1
|
Dou X, Dai H, Skuza L, Wei S. Cadmium removal potential of hyperaccumulator Solanum nigrum L. under two planting modes in three years continuous phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119493. [PMID: 35597484 DOI: 10.1016/j.envpol.2022.119493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 05/22/2023]
Abstract
Solanum nigrum L. is a Cd hyperaccumulator, but the potential for continuous remediation, or different planting methods have not been fully characterized. The potential for continuous phytoremediation of Cd-contaminated farmland soil (2.08 mg kg-1 Cd) by 2 planting methods (flowering harvest twice a year and maturity harvest once a year) was studied in a 3-year pot experiment. The total Cd accumulation (ug plant-1) of the 3-year flowering stage treatments was 26.3% higher than that of the maturity stage treatments, which was mainly due to that flowering harvest twice a year caused 65.5% increase of shoot biomass. Similarly, the Cd decreased concentration in soil and Cd removal rate in the flowering stage treatments were 29.2% and 27.9% higher than that in the maturity stage treatments, respectively. After 3 years of phytoremediation, the extractable Cd concentration in soil was reduced by 36.4% in the flowering stage treatments and by 27.6% in the maturity stage treatments, which also led to the same decreasing trend of Cd accumulation of S. nigrum. In conclusion, the study results have demonstrated that the planting mode of two harvests a year at the flowering stage seems to be a viable option to apply for continuous phytoremediation of Cd-contaminated farmland soil.
Collapse
Affiliation(s)
- Xuekai Dou
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Lidia Skuza
- Institute of Biology, The Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
2
|
Wang G, Du W, Xu M, Ai F, Yin Y, Guo H. Integrated Assessment of Cd-contaminated Paddy Soil with Application of Combined Ameliorants: A Three-Year Field Study. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1236-1242. [PMID: 34164721 DOI: 10.1007/s00128-021-03289-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Cadmium accumulation in rice is a major source of Cd exposure in humans worldwide. A three-year field experiment was conducted to investigate the ecological safety and long-term stability of biochar combined with lime or silicon fertilizer for Cd immobilization in a polluted rice paddy. The results showed that the application of combined ameliorants could reduce the Cd content in brown rice to meet the Chinese maximum permissible limit for Cd content in food products (0.2 mg/kg). In addition, such amendments stimulated metabolic pathways in soil bacteria, including carbon metabolism, citrate cycle, pyruvate metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, revealing improvements in soil biological activity and soil health. Therefore, the results provide a practical strategy for the safe utilization of farmland with mild levels of heavy metal pollution.
Collapse
Affiliation(s)
- Guobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, 210023, Nanjing, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, 210023, Nanjing, China
| | - Meiling Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, 210023, Nanjing, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, 210023, Nanjing, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, 210023, Nanjing, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China.
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
3
|
Remediation Techniques for Cadmium-Contaminated Dredged River Sediments after Land Disposal. SUSTAINABILITY 2021. [DOI: 10.3390/su13116093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This paper examines the remediation techniques of cadmium (Cd)-contaminated dredged river sediments after land disposal in a city in East China. Three remediation techniques, including stabilization, soil leaching, and phytoremediation, are compared by analyzing the performance of the techniques for Cd-contaminated soil remediation. The experimental results showed that the stabilization technique reduced the leaching rate of soil Cd from 33.3% to 14.3%, thus effectively reducing the biological toxicity of environmental Cd, but the total amount of Cd in soil did not decrease. Leaching soil with citric acid and oxalic acid achieved Cd removal rates of 90.1% and 92.4%, respectively. Compared with these two remediation techniques, phytoremediation was more efficient and easier to implement and had less secondary pollution, but it took more time, usually several years. In this study, these three remediation techniques were analyzed and discussed from technical, economic, and environmental safety perspectives by comprehensively considering the current status and future plans of the study site. Soil leaching was found to be the best technique for timely treatment of Cd contamination in dredged river sediments after land disposal.
