1
|
Barla RJ, Raghuvanshi S, Gupta S. A comprehensive review of flue gas bio-mitigation: chemolithotrophic interactions with flue gas in bio-reactors as a sustainable possibility for technological advancements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33165-33189. [PMID: 38668951 DOI: 10.1007/s11356-024-33407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
Flue gas mitigation technologies aim to reduce the environmental impact of flue gas emissions, particularly from industrial processes and power plants. One approach to mitigate flue gas emissions involves bio-mitigation, which utilizes microorganisms to convert harmful gases into less harmful or inert substances. The review thus explores the bio-mitigation efficiency of chemolithotrophic interactions with flue gas and their potential application in bio-reactors. Chemolithotrophs are microorganisms that can derive energy from inorganic compounds, such as carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2), present in the flue gas. These microorganisms utilize specialized enzymatic pathways to oxidize these compounds and produce energy. By harnessing the metabolic capabilities of chemolithotrophs, flue gas emissions can be transformed into value-added products. Bio-reactors provide controlled environments for the growth and activity of chemolithotrophic microorganisms. Depending on the specific application, these can be designed as suspended or immobilized reactor systems. The choice of bio-reactor configuration depends on process efficiency, scalability, and ease of operation. Factors influencing the bio-mitigation efficiency of chemolithotrophic interactions include the concentration and composition of the flue gas, operating conditions (such as temperature, pH, and nutrient availability), and reactor design. Chemolithotrophic interactions with flue gas in bio-reactors offer a potentially efficient approach to mitigating flue gas emissions. Continued research and development in this field are necessary to optimize reactor design, microbial consortia, and operating conditions. Advances in understanding the metabolism and physiology of chemolithotrophic microorganisms will contribute to developing robust and scalable bio-mitigation technologies for flue gas emissions.
Collapse
Affiliation(s)
- Rachael Jovita Barla
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Smita Raghuvanshi
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| |
Collapse
|
2
|
Guimerà X, Mora M, Dorado AD, Bonsfills A, Gabriel D, Gamisans X. Optimization of SO2 and NOx sequential wet absorption in a two-stage bioscrubber for elemental sulphur valorisation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24605-24617. [PMID: 32601860 DOI: 10.1007/s11356-020-09607-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Flue gases contain SO2 and NOx that can be treated together for elemental sulphur recovery in bioscrubbers, a technology that couples physical-chemical and biological processes for gaseous emissions treatment in a more economic manner than classical absorption. Sequential wet absorption of SO2 and NOx from flue gas is thoroughly studied in this work in a two-stage bioscrubber towards elemental sulphur valorisation pursuing reuse of biological process effluents as absorbents. The optimal operating conditions required for SO2 and NOx absorption in two consecutive spray absorbers were defined using NaOH-based absorbents. Overall, removal efficiencies of 98.9% and 55.9% for SO2 and NOx abatement were obtained in two in-series scrubbers operated under a gas contact time of 1 and 100 s, and a liquid-to-gas ratio of 7.5 and 15 L m-3, respectively. Higher NOx removal efficiency to clean gas emission was obtained by oxidants dosing in the absorber for NOx absorption. High NaHCO3 concentration in a two-stage bioscrubber effluent was exploited as alkaline absorbent for flue gas treatment. The performance of scrubbers using an absorbent mimicking a reused effluent exhibited the same removal efficiencies than those observed using NaOH solutions. In addition, the reuse of bioprocess effluent reduced reagents' consumption by a 63.7%. Thus, the two-stage bioscrubber proposed herein offers an environmentally friendly and economic alternative for flue gas treatment.
Collapse
Affiliation(s)
- Xavier Guimerà
- Department of Mining Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain.
