1
|
Chen SY, Wu JQ, Sung S. Effects of sulfur dosage on continuous bioleaching of heavy metals from contaminated sediment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127257. [PMID: 34601403 DOI: 10.1016/j.jhazmat.2021.127257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The bioleaching technology has been considered as a promising green technology for remediation of contaminated sediments in recent years. Bioleaching technology was generally conducted in the batch bioreactor; however, the continuous bioreactor should be developed for the application of bioleaching technology in the future. The purposes of this study were to establish a continuous bioleaching process, and to evaluate the effects of sulfur dosage on the efficiency of metal removal during this continuous bioleaching process. The obtained results show that the pH decrease, sulfate production and metal removal efficiency all increased with increasing sulfur dosage in the continuous bioleaching process due to high substrate concentration for sulfur-oxidizing bacteria. After 30 days of operation time, the maximum solubilization efficiencies for Zn, Ni, Cu and Cr were found to be 78%, 90%, 88% and 68%, respectively, at 5% of sulfur dosage. After the bioleaching process, heavy metals bound in the carbonates, Fe-Mn oxides and organics/sulfides in the sediment were effectively removed and the potential ecological and toxic risks of treated sediment were greatly reduced. The results of bacterial community analyses demonstrated that this continuous bioleaching process were dominated by several acidophilic sulfur-oxidizing bacteria; S. thermosulfidooxidans, At. thiooxidans/At. ferrooxidans, S. thermotolerans and At. albertensis, whereas the percentage of less-acidophilic sulfur-oxidizing bacteria (T. thioparus and T. cuprina) was lower than 15% of total bacteria. In addition, the cell numbers of sulfur-oxidizing bacteria increased as the sulfur dosage was increased in the continuous bioleaching process.
Collapse
Affiliation(s)
- Shen-Yi Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC.
| | - Jun-Qi Wu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan, ROC
| | - Shihwu Sung
- College of Agriculture, Forestry and Natural Resource Management, University of Hawaii at Hilo, Hilo, HI 96720-4091, USA
| |
Collapse
|
2
|
Copper and Zinc Recovery from Sulfide Concentrate by Novel Artificial Microbial Community. METALS 2021. [DOI: 10.3390/met12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exploring efficient methods to enhance leaching efficiency is critical for bioleaching technology to deal with sulfide concentrate. In our study, a novel artificial microbial community was established to augment the bioleaching efficiency and recovery of copper (Cu) and zinc (Zn). The optimum parameters in bioleaching experiments were explored according to compare a series of conditions from gradient experiments: the pH value was 1.2, temperature was 45 °C, and rotation speed was 160 r/min, which were different with pure microorganism growth conditions. Under optimal conditions, the result of recovery for Cu and Zn indicated that the average leaching rate reached to 80% and 100% respectively, which almost increased 1.8 times and 1.2 times more than control (aseptic condition) group. Therefore, this method of Cu and Zn recovery using a new-type artificial microbial community is expected to be an environmentally-friendly and efficient bioleaching technology solution, which has the potential of large-field engineering application in the future.
Collapse
|
3
|
Yang W, Song W, Li J, Zhang X. Bioleaching of heavy metals from wastewater sludge with the aim of land application. CHEMOSPHERE 2020; 249:126134. [PMID: 32058136 DOI: 10.1016/j.chemosphere.2020.126134] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Presence of heavy metals in the wastewater sludge has greatly hindered sludge land application. Bioleaching has been developed for heavy metal removal from sludge. The pH of the sludge is declined by microorganisms with S or FeS as energy source. Sludge considered to be used in land is mainly due to its fertilizer values as it contains nitrogen, phosphorus, and potassium. Therefore, it is important to understand how the bioleaching would impact on sludge characterization. In addition, pathogens are great threat to human health. The ability of pathogen elimination of bioleaching is highly concerned. In this review, the major heavy metals in the sludge are summarized. The change of nitrogen, phosphorus, and potassium after bioleaching is stated. The pathogen elimination due to bioleaching has been discussed. The work has provided an insight of research need in sludge bioleaching with the aim of residual sludge land application.