Collapse
|
4
|
Wang G, Zhang Q, Du W, Ai F, Yin Y, Ji R, Guo H. Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145224. [PMID: 33485209 DOI: 10.1016/j.scitotenv.2021.145224] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Plant-associated microorganisms play an important role in controlling heavy metal uptake and accumulation in aerial parts. The microbial community and its interaction with Cd accumulation by willow were assessed to explore the association of phytoextraction efficiency and rhizospheric microbial populations. Therefore, the rhizosphere microbial compositions of three willow genotypes grown in two Cd polluted sites were investigated, focusing on their interactions with phytoremediation potential. Principal coordinate analysis revealed a significant effect of genotype on the rhizosphere microbial communities. Distinct beneficial microorganisms, such as plant growth promoting bacteria (PGPB) and mycorrhizal fungi, were assembled in the rhizosphere of different willow genotypes. Linear mixed models showed that the relative abundance of PGPB was positively associated (p < 0.01) with Cd accumulation, since these microbes significantly increased willow growth. The higher abundance of arbuscular mycorrhizal fungi in the rhizosphere of Salix × aureo-pendula CL 'J1011' at the Kejing site, showed a negative correlation with the Cd content, but a positive correlation with biomass. Conversely, mycorrhizal fungi, were more abundant in the rhizosphere of S. × jiangsuensis CL. 'J2345' and positively correlated with the Cd content in willow tissues. This study provides new insights into the distinctive microbial communities in rhizosphere of different willow genotypes, which may be consistent with the phytoremediation potential.
Collapse
Affiliation(s)
- Guobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Qingquan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China.
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Wang G, Zhang Q, Du W, Lin R, Li J, Ai F, Yin Y, Ji R, Wang X, Guo H. In-situ immobilization of cadmium-polluted upland soil: A ten-year field study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111275. [PMID: 32920316 DOI: 10.1016/j.ecoenv.2020.111275] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 05/21/2023]
Abstract
In-situ immobilization is an effective and economically viable strategy for remediation of soil extensively polluted with heavy metals. The long-term sustainability is critical for the remediation practice. In the present study, a ten-year experiment was performed in a Cd-polluted agricultural field to evaluate the long-term stability of lime, silicon fertilizer (SF), fused calcium magnesium phosphate fertilizer (FCMP), bone charcoal, steel slag, and blast furnace slag with one-off application. All amendments had no significant effect on biomass but significantly reduced Cd uptake by Artemisia selengensis at higher dose. Among them, SF and FCMP applied at 1% could reduce Cd uptake by more than 40% to meet the Chinese maximum permissible limit for Cd content in food products (50 μg kg-1). These amendments stimulated high Cd immobilization by increasing the soil pH and decreasing the soil acid-extractable Cd content, which were closely associated with Cd uptake. In addition, the two amendments altered the soil microbial structure and stimulated metabolism pathways, including amino acid, carbohydrate, and lipid metabolism, which are beneficial for soil function and quality. The results proved that SF and FCMP at 1% are stable and ecologically safe amendments, suitable for long-term Cd immobilization, and provide a strategy to mitigate the risk of food product contamination in heavy-metal-polluted soil.
Collapse
Affiliation(s)
- Guobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Qingquan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210036, China.
| | - Renzhang Lin
- Penghu Town, Quanzhou City People's Government, Quanzhou, 362609, China.
| | - Jiahua Li
- Jiangsu Maritime Safety Administration, Nanjing, 210009, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Xiaorong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Andreozzi R, Fabbricino M, Ferraro A, Lerza S, Marotta R, Pirozzi F, Race M. Simultaneous removal of Cr(III) from high contaminated soil and recovery of lactic acid from the spent solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110584. [PMID: 32383665 DOI: 10.1016/j.jenvman.2020.110584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/25/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
It is proposed a closed-loop treatment cycle for Cr(III) removal from contaminated soils (2080 mg/kg). The treatment includes the use of lactic acid as washing agent, and the recovery of both Cr(II) and lactic acid from the spent solution. Results indicate that Cr(III) removal efficiency can be very high, passing 70% in all tested operative conditions. The metal forms strong complexes with lactic acid, and therefore cannot be eliminated through direct precipitation simply increasing the pH value. Therefore, lactic acid is preliminarily extracted from the solution using n-butanol at very acidic pH. The obtained extraction degree is generally high, varying between 0.5 and 1 according to the amount of used n-butanol solution. After lactic acid extraction, almost 100% of chromium can be recovered through precipitation in alkaline conditions. Lactic acid, in turns, can be purified and reused for a new washing treatment, separating it from n-butanol solution through water extraction. The extraction efficiency is once more satisfying (around 0.5), and not dependent on the operative pH.