| | - Mabel Mora
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q., 08193, Barcelona, Bellaterra, Spain
| | - Antonio David Dorado
- Department of Mining Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Anna Bonsfills
- Department of Mining Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q., 08193, Barcelona, Bellaterra, Spain
| | - Xavier Gamisans
- Department of Mining Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| |
Collapse
|
3
|
Direct and indirect electrochemical oxidation of ethanethiol on grey cast iron anode in alkaline solution. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Mhemid RKS, Alp K, Turker M, Akmirza I, Shihab MS. Removal of dimethyl sulphide via a bio-scrubber under anoxic conditions. ENVIRONMENTAL TECHNOLOGY 2020; 41:1700-1714. [PMID: 30403920 DOI: 10.1080/09593330.2018.1545801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
The removal performance of dimethyl sulphide (DMS) by anoxic laboratory-scale bio-scrubber was studied under different operation conditions for 315 days. DMS removal in bio-scrubber system was performed by controlling and changing the operation parameters, including inlet concentration, empty bed residence time (EBRT) and spraying density (SD) of irrigation. Best conditions in the system were achieved for SD of 0.18 m3/m2 h within EBRT of 40 s at an inlet gas concentration of 150 mg/m3 in which 93% of waste gas stream was removed in the bio-scrubber column and bio-degradation in the bio-reactor tank led to 89% of DMS removal from the transferred bio-reactor, while 91.5% of input chemical oxygen demand (COD) was successfully removed. The use of closer values of the average experimental yield to the theoretical value (YNO3/NO3 -) of 0.74 led to the production of elemental sulphur (S°) and other sulphur forms rather than sulphate (SO42-) , which was also was recognized as a pale-yellow coloured substance of S° that appeared within the biomass.
Collapse
Affiliation(s)
- Rasha Khalid Sabri Mhemid
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- College of Environmental Science and Technology, Mosul University, Mosul, Iraq
| | - Kadir Alp
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | | | - Ilker Akmirza
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain
| | - Mohammed Salim Shihab
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Mosul University, Mosul, Iraq
| |
Collapse
|
5
|
Shihab MS, Alp K, Türker M, Akmirza I, Mhemid RK. Removal of ethanethiol using a biotrickling filter with nitrate as an electron acceptor. ENVIRONMENTAL TECHNOLOGY 2020; 41:1738-1752. [PMID: 30418102 DOI: 10.1080/09593330.2018.1545804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Many studies have discussed the biotreatment of ethanethiol (ET) under aerobic conditions. However, O2 free conditions offer bio-conversion of ET gas into elemental sulphur and/or sulphate using [Formula: see text] as electron acceptor, and this has been not studied. In this study, an anoxic biotrickling filter was tested in lab-scale conditions with ET/[Formula: see text] ratio 0.74 and 0.34 mole/mole to remove malodorous ET waste gas. The study examined the effect of three operational parameters: ET inlet concentrations (150, 300, 800, and 1500 mg/m3), trickling velocities (0.12, 0.18, 0.24, 0.3, and 0.45 m/h), and empty bed residence times (30, 60, 90, and 120 s). It found that the effect of trickling velocity on removal efficiency depended on inlet concentrations; 0.24 m/h trickling velocity resulted in efficient ET removal (higher than 90.8% for 150 mg/m3 of inlet concentration) while 0.45 m/h trickling velocity could only achieve a removal of 80.6% for 1500 mg/m3 of inlet concentration at fixed EBRT 60 s. Increasing the EBRT up to 60 s was adequate to achieve removal efficiency, i.e. 92 and 80% for ET inlet concentrations 150 and 1500 mg/m3 respectively, and the maximum elimination capacity was 75.18 g/m3/h at 0.45 m/h. Overall, the anoxic conditions enhanced the low oxidation rates of ET in an anoxic biotrickling filter despite mass transfer limitations and poor solubility of ET.
Collapse
Affiliation(s)
- Mohammed Salim Shihab
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Environmental Engineering, University of Mosul, Mosul, Iraq
| | - Kadir Alp
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | | | - Ilker Akmirza
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Valladolid, Spain
| | - Rasha Khalid Mhemid
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
- College of Environmental Science and Technology, University of Mosul, Mosul, Iraq
| |
Collapse
|
6
|
Mhemid RKS, Akmirza I, Shihab MS, Turker M, Alp K. Ethanethiol gas removal in an anoxic bio-scrubber. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:612-625. [PMID: 30597355 DOI: 10.1016/j.jenvman.2018.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The performance of ethanethiol removal in an anoxic lab-scale bio-scrubber was investigated under different operating parameters and conditions for 300 days. The removal efficiency (RE) of ethanethiol was examined as a function of inlet concentration, empty bed residence time (EBRT) and spray density of irrigation. The results showed the best operation conditions and operation characteristics of the bio-scrubber for this study were at an inlet concentration of 150 mg/m3, a spray density of 0.23 m3/m2 h and an EBRT of 90 s. An average RE of 91% and elimination capacity (EC) of 24.74 g/m3 h was found for all inlet ethanethiol concentrations. Variations in spray density higher than 0.23 m3/m2 h had no effect on ethanethiol RE at different ethanethiol concentrations. The average experimental yield values were closer to the YET/NO3- theoretical value of 0.74 when the main product was elemental sulphur (So). This indicates that So and other forms of sulphur were formed rather than sulphate (SO42-) as the end product. Furthermore, growth kinetics for bio-degradation were evaluated in batch culture experiments using the Monod model, and bio-kinetic parameters of μmax, Ks, Yxs and qmax were obtained as 0.14 1/h, 1.17 mg/L, 0.52 gx/gs and 0.26 gs/gx h, respectively.