Collapse
Affiliation(s)
- Wei Yang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Wei Song
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Ji Li
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Xiaolei Zhang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
4
|
Chen SY, Cheng YK. Effects of sulfur dosage and inoculum size on pilot-scale thermophilic bioleaching of heavy metals from sewage sludge. CHEMOSPHERE 2019; 234:346-355. [PMID: 31228836 DOI: 10.1016/j.chemosphere.2019.06.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Land application of sewage sludge has received significant attention in recent years but the presence of elevated heavy metals in the sludge limits its land application. The purposes of this study were to investigate the effects of sulfur dosage and inoculum size on the thermophilic bioleaching of heavy metals from sewage sludge in a pilot-scale bioreactor. The microbial communities in this thermophilic bioleaching process were also identified using real-time polymerase chain reaction (real-time PCR). The results showed that the oxidation of sulfur and metal solubilization decreased with the increasing sulfur dosage. When the sulfur dosage was greater than 2% (w/v), the sulfur oxidation and metal solubilization rates decreased, indicating that the thermophilic bioleaching was hindered by high levels of substrate. However, it was found that the efficiency of metal solubilization and solid degradation was increased with the increase of inoculum size in the range from 5% to 20%. At the end of bioleaching, the efficiency of Mn, Zn, Ni, Cu and Cr from the sewage sludge reached 73-100%, 51-60%, 38-52%, 17-43% and 1-38%, respectively, while SS and VSS were degraded by 33-48% and 47-67%, respectively. Based on the analysis of real-time PCR, Sulfobacillus acidophilus was observed to be the predominant species (13-67% of total bacteria), whereas the populations of Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus were accounted relatively low (<1%).
Collapse
Affiliation(s)
- Shen-Yi Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology 2 Jhuoyue Road, Nanzih, Kaohsiung, 811, Taiwan.
| | - Yun-Kai Cheng
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology 2 Jhuoyue Road, Nanzih, Kaohsiung, 811, Taiwan
| |
Collapse
|
5
|
Effects of Solid Content and Substrate Concentration on Bioleaching of Heavy Metals from Sewage Sludge Using Aspergillus niger. METALS 2019. [DOI: 10.3390/met9090994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The presence of heavy metals in sewage sludge not only affects the performance of sludge anaerobic digestion process but also restricts the land application of treated sewage sludge. Therefore, a fungi-mediated bioleaching process for simultaneous metal leaching and sludge digestion by Aspergillus niger was developed to treat the sewage sludge containing heavy metals in this study. The effects of two important parameters, sludge solid content and substrate (sucrose) concentration, on the performance of fungal bioleaching were investigated in this study. The results showed that the rate of pH reduction increased with increasing sludge solid contents and sucrose concentrations. In this study, the efficiency of metal removal decreases in the order of Mn > Zn > Ni > Pb. The efficiencies of metal leaching and solid degradation (SS and VSS) were found to be decreased with an increase of sludge solid content and a decrease of sucrose concentration. At 2 days of reaction time, the maximum efficiency of metal solubilization was 95, 56, 21 and 13% for Mn, Zn, Ni and Pb, respectively.
Collapse
|
6
|
Zeng J, Li J, Gou M, Xia ZY, Sun ZY, Tang YQ. Effective strategy for improving sludge treatment rate and microbial mechanisms during chromium bioleaching of tannery sludge. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Chang CY, Chen SY, Klipkhayai P, Chiemchaisri C. Bioleaching of heavy metals from harbor sediment using sulfur-oxidizing microflora acclimated from native sediment and exogenous soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6818-6828. [PMID: 30635877 DOI: 10.1007/s11356-019-04137-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 01/02/2019] [Indexed: 05/24/2023]
Abstract
The harbor sediment containing high concentration of heavy metals may pose serious impacts on the marine ecosystem and environmental quality. The bioleaching process has been considered as an environmentally friendly and cost-effective alternative for removing heavy metals from contaminated sediments. In this study, a series of experiments were performed to investigate the feasibility of bioleaching process for removing heavy metals from the contaminated harbor sediments. The performance of the bioleaching process inoculated with sulfur-oxidizing microflora acclimated from the native harbor sediment was compared with that acclimated from the exogenous soil. In the bioleaching experiment with inoculants from native sediment, the efficiency of Zn, Cu, Cr, Pb, and Ni (30 days) reached 39-100%, 21-94%, 8-63%, 5-74%, and 19-77%, respectively. While 59-100% of Zn, 22-100% of Cu, 0-95% of Cr, 0-100% of Pb, and 22-100% of Ni were respectively removed in the bioleaching experiment with inoculants from exogenous soil after 30 days of reaction time. The results show that the rate and efficiency of metal removal in the bioleaching process decreased with an increase of sediment solid content from 10 to 40 g/L. The efficiency of metal removal in the bioleaching process with inoculants from the native sediment was lower than those from the exogenous soil due to the bacterial activity. By the fractionation of metal in the harbor sediment, exchangeable, carbonate-bound, and Fe/Mn oxide-bound metals (mobile fractions) were found to be apparently reduced and even organic matter/sulfide-bound and residual metals (stable fractions) were slightly removed after the bioleaching experiment.