Collapse
Affiliation(s)
- R Andreozzi
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - M Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - A Ferraro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - S Lerza
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - R Marotta
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - F Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - M Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via di Biasio 43, 03043, Cassino, Italy.
| |
Collapse
|
7
|
Chen L, Wang D, Long C, Cui ZX. Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium- contaminated soil by Zebrina pendula Schnizl. Sci Rep 2019; 9:19817. [PMID: 31875012 PMCID: PMC6930220 DOI: 10.1038/s41598-019-56262-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022] Open
Abstract
This study investigated the effect of ethylenediamine-N,N'-disuccinic acid (EDDS), oxalic acid (OA), and citric acid (CA) on phytoextraction of U- and Cd-contaminated soil by Z. pendula. In this study, the biomass of tested plant inhibited significantly following treatment with the high concentration (7.5 mmol·kg-1) EDDS treatment. Maximum U and Cd concentration in the single plant was observed with the 5 mmol·kg-1 CA and 7.5 mmol·kg-1 EDDS treatment, respectively, whereas OA treatments had the lowest U and Cd uptake. The translocation factors of U and Cd reached the maximum in the 5 mmol·kg-1 EDDS. The maximum bioaccumulation of U and Cd in the single plants was 1032.14 µg and 816.87 µg following treatment with 5 mmol·kg-1 CA treatment, which was 6.60- and 1.72-fold of the control groups, respectively. Furthermore, the resultant rank order for available U and Cd content in the soil was CA > EDDS > OA (U) and EDDS > CA > OA (Cd). These results suggested that CA could greater improve the capacity of phytoextraction using Z. pendula in U- and Cd- contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dan Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Chan Long
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zheng-Xu Cui
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
8
|
Xiong X, Qian Z, Mei Z, Wu J, Hao Y, Wang K, Wu C, Wang D. Trace elements accumulation in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) - A threat to the endangered freshwater cetacean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:797-804. [PMID: 31195287 DOI: 10.1016/j.scitotenv.2019.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
As a freshwater cetacean with a population of only approximately 1000 individuals, the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is threatened by water pollution. However, studies of contaminants accumulated in the Yangtze finless porpoise remain limited. In this study, concentrations of 11 trace elements in different tissues sampled from 38 Yangtze finless porpoise individuals were determined. The elements V, Ni, Zn, and Pb were mostly accumulated in the epidermis, Cr, Mn, Cu, Se, and Hg were mostly accumulated in the liver, while As and Cd were mostly accumulated in the blubber and kidney, respectively. The results show that trace elements concentrations in the epidermis do not reliably indicate concentrations in internal tissues of the Yangtze finless porpoises. Positive correlations between different trace elements concentrations in tissues with the highest concentrations suggested the similar mechanism of metabolism or uptake pathway of those elements. Concentrations of As, Se, Cd, Hg, and Pb in the tissues with the highest concentrations were significantly positively correlated with the body length. Furthermore, significantly higher trace elements concentrations were measured in the reproductive organs of females (ovaries) than males (testis). However, no significant difference of trace elements concentrations between habitats was found. In consideration of higher Hg and Cd level in Yangtze finless porpoises compared to other small cetaceans, the potential risk of Hg (in particular) and Cd toxicity to Yangtze finless porpoises needs further attention.