Collapse
Affiliation(s)
- Rasha Khalid Sabri Mhemid
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; College of Environmental Science and Technology, Mosul University, 41002, Iraq.
| | - Ilker Akmirza
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina S/n. 47011, Valladolid, Spain
| | - Mohammed Salim Shihab
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey; Environmental Engineering Dept, Mousl University, 41002, Iraq
| | | | - Kadir Alp
- Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| |
Collapse
|
7
|
Yoon H, Song MJ, Kim DD, Sabba F, Yoon S. A Serial Biofiltration System for Effective Removal of Low-Concentration Nitrous Oxide in Oxic Gas Streams: Mathematical Modeling of Reactor Performance and Experimental Validation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2063-2074. [PMID: 30673206 DOI: 10.1021/acs.est.8b05924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wastewater treatment plants (WWTPs) are among the major anthropogenic sources of N2O, a major greenhouse gas and ozone-depleting agent. We recently devised a zero-energy zero-carbon biofiltration system easily applicable to activated sludge-type WWTPs and performed lab-scale proof-of-concept experiments. The major drawback of the system was the diminished performance observed when fully oxic gas streams were treated. Here, a serial biofiltration system was tested as a potential improvement. A laboratory system with three serially positioned biofilters, each receiving a separate feed of artificial wastewater, was fed N2O-containing gas streams of varied flow rates (200-2000 mL·min-1) and O2 concentrations (0-21%). Use of the serial setup substantially improved the reactor performance. Fed fully oxic gas at a flow rate of 1000 mL·min-1, the system removed N2O at an elimination capacity of 0.402 ± 0.009 g N2O·m-3·h-1 (52.5% removal), which was approximately 2.4-fold higher than that achieved with a single biofilter, 0.171 ± 0.024 g N2O·m-3·h-1. These data were used to validate the mathematical model developed to estimate the performance of the N2O biofiltration system. The Nash-Sutcliffe efficiency indices ranged from 0.78 to 0.93, confirming high predictability, and the model provided mechanistic insights into aerobic N2O removal and the performance enhancement achieved with the serial configuration.
Collapse
Affiliation(s)
- Hyun Yoon
- Department of Civil and Environmental Engineering , KAIST , Daejeon , 34141 , Korea
| | - Min Joon Song
- Department of Civil and Environmental Engineering , KAIST , Daejeon , 34141 , Korea
| | - Daehyun D Kim
- Department of Civil and Environmental Engineering , KAIST , Daejeon , 34141 , Korea
| | - Fabrizio Sabba
- Department of Civil and Environmental Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering , KAIST , Daejeon , 34141 , Korea
| |
Collapse
|
8
|
Rybarczyk P, Szulczyński B, Gębicki J, Hupka J. Treatment of malodorous air in biotrickling filters: A review. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Pérez M, Álvarez-Hornos F, Engesser K, Dobslaw D, Gabaldón C. Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam. N Biotechnol 2016; 33:263-72. [DOI: 10.1016/j.nbt.2015.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
|
10
|
Chen X, Liang Z, An T, Li G. Comparative elimination of dimethyl disulfide by maifanite and ceramic-packed biotrickling filters and their response to microbial community. BIORESOURCE TECHNOLOGY 2016; 202:76-83. [PMID: 26702514 DOI: 10.1016/j.biortech.2015.11.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Unpleasant odor emissions have traditionally occupied an important role in environmental concern. In this paper, twin biotrickling filters (BTFs) packed with different packing materials, seeded with Bacillus cereus GIGAN2, were successfully constructed to purify gaseous dimethyl disulfide (DMDS). The maifanite-packed BTF showed superior biodegradation capability to the ceramic-packed counterpart in terms of removal efficiency and elimination capacity under similar conditions. At an empty bed residence time of 123 s, 100% of DMDS could be removed by maifanite-packed BTF when DMDS inlet concentration was below 0.41 g m(-3). To achieve same effect, the inlet concentration must be lower than 0.25 g m(-3) for ceramic-packed BTF. The bacterial communities analyses found higher relative abundance of GIGAN2 in the maifanite-packed BTF, suggesting that maifanite is more suitable for GIGAN2 immobilization and for subsequent DMDS removal. This work indicates maifanite is a promising packing material for real odorous gases purification.