Collapse
Affiliation(s)
- Chia-Yuan Chang
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Shen-Yi Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, 1 University Road, Yanchao, Kaohsiung, 824, Taiwan.
| | - Phakchira Klipkhayai
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
8
|
Li H, Ye M, Zheng L, Xu Y, Sun S, Du Q, Zhong Y, Ye S, Zhang D. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 2017:390-403. [PMID: 29851391 DOI: 10.2166/wst.2018.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study explores the potential for synchronous extraction of Cu, Cr, Ni and Zn during sewage sludge bioleaching processes, using three types of bacterial cultures: a pure culture of Acidithiobacillus ferrooxidans (A. ferrooxidans); a pure culture of Acidithiobacillus thiooxidans (A. thiooxidans); and a mixed culture of A. ferrooxidans and A. thiooxidans. Variable operating parameters included initial pH, solids concentration, sulfur concentration and ferrous iron concentration, with optimization via Box-Behnken design of response surface methodology. Results indicate that the mixed culture of A. ferrooxidans and A. thiooxidans, was the most effective at bioleaching heavy metals from sewage sludge. The optimal operating conditions were as follows: an initial pH of 2.0, with concentrations of 3% solids, 6.14 g L-1 sulfur and 4.55 g L-1 ferrous iron. Maximum extraction efficiencies obtained after 14 days of bioleaching under optimal conditions, were 98.54% Cu, 57.99% Cr, 60.06% Ni and 95.60% Zn. Bioleaching kinetics were effectively simulated using a shrinking core model to explain the leaching reaction, with modelling results suggesting that the rate was determined by the diffusion step.
Collapse
Affiliation(s)
- Haifei Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Maoyou Ye
- Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China and Key Laboratory of Heavy Metals Pollution Prevention and Vocational Education of Guangdong Environmental Protection of Mining and Metallurgy Industry, Foshan 528216, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail: ; Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China and Key Laboratory of Heavy Metals Pollution Prevention and Vocational Education of Guangdong Environmental Protection of Mining and Metallurgy Industry, Foshan 528216, China
| | - Qingping Du
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Yujian Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Shengjun Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| | - Dongsheng Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China E-mail:
| |
Collapse
|
9
|
Zeng J, Gou M, Tang YQ, Li GY, Sun ZY, Kida K. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. BIORESOURCE TECHNOLOGY 2016; 218:859-866. [PMID: 27434303 DOI: 10.1016/j.biortech.2016.07.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
In this study, a sulfur-oxidizing community was enriched from activated sludge generated in tannery wastewater treatment plants. Bioleaching of tannery sludge containing 0.9-1.2% chromium was investigated to evaluate the effectiveness of the enriched community, the effect of chromium binding forms on bioleaching efficiency, and the dominant microbes contributing to chromium bioleaching. Sludge samples inoculated with the enriched community presented 79.9-96.8% of chromium leaching efficiencies, much higher than those without the enriched community. High bioleaching efficiencies of over 95% were achieved for chromium in reducible fraction, while 60.9-97.9% were observed for chromium in oxidizable and residual fractions. Acidithiobacillus thiooxidans, the predominant bacteria in the enriched community, played an important role in bioleaching, whereas some indigenous heterotrophic species in sludge might have had a supporting role. The results indicated that A. thiooxidans-dominant enriched microbial community had high chromium bioleaching efficiency, and chromium binding forms affected the bioleaching performance.
Collapse
Affiliation(s)
- Jing Zeng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China.
| | - Guo-Ying Li
- College of Light Industry, Textile and Food Engineering, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Kenji Kida
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
10
|
Chen SY, Chou LC. Relationship between microbial community dynamics and process performance during thermophilic sludge bioleaching. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16006-16014. [PMID: 27146534 DOI: 10.1007/s11356-016-6716-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
Heavy metals can be removed from the sludge using bioleaching technologies at thermophilic condition, thereby providing an option for biotreatment of wasted sludge generated from wastewater treatment. The purposes of this study were to establish a molecular biology technique, real-time PCR, for the detection and enumeration of the sulfur-oxidizing bacteria during the thermophilic sludge bioleaching. The 16S rRNA gene for real-time PCR quantification targeted the bioleaching bacteria: Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidithiobacillus caldus. The specificity and stringency for thermophilic sulfur-oxidizing bacteria were tested before the experiments of monitoring the bacterial community, bacterial number during the thermophilic sludge bioleaching and the future application on testing various environmental samples. The results showed that S. acidophilus was identified as the dominant sulfur-oxidizing bacteria, while A. caldus and S. thermosulfidooxidans occurred in relatively low numbers. The total number of the sulfur-oxidizing bacteria increased during the thermophilic bioleaching process. Meanwhile, the decrease of pH, production of sulfate, degradation of SS/VSS, and solubilization of heavy metal were found to correlate well with the population of thermophilic sulfur-oxidizing bacteria during the bioleaching process. The real-time PCR used in this study is a suitable method to monitor numbers of thermophilic sulfur-oxidizing bacteria during the bioleaching process.