Collapse
Affiliation(s)
- Xiong Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhengyi Qian
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhigang Mei
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianhong Wu
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
9
|
Tang C, Zhang R, Hu X, Song J, Li B, Ou D, Hu X, Zhao Y. Exogenous spermidine elevating cadmium tolerance in Salix matsudana involves cadmium detoxification and antioxidant defense. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:305-315. [PMID: 30648425 DOI: 10.1080/15226514.2018.1524829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
In this study, exogenous spermidine role on Salix matsudana tolerance to cadmium was evaluated. Spermidine and cadmium presented antagonistic effects on the biomass, copper and zinc concentrations in S. matsudana. cadmium mainly distributed in the cell wall of subcellular fraction; 46.97%-60.43% of cadmium existed in a sodium chloride-extracted form. Cadmium contents in roots, leaves, and twigs ranged from 2002.67 to 3961.00, 111.59 to 229.72, and 102.56 to 221.27 mg/kg, respectively. Spermidine application elevated cadmium concentrations in the roots, cuttings, and cell wall and the ratio of deionized water-extracted cadmium, but decreased cadmium levels in the twigs and leaves and the fractions of cadmium extracted by ethanol and sodium chloride, respectively. Putrescine and malondialdehyde were important indicators of cadmium-induced oxidative damage. Exogenous spermidine alleviated the accumulation of superoxide anion, hydrogen peroxide, malondialdehyde via promoting the levels of spermidine, soluble protein, superoxide dismutase, reductive ascorbate, glutathione reductase, and glutathione peroxidase in S. matsudana leaves under the corresponding cadmium stress. The results indicated that S. matsudana was a candidate for cadmium rhizoremediation and extraction in leaves; the spermidine application enhanced the cadmium tolerance of S. matsudana through promoting cadmium accumulation in roots, cell wall, and less bioactive chemical forms and the antioxidative ability.
Collapse
Affiliation(s)
- Chunfang Tang
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Riqing Zhang
- b College of Forestry , Central South University of Forestry and Technology , Changsha , China
| | - Xinjiang Hu
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- c College of Life Science and Technology , Central South University of Forestry and Technology , Changsha , China
| | - Jinfeng Song
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Bing Li
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Danling Ou
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Xi Hu
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Yunlin Zhao
- c College of Life Science and Technology , Central South University of Forestry and Technology , Changsha , China
| |
Collapse
|
10
|
Tai Y, Yang Y, Li Z, Yang Y, Wang J, Zhuang P, Zou B. Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn-Pb mine district: effect of plant species and chelators. ENVIRONMENTAL TECHNOLOGY 2018; 39:2138-2150. [PMID: 28678620 DOI: 10.1080/09593330.2017.1351493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Untreated water from mining sites spreads heavy metal contamination. The present study assessed the phytoextraction performance of heavy metal-accumulating plants and the effects of chemical chelators on cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) removal from paddy fields that have been continuously irrigated with mining wastewater from mines for 55 years. Outdoor pot experiments showed that the total Pb, Zn, and Cd content was lower in the rhizosphere soil of Amaranthus hypochondriacus than in that of Sedum alfredii, Solanum nigrum, and Sorghum bicolor. The aboveground biomass (dry weight) and relative growth rate of A. hypochondriacus were significantly higher than that of the other three species (P < .05). However, the total metal accumulation was significantly higher in the A. hypochondriacus system than in the other plants' system (P < .05). The increase in shoot biomass of A. hypochondriacus depended mostly on the chelator type [ethylenediaminetetraacetic acid (EDTA), malate, oxalate, and citrate] and their application frequency. Single application of EDTA significantly increased the shoot biomass of A. hypochondriacus and total metal removal loading from soil (P < .05). In conclusion, A. hypochondriacus may be effective for in situ phytoremediation of heavy metal-contaminated farmland soil and EDTA can accelerate the phytoextraction effect.