Collapse
Affiliation(s)
- Xuequan Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhishu Liang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guiying Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
11
|
Chen J, Huang Y, Li G, An T, Hu Y, Li Y. VOCs elimination and health risk reduction in e-waste dismantling workshop using integrated techniques of electrostatic precipitation with advanced oxidation technologies. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:395-403. [PMID: 26489914 DOI: 10.1016/j.jhazmat.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/25/2015] [Accepted: 10/04/2015] [Indexed: 05/23/2023]
Abstract
Volatile organic compounds (VOCs) emitted during the electronic waste dismantling process (EWDP) were treated at a pilot scale, using integrated electrostatic precipitation (EP)-advanced oxidation technologies (AOTs, subsequent photocatalysis (PC) and ozonation). Although no obvious alteration was seen in VOC concentration and composition, EP technology removed 47.2% of total suspended particles, greatly reducing the negative effect of particles on subsequent AOTs. After the AOT treatment, average removal efficiencies of 95.7%, 95.4%, 87.4%, and 97.5% were achieved for aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, as well as nitrogen- and oxygen-containing compounds, respectively, over 60-day treatment period. Furthermore, high elimination capacities were also seen using hybrid technique of PC with ozonation; this was due to the PC unit's high loading rates and excellent pre-treatment abilities, and the ozonation unit's high elimination capacity. In addition, the non-cancer and cancer risks, as well as the occupational exposure cancer risk, for workers exposed to emitted VOCs in workshop were reduced dramatically after the integrated technique treatment. Results demonstrated that the integrated technique led to highly efficient and stable VOC removal from EWDP emissions at a pilot scale. This study points to an efficient approach for atmospheric purification and improving human health in e-waste recycling regions.
Collapse
Affiliation(s)
- Jiangyao Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yong Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiying Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yunkun Hu
- Guangzhou Longest Environmental Science and Technology Co., Ltd., Guangzhou 510660, China
| | - Yunlu Li
- Guangzhou Longest Environmental Science and Technology Co., Ltd., Guangzhou 510660, China
| |
Collapse
|
12
|
Sedighi M, Zamir SM, Vahabzadeh F. Cometabolic degradation of ethyl mercaptan by phenol-utilizing Ralstonia eutropha in suspended growth and gas-recycling trickle-bed reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 165:53-61. [PMID: 26406878 DOI: 10.1016/j.jenvman.2015.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/26/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
The degradability of ethyl mercaptan (EM), by phenol-utilizing cells of Ralstonia eutropha, in both suspended and immobilized culture systems, was investigated in the present study. Free-cells experiments conducted at EM concentrations ranging from 1.25 to 14.42 mg/l, showed almost complete removal of EM at concentrations below 10.08 mg/l, which is much higher than the maximum biodegradable EM concentration obtained in experiments that did not utilize phenol as the primary substrate, i.e. 2.5 mg/l. The first-order kinetic rate constant (kSKS) for EM biodegradation by the phenol-utilizing cells (1.7 l/g biomass/h) was about 10 times higher than by cells without phenol utilization. Immobilized-cells experiments performed in a gas recycling trickle-bed reactor packed with kissiris particles at EM concentrations ranging from 1.6 to 36.9 mg/l, showed complete removal at all tested concentrations in a much shorter time, compared with free cells. The first-order kinetic rate constant (rmaxKs) for EM utilization was 0.04 l/h for the immobilized system compared to 0.06 for the suspended-growth culture, due to external mass transfer diffusion. Diffusion limitation was decreased by increasing the recycling-liquid flow rate from 25 to 65 ml/min. The removed EM was almost completely mineralized according to TOC and sulfate measurements. Shut down and starvation experiments revealed that the reactor could effectively handle the starving conditions and was reliable for full-scale application.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Chemical Engineering Department, Amirkabir University of Technology, 424, Hafez Ave., Tehran, Iran
| | - Seyed Morteza Zamir
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.
