 0.25 M saccharide), and an enhanced affinity for glucose relative to non-imprinted silica particles (as much as 4 times greater at 0.25 M), which adsorb glucose and xylose similarly. Glucose imprinting is significantly enhanced using a surfactant mixture of 1:1 C8G1/CTAB. The interfacial activity of the nonionic imprinting surfactant at the silica surface is suggested to be improved by the presence of interfacial cationic CTAB, which is driven to the silica surface through electrostatic interactions. The concept of imprinting through the interaction of surfactant headgroups with the soft surface of silica particles is supported by the importance of the time of addition of the surfactants. The greatest enhancement in glucose adsorption is observed when the surfactants are added 1 min after precursor addition (at the onset of aggregated particle formation, as indicated by solution turbidity) and the silica affinity for glucose decreases with the time of surfactant addition. The versatility of the surfactant imprinting of Stöber particles is demonstrated by the enhanced adsorption of xylose relative to glucose on particles imprinted using a 1:1 mixture of n-octyl-β-D-xylopyranoside and CTAB, suggesting that the process can be customized to selectively adsorb target molecules of interest.
Collapse
Affiliation(s)
- Suvid Joshi
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Hall, Lexington, KY 40506-0046, USA
| | - Alexander Rao
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, 159 Goessmann Lab, Amherst, MA 01003, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, UI Research Park, 124 IREH, Iowa City, IA 52242, USA
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Hall, Lexington, KY 40506-0046, USA
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F.P. Anderson Hall, Lexington, KY 40506-0046, USA.
| |
Collapse
|
45
|
Li J, Zhou H, Liu YX, Yan XY, Xu YP, Liu SM. Solid-phase extraction for selective determination of bisphenol A in drinks and fruits by dummy surface molecularly imprinted polymer with direct synthetic method. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:1139-46. [DOI: 10.1080/19440049.2014.906751] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Sun X, Wang J, Li Y, Jin J, Zhang B, Shah SM, Wang X, Chen J. Highly selective dummy molecularly imprinted polymer as a solid-phase extraction sorbent for five bisphenols in tap and river water. J Chromatogr A 2014; 1343:33-41. [DOI: 10.1016/j.chroma.2014.03.063] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 11/16/2022]
|
47
|
Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2013.12.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Hierarchically imprinted mesoporous silica polymer: An efficient solid-phase extractant for bisphenol A. Talanta 2014; 120:255-61. [DOI: 10.1016/j.talanta.2013.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 11/17/2022]
|
49
|
Yang YZ, Tang Q, Gong CB, Ma XB, Peng JD, Lam MHW. Ultrasensitive detection of bisphenol A in aqueous media using photoresponsive surface molecular imprinting polymer microspheres. NEW J CHEM 2014. [DOI: 10.1039/c3nj01598j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A photoresponsive SMIP was prepared for photocontrolled detection of trace bisphenol A in aqueous media with simplicity and good efficiency.
Collapse
Affiliation(s)
- Yu-zhu Yang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing, China
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing, China
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing, China
| | - Xue-bing Ma
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing, China
| | - Jing-dong Peng
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing, China
| | - Michael Hon-wah Lam
- Department of Biology & Chemistry
- City University of Hong Kong
- Hong Kong, China
| |
Collapse
|
50
|
Xie L, Jiang R, Zhu F, Liu H, Ouyang G. Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 2013; 406:377-99. [PMID: 24037613 DOI: 10.1007/s00216-013-7302-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/26/2022]
Abstract
Functionalized magnetic nanoparticles have attracted much attention in sample preparation because of their excellent performance compared with traditional sample-preparation sorbents. In this review, we describe the application of magnetic nanoparticles functionalized with silica, octadecylsilane, carbon-based material, surfactants, and polymers as adsorbents for separation and preconcentration of analytes from a variety of matrices. Magnetic solid-phase extraction (MSPE) techniques, mainly reported in the last five years, are presented and discussed.
Collapse
Affiliation(s)
- Lijun Xie
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | | | | | | | |
Collapse
|