Collapse
Affiliation(s)
- YiPing Tai
- a Research Center of Hydrobiology , Jinan University , Guangzhou , People's Republic of China
| | - YuFen Yang
- a Research Center of Hydrobiology , Jinan University , Guangzhou , People's Republic of China
| | - ZhiAn Li
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , People's Republic of China
| | - Yang Yang
- a Research Center of Hydrobiology , Jinan University , Guangzhou , People's Republic of China
| | - JiaXi Wang
- a Research Center of Hydrobiology , Jinan University , Guangzhou , People's Republic of China
| | - Ping Zhuang
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , People's Republic of China
| | - Bi Zou
- b Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou , People's Republic of China
| |
Collapse
|
11
|
Hu L, Wang R, Liu X, Xu B, Xie T, Li Y, Wang M, Wang G, Chen Y. Cadmium phytoextraction potential of king grass (Pennisetum sinese Roxb.) and responses of rhizosphere bacterial communities to a cadmium pollution gradient. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21671-21681. [PMID: 29785604 DOI: 10.1007/s11356-018-2311-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Screening for tolerant and high biomass producing plants is important for phytoextraction efforts in remediating agricultural soils contaminated by heavy metals. We carried out a greenhouse experiment involving a soil cadmium (Cd) concentration gradient (0.1, 0.5, 1, 2, 4, and 8 mg kg-1) to assess growth and phytoextraction capacity of king grass (Pennisetum sinese Roxb.) in soils contaminated by Cd and to explore changes in diversity and structure of rhizosphere soil bacterial communities in response to long-term Cd pollution. A significant positive relationship was observed between Cd concentrations in P. sinese stems, leaves, and roots and soil Cd concentration. The highest Cd concentrations in shoots and roots were 28.87 and 34.01 mg kg-1, respectively, at 8 mg kg-1of soil Cd supply. Total extraction amounts of Cd in P. sinese were 0.22-1.86 mg plant-1 corresponding to treatment with 0.5-8 mg kg-1 Cd. Most of the Cd was stored in shoots, and the largest accumulation was 1.56 mg plant-1 with 54.02 g dry shoot weight. After phytoextraction, changes in rhizobacterial community composition were found with different levels of Cd application, whereas there were no clear trends in diversity and richness. Results of this study show the feasibility of P. sinese in accumulating Cd and provide support for its application in remediation of soil moderately contaminated by Cd.
Collapse
Affiliation(s)
- Li Hu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ru Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xianglin Liu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Bo Xu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Tuanhui Xie
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yunyun Li
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mingkuang Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guo Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yanhui Chen
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
12
|
Xiao W, Li D, Ye X, Xu H, Yao G, Wang J, Zhang Q, Hu J, Gao N. Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5060-5067. [PMID: 28000074 DOI: 10.1007/s11356-016-8277-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The combined use of organic amendment-assisted phytoextraction and electrokinetic remediation to decontaminate Cd-polluted soil was demonstrated in a laboratory-scale experiment. The plant species selected was the hyperaccumulator Sedum alfredii. Prior to the pot experiment, the loamy soil was treated with 15 g kg-1 of pig manure compost, 10 g kg-1 of humic acid, or 5 mmol kg-1 of EDTA, and untreated soil without application of any amendment was the control. Two conditions were applied to each treatment: no voltage (without an electrical field) and a direct current (DC) electrical field (1 V cm-1 with switching polarity every day). Results indicated that Cd concentrations in S. alfredii were significantly (p < 0.05) increased by application of the electrical field and soil amendments (pig manure compost, humic acid, and EDTA). By switching the polarity of the DC electrical field, significant pH variation from anode to cathode can be avoided, and no significant impact was observed on shoot biomass production. Electrical field application increased DTPA-extractable Cd in soils and the Cd accumulation in shoots by 6.06-15.64 and 24.53-52.31%, respectively. The addition of pig manure compost and humic acid enhanced shoot Cd accumulation by 1.54- to 1.92- and 1.38- to 1.64-fold because of their simultaneous enhancement of Cd concentration in shoots and biomass production. However, no enhancement of Cd accumulation was found in the EDTA treatment, which can be ascribed to the inhibition of plant growth caused by EDTA. In conclusion, pig manure compost or humic acid addition in combination with the application of a switched-polarity DC electrical field could significantly enhance Cd phytoextraction by hyperaccumulator S. alfredii.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Dan Li