| | - Farzaneh Vahabzadeh
- Chemical Engineering Department, Amirkabir University of Technology, 424, Hafez Ave., Tehran, Iran
| |
Collapse
|
13
|
Lin J, Li L, Ding W, Zhang J, Liu J. Continuous desulfurization and bacterial community structure of an integrated bioreactor developed to treat SO2 from a gas stream. J Environ Sci (China) 2015; 37:130-138. [PMID: 26574096 DOI: 10.1016/j.jes.2015.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 06/05/2023]
Abstract
Sulfide dioxide (SO2) is often released during the combustion processes of fossil fuels. An integrated bioreactor with two sections, namely, a suspended zone (SZ) and immobilized zone (IZ), was applied to treat SO2 for 6months. Sampling ports were set in both sections to investigate the performance and microbial characteristics of the integrated bioreactor. SO2 was effectively removed by the synergistic effect of the SZ and IZ, and more than 85% removal efficiency was achieved at steady state. The average elimination capacity of SO2 in the bioreactor was 2.80g/(m(3)·hr) for the SZ and 1.50g/(m(3)·hr) for the IZ. Most SO2 was eliminated in the SZ. The liquid level of the SZ and the water content ratio of the packing material in the IZ affected SO2 removal efficiency. The SZ served a key function not only in SO2 elimination, but also in moisture maintenance for the IZ. The desired water content in IZ could be feasibly maintained without any additional pre-humidification facilities. Clone libraries of 16S rDNA directly amplified from the DNA of each sample were constructed and sequenced to analyze the community composition and diversity in the individual zones. The desulfurization bacteria dominated both zones. Paenibacillus sp. was present in both zones, whereas Ralstonia sp. existed only in the SZ. The transfer of SO2 to the SZ involved dissolution in the nutrient solution and biodegradation by the sulfur-oxidizing bacteria. This work presents a potential biological treatment method for waste gases containing hydrophilic compounds.
Collapse
Affiliation(s)
- Jian Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenjie Ding
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingying Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
14
|
Li L, Zhang J, Lin J, Liu J. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics. World J Microbiol Biotechnol 2015; 31:1501-15. [DOI: 10.1007/s11274-015-1915-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/30/2015] [Indexed: 11/24/2022]
|
15
|
Li G, Liang Z, An T, Zhang Z, Chen X. Efficient bio-deodorization of thioanisole by a novel bacterium Brevibacillus borstelensis GIGAN1 immobilized onto different parking materials in twin biotrickling filter. BIORESOURCE TECHNOLOGY 2015; 182:82-88. [PMID: 25682227 DOI: 10.1016/j.biortech.2015.01.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Biological treatment of odorous gas is an alternative to conventional physicochemical processes. A newly-isolated and identified Brevibacillus borstelensis GIGAN1 was seeded on active carbon (AC) and ceramic particle (CP) in a twin biotrickling filter (BTF) to comparatively probe the removal performance of gaseous thioanisole, respectively. At empty bed residence time (EBRT) of 66 s, 100% of thioanisole (⩽ 3mg L(-1)) could be removed on AC; while 100% of thioanisole could only be achieved for ⩽ 1.2 mg L(-1) on CP. Further increase thioanisole concentration to 3 mg L(-1), higher elimination capacity was obtained on AC (162.51 g m(-3)h(-1)) than CP (139.93 g m(-3)h(-1)). Further, longer EBRT was also beneficial to thioanisole removal. Additionally, the biomass accumulation did not lead to the column clogging. The bio-deodorization mechanism of thioanisloe were also tentatively proposed. Overall, an unprecedented performance could be achieved by the novel GIGAN1 in BTF for thioanisole biodegradation.
Collapse
Affiliation(s)
- Guiying Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhishu Liang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Zhengyong Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuequan Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Removal of Ethanethiol Gas by Iron Oxide Porous Ceramsite Biotrickling Filter. J CHEM-NY 2015. [DOI: 10.1155/2015/414237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The performance of ethanethiol removal in biotrickling filter was investigated by microorganisms fixed on iron oxide-based porous ceramsite (IPC) under different operating parameters conditions. Ethanethiol removal efficiency was examined as a function of inlet concentration, empty bed residence time (EBRT), and spray density of nutrient solution. The results showed that the optimized operation conditions and operation characteristics of biotrickling filter for this study were at the inlet concentration of less than 250 mg·m−3, the spray density of 0.24 m3·m−2 h−1, and the EBRT of 68.7 s. The variation of the EBRT of about 100 s and the spray density of about 0.24 m3·m−2 h−1did not change the ethanethiol removal efficiencies at certain ethanethiol concentrations of less than about 300 mg/m3, respectively. The main metabolic product was sulfate such asSO42-under continuous long-running regime in filter. The ethanethiol desulfurization process better meets the Michaelis-Menien model with calculated kinetic degradation parametersKs=7.96 mg·m−3andVm=221.73 g·m−3 h−1.