Collapse
Affiliation(s)
- Shen-Yi Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, 2 Jhuoyue Road, Nanzih, Kaohsiung, 811, Taiwan.
| | - Li-Chieh Chou
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, 2 Jhuoyue Road, Nanzih, Kaohsiung, 811, Taiwan
| |
Collapse
|
11
|
Guo WQ, Zheng HS, Li S, Ho SH, Yang SS, Feng XC, Chang JS, Wang XJ, Ren NQ. Promotion effects of ultrasound on sludge biodegradation by thermophilic bacteria Geobacillus stearothermophilus TP-12. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Combined mesophilic anaerobic and thermophilic aerobic digestion process: effect on sludge degradation and variation of sludge property. Appl Biochem Biotechnol 2013; 171:1701-14. [PMID: 23996119 DOI: 10.1007/s12010-013-0453-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
One-stage autothermal thermophilic aerobic digestion (ATAD) is effective for the reduction of volatile solids (VSs) and pathogen in sewage sludges. A novel process of combining mesophilic (<35 °C) anaerobic digestion with a thermophilic (55 °C) aerobic digestion process (AN/TAD) occurred in a one-stage digester, which was designed for aeration energy savings. The efficiency of sludge degradation and variation of sludge properties by batch experiments were evaluated for the AN/TAD digester with an effective volume of 23 L for 30 days compared with conventional thermophilic aerobic digestion (TAD). The AN/TAD system can efficiently achieve sludge stabilization on the 16th day with a VS removal rate of 38.1 %. The AN/TAD system was operated at lower ORP values in a digestion period with higher contents of total organic compounds, volatile fatty acids, protein, and polysaccharide in the soluble phase than those of the TAD system, which can rapidly decreased and had low values in the late period of digestion for the AN/TAD system. In the AN/TAD system, intracellular substances had lysis because of initial hydrolytic acidification.
Collapse
|
13
|
Chen SY, Chen WH. Thermophilic bioleaching of heavy metals from waste sludge using response surface methodology. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1094-1104. [PMID: 23573930 DOI: 10.1080/10934529.2013.774655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The bioleaching process is considered to be more efficient and environmentally friendly than conventional technologies for removal of heavy metals from waste sludge. The objective of this study was to develop an optimal thermophilic bioleaching process for the treatment of waste sludge containing high concentrations of heavy metals. In this study, two operating parameters, sludge solid content and sulfur (substrate) concentration, were studied based on a central composite design (CCD) for their metal solubilization and solid degradation performances. The optimal bioleaching operation conditions were then determined using the response surface methodology (RSM). The results indicated that an increase in sludge solid content range from 0.5% to 5.0% resulted in a decrease in the pH reduction rate due to the increase in buffering capacity. The rate of acidification corresponded to sulfur concentration until sulfur itself became inhibitory. At sulfur concentration beyond approximately 2.75%, the lower acidification rate was caused by a lower bacteria growth rate. Similar trends were also observed in the variations of ORP and sulfate concentrations during this thermophilic bioleaching process. At the optimum conditions of a sludge solid content of 0.5% and sulfur concentration of 2.5%, the thermophilic bioleaching process achieved the maximum solubilization of 97%, 99%, 99% and 78% for Cu, Zn, Ni and Pb, respectively. At the same time, the maximum SS and VSS destruction efficiency were 69% and 63%, respectively.
Collapse
Affiliation(s)
- Shen-Yi Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan.
| | | |
Collapse
|
14
|
Landaburu-Aguirre J, Pongrácz E, Keiski RL. Separation of cadmium and copper from phosphorous rich synthetic waters by micellar-enhanced ultrafiltration. Sep Purif Technol 2011. [DOI: 10.1016/j.seppur.2011.06.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|