- Hangzhou Plant Protection and Soil Fertilizer Station, Hangzhou, 310020, China
| | - Xuezhu Ye
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Haizhou Xu
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Guihua Yao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jingwen Wang
- Hangzhou Plant Protection and Soil Fertilizer Station, Hangzhou, 310020, China
| | - Qi Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing Hu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Na Gao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
13
|
Hechmi N, Ben Aissa N, Abdenaceur H, Jedidi N. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:109-116. [PMID: 25237721 DOI: 10.1080/15226514.2013.851169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Despite many studies on phytoremediation of soils contaminated with either heavy metals or organics, little information is available on the effectiveness of phytoremediation of co-occurring metal and organic pollutants especially by using wetland species. Phragmites australis is a common wetland plant and its potential for phytoremediation of cadmium pentachlorophenol (Cd-PCP) co-contaminated soil was investigated. A greenhouse study was executed to elucidate the effects of Cd (0, 10, and 20 mg kg(-1)) without or with PCP (0, 50, and 250 mg kg(-1)) on the growth of the wetland plant P. australis and its uptake, accumulation and removal of pollutant from soils. After 75 days, plant biomass was significantly influenced by interaction of Cd and PCP and the effect of Cd on plant growth being stronger than that of PCP. Coexistence of PCP at low level lessened Cd toxicity to plants, resulting in improved plant growth and increased Cd accumulation in plant tissues. The dissipation of PCP in soils was significantly influenced by interactions of Cd, PCP and plant presence or absence. As an evaluation of soil biological activities after remediation soil enzyme was measured.
Collapse
Affiliation(s)
- Nejla Hechmi
- a Laboratory of Wastewater Treatment, Water Research and Technologies Centre (CERTE), Technopole Borj Cedria BP , Soliman , Tunisia
| | | | | | | |
Collapse
|
14
|
Ethyl Lactate Main Properties, Production Processes, and Applications. ALTERNATIVE SOLVENTS FOR NATURAL PRODUCTS EXTRACTION 2014. [DOI: 10.1007/978-3-662-43628-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Hechmi N, Aissa NB, Abdenaceur H, Jedidi N. Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1304-13. [PMID: 23900950 DOI: 10.1007/s11356-013-1997-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/10/2013] [Indexed: 05/20/2023]
Abstract
Pot-culture experiments were conducted to evaluate the phytoremediation potential of a wetland plant species, Phragmites australis in cadmium (Cd) and pentachlorophenol (PCP) co-contaminated soil under glasshouse conditions for 70 days. The treatments included Cd (0, 5 and 50 mg kg(-1)) without or with PCP (50 and 250 mg kg(-1)). The results showed that growth of P. australis was significantly influenced by interaction of Cd and PCP, decreasing with either Cd or PCP additions. Plant biomass was inhibited and reduced by the rate of 89 and 92% in the low and high Cd treatments and by 20 and 40% in the low and high PCP treatments compared to the control. The mixture of low Cd and low PCP lessened Cd toxicity to plants, resulting in improved plant growth (by 144%). Under the joint stress of the two contaminants, the ability of Cd uptake and translocation by P. australis was weak, and the BF and TF values were inferior to 1.0. A low proportion of the metal is found aboveground in comparison to roots, indicating a restriction on transport upwards and an excluding effect on Cd uptake. Thus, P. australis cannot be useful for phytoextraction. The removal rate of PCP increased significantly (70%) in planted soil. Significant positive correlations were found between the DHA and the removal of PCP in planted soils which implied that plant root exudates promote the rhizosphere microorganisms and enzyme activity, thereby improving biodegradation of PCP. Based on results, P. australis cannot be effective for phytoremediation of soil co-contaminated with Cd and PCP. Further, high levels of pollutant hamper and eventually inhibit plant growth. Therefore, developing supplementary methods (e.g. exploring the partnership of plant-microbe) for either enhancing (phytoextraction) or reducing the bioavailability of contaminants in the rhizosphere (phytostabilization) as well as plant growth promoting could significantly improve the process of phytoremediation in co-contaminated soil.