Collapse
|
17
|
Degradation of ethyl mercaptan and its major intermediate diethyl disulfide by Pseudomonas sp. strain WL2. Appl Microbiol Biotechnol 2014; 99:3211-20. [DOI: 10.1007/s00253-014-6208-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
18
|
Sedighi M, Vahabzadeh F. Kinetic Modeling of cometabolic degradation of ethanethiol and phenol by Ralstonia eutropha. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0625-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
|
20
|
Ma X, Wu Z, Zhou M, Ding J. Electrochemical scission of C–S bond in ethanethiol on a modified β-PbO2 anode in aqueous solution. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Li G, Zhang Z, Sun H, Chen J, An T, Li B. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: a pilot-scale investigation. JOURNAL OF HAZARDOUS MATERIALS 2013; 250-251:147-54. [PMID: 23434489 DOI: 10.1016/j.jhazmat.2013.01.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/15/2012] [Accepted: 01/23/2013] [Indexed: 05/23/2023]
Abstract
Volatile organic compounds (VOCs) and biohazards air pollution in municipal solid waste transfer station were investigated. As compressor working, the concentrations of almost all quantified 14 VOCs (0.32-306.03 μg m(-3)) were much higher than those as compressor off (0-13.31 μg m(-3)). Comparatively, only 3 VOCs with extremely low concentrations could be detected at control area. Total microorganism was 7567 CFU m(-3) as compressor working, which was 1.14 and 6.22 times higher than that of compressor off and control area, respectively. Bacteria were the most abundant microorganism at all three sampling places. At pilot-scale, during whole 60-day treatment, for VOCs, the average removal efficiencies were over 92% after biotrickling filter-photocatalytic (BTF-PC) treatment. Although non-cancer and cancer risks of some VOCs were over the concern level before treatment, almost all VOCs were removed substantially and both potential risks were below the concern after BTF-PC treatment. Additionally, biohazard concentrations decreased dramatically and air quality was purified from polluted to cleanness after PC treatment. All results demonstrated that the integrated technology possessed high removal capacity and long stability for the removal of VOCs and biohazards at a pilot scale.
Collapse
Affiliation(s)
- Guiying Li
- The State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|
22
|
Hernández J, Lafuente J, Prado OJ, Gabriel D. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2013; 63:462-471. [PMID: 23687731 DOI: 10.1080/10962247.2013.763305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED Treatment of a mixture of NH3, H2S, and ethylmercaptan (EM) was investigated for more than 15 months in two biotrickling filters packed with poplar wood chips and polyurethane foam. Inlet loads ranging from 5 to 10 g N-NH3 m-3 hr-1, from 5 to 16 g S-H2S m-3 hr-1, and from 0 to 5 g EM m-3 hr-1 were applied. During startup, the biotrickling filter packed with polyurethane foam was re-inoculated due to reduced biomass retention as well as a stronger effect of nitrogen compounds inhibition compared with the biotrickling filter packed with poplar wood. Accurate pH control between 7 and 7.5 favored pollutants abatement. In the long run, complete NH3 removal in the gas phase was achieved in both reactors, while H2S removal efficiencies exceeded 90%. EM abatement was significantly different in both reactors. A systematically lower elimination capacity was found in the polyurethane foam bioreactor. N fractions in the liquid phase proved that high nitrification rates were reached throughout steady-state operation in both bioreactors. CO2 production showed the extent of the organic packing material degradation, which allowed estimating its service lifetime in around 2 years. In the long run, the bioreactor packed with the organic packing material had a lower stability. However, an economic analysis indicated that poplar wood chips are a competitive alternative to inorganic packing materials in biotrickling filters. IMPLICATIONS We provide new insights in the use of organic packing materials in biotrickling filters for the treatment of H2S, NH3, and mercaptans and compare them with polyurethane foam, a packing commonly used in biotrickling filters. We found interesting features related with the startup of the reactors and parameterized both the performance under steady-state conditions and the influence of the gas contact time. We provide relevant conclusions in the profitability of organic packing materials under a biotrickling filter configuration, which is infrequent but proven reliable from our research results. The report is useful to designers and users of this technology.