Collapse
Affiliation(s)
- Nejla Hechmi
- Laboratory of Wastewater Treatment, Water Research and Technologies Centre (CERTE), Technopole of Borj Cedria, BP 273, Soliman, 8020, Tunisia,
| | | | | | | |
Collapse
|
16
|
Zhao S, Shang X, Duo L. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:967-75. [PMID: 22661279 DOI: 10.1007/s11356-012-0992-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/18/2012] [Indexed: 05/15/2023]
Abstract
Municipal solid waste compost can be used to cropland as soil amendment to supply nutrients and improve soil physical properties. But long-term application of municipal solid waste (MSW) compost may result in accumulation of toxic metals in amended soil. Phytoremediation, especially phytoextraction, is a novel, cost-effective, and environmentally friendly approach that uses metal-accumulating plants to concentrate and remove metals from contaminated soils. Ethylenediaminetetraacetate (EDTA) was applied to metal-contaminated soil to increase the mobility and phytoavailability of metals in soil, thereby increasing the amount of toxic metals accumulated in the upper parts of phytoextracting plants. The objectives of this study were (1) to investigate the accumulation and spatial distribution of toxic metals (Cd, Cr, and Pb) in mulberry from MSW compost with the application of EDTA and (NH(4))(2)SO(4), (2) to examine the effectiveness of EDTA and (NH(4))(2)SO(4) applied together on toxic metals (Cd, Cr, and Pb) removal by mulberry under field conditions, and (3) to evaluate the potential of mulberry for phytoextraction of toxic metals from MSW compost. The tested plant-mulberry had been grown in MSW compost field for 4 years. EDTA solution at five rates (0, 50, 100, 50 mmol L(-1) + 1 g L(-1) (NH(4))(2)SO(4), and 100 mmol L(-1) + 1 g L(-1) (NH(4))(2)SO(4)) was added into mulberry root medium in September 2009. Twenty days later, the plants were harvested and separated into six parts according to plant height. Cd, Cr, and Pb contents in plant samples and MSW compost were analyzed using an atomic absorption spectrophotometer. In the same treatment, Cd, Cr, and Pb concentrations in mulberry shoot were all higher than those in root, and Cd and Pb concentrations in shoot increased from lower to upper parts, reaching the highest in leaves. Significant increases were found in toxic metal concentration in different parts of mulberry with increasing EDTA concentration, especially when combined with (NH(4))(2)SO(4). Mulberry exhibited high ability to accumulate Cd with bioconcentration factors (BCFs) higher than 1. EDTA application also significantly increased Cd BCFs. More than 30 % of metal uptake was concentrated in mulberry branches (stem of above 100 cm height) and leaves. Results presented here show that mulberry is a woody plant that has the potential of Cd phytoextraction from MSW compost by removing leaves and cutting branches. The application of EDTA combined with (NH(4))(2)SO(4) significantly enhanced the efficiency of mulberry in removing Cd from the compost medium. Adding (NH(4))(2)SO(4) into the compost will lower the risk of the exposure of environment to excessive non-biodegradable EDTA in a large-scale EDTA-assisted phytoextraction by reducing the dosage of EDTA. In China, the need for sod is increasing day by day. Sod is often produced on arable soil and sold together with soils. This would lead to the soil being infertile and the soil layer thin. After several times' production, the soil can no longer be used for cultivating crops and be destroyed. In order to fully utilize MSW compost resources and save valuable soil resources, MSW compost can be used to replace arable soil to produce sod after extraction of toxic metals in it.