Collapse
Affiliation(s)
- J Hernández
- Department of Chemical Engineering, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
23
|
Lee SH, Li C, Heber AJ. The effect of nitrate on ethylene biofiltration. JOURNAL OF HAZARDOUS MATERIALS 2012; 241-242:331-339. [PMID: 23063558 DOI: 10.1016/j.jhazmat.2012.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 09/16/2012] [Accepted: 09/20/2012] [Indexed: 06/01/2023]
Abstract
This study investigated the effects of filter media types and nitrate (NO(3)(-)) concentrations in nutrient solutions on C(2)H(4) biofiltration. A new nutrient solution with zero NO(3)(-) concentration was supplied to two perlite-bed biotrickling filters, two perlite-bed biofilters, and two GAC (Granular Activated Carbon)-bed biofilters, while the other with 2 g L(-1) of NO(3)(-) was used for the other two GAC biofilters. All reactors underwent a total test duration of over 175 days with an EBRT (Empty Bed Residence Time) of 30 s, inlet gas flow rate of 7 L min(-1), and inlet C(2)H(4) concentrations of 20-30 mg m(-3). NO(3)(-) concentration and media type significantly affected the C(2)H(4) removal efficiencies in all types of biofiltration. The perlite media with no NO(3)(-) achieved C(2)H(4) removal efficiencies 10-50% higher than the others. A NO(3)(-) concentration as high as 2 g L(-1) in the original nutrient solution may act as an inhibitor that suppresses the growth or activity of C(2)H(4) degraders. In addition, the perlite media resulted in higher C(2)H(4) removal efficiencies than GAC media, because the hydrophilic surface of the perlite leads to a higher moisture content and thus to favorable microbial growth.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University St., West Lafayette, 47907-2093 IN, USA.
| | | | | |
Collapse
|
24
|
Ralebitso-Senior TK, Senior E, Di Felice R, Jarvis K. Waste gas biofiltration: advances and limitations of current approaches in microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8542-8573. [PMID: 22746978 DOI: 10.1021/es203906c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).
Collapse
|
25
|
Shi K, Zhou W, Zhao H, Zhang Y. Performance of halophilic marine bacteria inocula on nutrient removal from hypersaline wastewater in an intermittently aerated biological filter. BIORESOURCE TECHNOLOGY 2012; 113:280-287. [PMID: 22342085 DOI: 10.1016/j.biortech.2012.01.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 05/31/2023]
Abstract
Bioaugmentation was applied by introducing marine halophilic bacteria into an intermittently aerated biological filter (IABF) to improve the removal of nutrient pollutants from hypersaline synthetic wastewater (salinity: 3-13%). The bio-enhanced IABF showed improved performance on nutrient removal in the salinity range of 4-10% compared with the control IABF. The enhancement of eliminating chemical oxygen demand, total nitrogen and total phosphorus peaked at salinities of 7-10%, 7-9% and 5-7%, respectively, where the corresponding removal efficiencies were increased by about 8.6%, 15.7% and 17.3%, respectively. Inoculation with marine bacteria improved the degradation of nitrogenous organics and denitrification in nitrogen transformation. In hypersaline environments biofilter recovery after backwashing was significantly prolonged whereas the time required in the bio-augmented IABF was comparatively short. The results of dehydrogenase activity assays demonstrated that inoculation with marine bacteria improved the activity of biofilm in hypersaline environments.
Collapse
Affiliation(s)
- Kai Shi
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, China
| | | | | | | |
Collapse
|
26
|
Li G, Wan S, An T. Efficient bio-deodorization of aniline vapor in a biotrickling filter: metabolic mineralization and bacterial community analysis. CHEMOSPHERE 2012; 87:253-258. [PMID: 22236589 DOI: 10.1016/j.chemosphere.2011.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 05/31/2023]
Abstract
A biotrickling filter inoculated with commercial mixed microorganisms B350 was employed to treat N-containing odorous vapor - aniline. Results indicated no aniline could be detected when empty bed residence time (EBRT) was larger than 110s at inlet concentration of 0.30 g m(-3). The variation of inlet concentration did not change removal efficiencies when concentration is less than 0.21 g m(-3) at fixed EBRT 110s. Biodegradation mechanism of aniline was tentatively proposed based on identified intermediates and predicted biodegradation pathway as well as final mineralized products. Aniline was firstly biodegraded to catechol, and then to levulinic acid and subsequently to succinic acid. Finally, about 62% aniline carbon was completely mineralized to CO(2), while about 91% aniline nitrogen was converted into ammonia and nitrate. Bacterial community in biotrickling filter was found that at least seven bands microbes were identified for high efficiencies of bioreactor at stable state. In all, biotrickling filter seeded with B350 would be a better choice for the purification odorous gas containing high concentration aniline.
Collapse
Affiliation(s)
- Guiying Li
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | |
Collapse
|
27
|
Yang Y, Huang S, Liang W, Zhang Y, Huang H, Xu F. Microbial removal of NOX at high temperature by a novel aerobic strain Chelatococcus daeguensis TAD1 in a biotrickling filter. JOURNAL OF HAZARDOUS MATERIALS 2012; 203-204:326-332. [PMID: 22209326 DOI: 10.1016/j.jhazmat.2011.12.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/17/2011] [Accepted: 12/11/2011] [Indexed: 05/31/2023]
Abstract
The removal of NO(X) at high temperature by Chelatococcus daeguensis TAD1 in a biotrickling filter was studied. Media components of the recycling liquid were screened using Plackett-Burman design and then were optimized using response surface methodology, which enhanced the efficiency of nitrate removal by TAD1. The optimal medium was used to perform long-term experiments of NO(X) removal in a biotrickling filter under high concentrations of O(2) and NO in simulated flue gas. Results showed that the biotrickling filter was able to consistently remove 80.2-92.3% NO(X) when the inlet NO concentration was 600ppm under the conditions of oxygen concentration ranging between 2% and 20% and empty bed residence time (EBRT) being 112.5s. Analyses by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) indicated that TAD1 was always predominant in the biofilm under a flue gas environment. Overall, the present study demonstrated that utilizing a biotrickling filter inoculated with the aerobic denitrifier TAD1 to remove NO(X) at high temperature was practically feasible.
Collapse
Affiliation(s)
- Yunlong Yang
- College of Environmental Science and Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Wan S, Li G, Zu L, An T. Purification of waste gas containing high concentration trimethylamine in biotrickling filter inoculated with B350 mixed microorganisms. BIORESOURCE TECHNOLOGY 2011; 102:6757-6760. [PMID: 21524905 DOI: 10.1016/j.biortech.2011.03.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/18/2011] [Accepted: 03/19/2011] [Indexed: 05/30/2023]
Abstract
A biotrickling filter packed with ceramic particles and seeded with B350 microorganisms was applied to remove trimethylamine (TMA) from gaseous waste. A 100% removal efficiency (RE) was obtained when the empty bed residence time (EBRT) was larger than 110 s at an inlet concentration of 0.30 m g/L. Maximum elimination capacity (EC) was 13.13 g m(-3)h(-1) (RE=64.7%) at 55 s of EBRT. TMA concentrations <0.20mg/L at 83 s of EBRT did not affect the REs (100%). Maximum EC was 13.95 g m(-3)h(-1) (RE=78.1%) at a TMA concentration of 0.42 mg/L. Approximately 53.1% of the carbon in TMA was completely mineralized. Bacterial community analysis in the bioreactor revealed more than 21 species in a stable state. Based on all these results, biotrickling filter inoculated with B350 microorganisms is deemed highly capable of ridding waste gas of TMA.
Collapse
Affiliation(s)
- Shungang Wan
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | |
Collapse
|
29
|
A new type of poly(vinyl alcohol)/nitrocellulose/granular activated carbon/KNO3 composite bead used as a biofilter material. JOURNAL OF POLYMER RESEARCH 2011. [DOI: 10.1007/s10965-011-9594-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Wan S, Li G, An T, Guo B. Co-treatment of single, binary and ternary mixture gas of ethanethiol, dimethyl disulfide and thioanisole in a biotrickling filter seeded with Lysinibacillus sphaericus RG-1. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1050-1057. [PMID: 21168267 DOI: 10.1016/j.jhazmat.2010.11.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 05/30/2023]
Abstract
The work reports the aerobic co-treatment characteristics of single, binary and ternary mixture gas of ethanethiol, dimethyl disulfide (DMDS) and thioanisole in a biotrickling filter seeded with Lysinibacillus sphaericus RG-1. 100% removal efficiency (RE) was achieved for sole ethanethiol, DMDS and thioanisole at inlet concentration below 1.05, 0.81 and 0.33 mg/L, respectively, at empty bed resident time 110 s. In addition, 100% RE was also obtained with binary ethanethiol and DMDS (1:1) and ternary ethanethiol, DMDS and thioanisole (3:2:1). Michaelis-Menten equation was modified to incorporate the plug flow behavior of the bioreactor. The maximum removal rate (V(max)) was calculated as 56.18, 57.14 and 22.78 g/m(3)/h for sole ethanethiol, DMDS and thioanisole, respectively, while the V(max) was 41.84 and 14.56 g/m(3)/h for DMDS and thioanisole in binary and ternary systems, respectively. Overall, these suggest that not only sole but also binary and ternary mixture can be efficiently removed in this system.
Collapse
Affiliation(s)
- Shungang Wan
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan Street, Tianhe District, Guangzhou 510640, China
| | | | | | | |
Collapse
|