Collapse
Affiliation(s)
- Shulan Zhao
- Tianjin Key Laboratory of Cyto-Genetical and Molecular Regulation, College of Life Sciences, Tianjin Normal University, 393 Binshuixi Road, Xiqing District, Tianjin 300387, People's Republic of China
| | | | | |
Collapse
|
17
|
Xiao W, Wang H, Li T, Zhu Z, Zhang J, He Z, Yang X. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:380-389. [PMID: 22529002 DOI: 10.1007/s11356-012-0902-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 03/29/2012] [Indexed: 05/31/2023]
Abstract
The objective of this study was to develop a bioremediation strategy for cadmium (Cd) and carbendazim co-contaminated soil using a hyperaccumulator plant (Sedum alfredii) combined with carbendazim-degrading bacterial strains (Bacillus subtilis, Paracoccus sp., Flavobacterium and Pseudomonas sp.). A pot experiment was conducted under greenhouse conditions for 180 days with S. alfredii and/or carbendazim-degrading strains grown in soil artificially polluted with two levels of contaminants (low level, 1 mg kg(-1) Cd and 21 mg kg(-1) carbendazim; high level, 6 mg kg(-1) Cd and 117 mg kg(-1) carbendazim). Cd removal efficiencies were 32.3-35.1 % and 7.8-8.2 % for the low and high contaminant level, respectively. Inoculation with carbendazim-degrading bacterial strains significantly (P < 0.05) increased Cd removal efficiencies at the low level. The carbendazim removal efficiencies increased by 32.1-42.5 % by the association of S. alfredii with carbendazim-degrading bacterial strains, as compared to control, regardless of contaminant level. Cultivation with S. alfredii and inoculation of carbendazim-degrading bacterial strains increased soil microbial biomass, dehydrogenase activities and microbial diversities by 46.2-121.3 %, 64.2-143.4 %, and 2.4-24.7 %, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis revealed that S. alfredii stimulated the activities of Flavobacteria and Bradyrhizobiaceae. The association of S. alfredii with carbendazim-degrading bacterial strains enhanced the degradation of carbendazim by changing microbial activity and community structure in the soil. The results demonstrated that association of S. alfredii with carbendazim-degrading bacterial strains is promising for remediation of Cd and carbendazim co-contaminated soil.
Collapse
Affiliation(s)
- Wendan Xiao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Fang H, Zhou W, Cao Z, Tang F, Wang D, Liu K, Wu X, Yang X, Sun Y, Yu Y. Combined remediation of DDT congeners and cadmium in soil by Sphingobacterium sp. D-6 and Sedum alfredii Hance. J Environ Sci (China) 2012; 24:1036-1046. [PMID: 23505871 DOI: 10.1016/s1001-0742(11)60895-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Combined pollution of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) and cadmium (Cd) in agricultural soils is of great concern because they present serious risk to food security and human health. In order to develop a cost-effective and safe method for the removal of DDTs and Cd in soil, combined remediation of DDTs and Cd in soil by Sphingobacterium sp. D-6 and the hyperaccumulator, Sedum alfredii Hance was investigated. After treatment for 210 days, the degradation half-lives of DDTs in soils treated by strain D-6 decreased by 8.1% to 68.0% compared with those in the controls. The inoculation of strain D-6 into soil decreased the uptake of DDTs by pak choi and S. alfredii. The shoots/roots ratios of S. alfredii for the Cd accumulation ranged from 12.32 to 21.75. The Cd concentration in soil decreased to 65.8%-71.8% for S. alfredii treatment and 14.1%-58.2% for S. alfredii and strain D-6 combined treatment, respectively, compared with that in the control. The population size of the DDTs-degrading strain, Simpson index (1/D) and soil respiratory rate decreased in the early stage of treatment and then gradually increased, ultimately recovering to or exceeding the initial level. The results indicated that synchronous incorporation of strain D-6 and S. alfredii into soil was found to significantly (p < or = 0.05) enhance the degradation of DDTs in soil and the hyperaccumulation of Cd in S. alfredii. It was concluded that strain D-6 and S. alfredii could be used successfully to control DDTs and Cd in contaminated soil.
Collapse
Affiliation(s)
- Hua Fang
- Department of Plant Protection, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|