1
|
Yin X, Zhao Y, Guo P, Wu P, Chen C, Zhang A, Liao J, Yang Y, Liu N, Lan T. U(VI) sorption on illite in the Co-existence of carbonates and humic substances. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 278:107493. [PMID: 38970971 DOI: 10.1016/j.jenvrad.2024.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
The presence of carbonates or humic substances (HS) will significantly affect the species and chemical behavior of U(VI) in solution, but lacking systematic exploration of the coupling effect of carbonates and HS under near real environmental conditions at present. Herein, the sorption behavior of U(VI) on illite was systematically studied in the co-existence of carbonates and HS including both humic acid (HA) and fulvic acid (FA) by batch technique. The distribution coefficients (Kd) increased as function of time and temperature but decreased with increasing concentrations of initial U(VI), Ca2+, and Mg2+, as well as ion strength. At pH 2.0-10.5, the Kd values first increased rapidly and then decreased visibly, with its maximum value appearing at pH 5.0, owning to the changes in the interaction between illite and the dominant species of U(VI) from electrostatic attraction to electrostatic repulsion. The sorption was a heterogeneous, spontaneous, and endothermic chemical process, which could be well described by pseudo-second-order kinetic and Flory-Huggins isotherm models. When carbonates and HA/FA coexisted, the Kd values always increased first and then decreased as a function of pH, with the only difference for HA and FA being the key pH (pHkey) at which the promoting and inhibiting effects on the sorption of U(VI) onto illite undergo a transition. The carbonates and HS have a synergistic inhibitory effect on the U(VI) sorption onto illite at pH 7.8. FTIR and XPS spectra demonstrated that the hydroxyl groups on the illite surface and in the HS were involved in U(VI) sorption on illite in the presence of carbonates. These results provide valuable data for a deeper understanding of U(VI) migration in geological media.
Collapse
Affiliation(s)
- Xiaoyu Yin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Yufan Zhao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Peng Guo
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Peng Wu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Chao Chen
- Key Laboratory of Nuclear Environmental Simulation and Evaluation Technology, China Institute for Radiation Protection, Taiyuan, 030006, PR China.
| | - Aiming Zhang
- Key Laboratory of Nuclear Environmental Simulation and Evaluation Technology, China Institute for Radiation Protection, Taiyuan, 030006, PR China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
2
|
Demnitz M, Schymura S, Neumann J, Schmidt M, Schäfer T, Stumpf T, Müller K. Mechanistic understanding of Curium(III) sorption on natural K-feldspar surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156920. [PMID: 35753478 DOI: 10.1016/j.scitotenv.2022.156920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/29/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
To assess a reliable safety case for future deep underground repositories for highly active nuclear waste the retention of radionuclides by the surrounding host rock must be understood comprehensively. Retention is influenced by several parameters such as mineral heterogeneity and surface roughness, as well as pore water chemistry (e.g., pH). However, the interplay between those parameters is not yet well understood. Therefore, we present a correlative spectromicroscopic approach to investigate sorption of the actinide Cm(III) on: 1) bulk K-feldspar crystals to determine the effect of surface roughness and pH (5.5 and 6.9) and 2) a large feldspar grain as part of a complex crystalline rock system to observe how sorption is influenced by the surrounding heterogeneous mineralogy. Our findings show that rougher K-feldspar surfaces exhibit increased Cm(III) uptake and stronger complexation. Similarly, increasing pH leads to higher surface loading and stronger Cm(III) binding to the surface. Within a heterogeneous mineralogical system sorption is further affected by neighboring mineral dissolution and competitive sorption between mineral phases such as mica and feldspar. The obtained results express a need for investigating relevant processes on multiple scales of dimension and complexity to better understand trivalent radionuclide retention by a potential repository host rock.
Collapse
Affiliation(s)
- Maximilian Demnitz
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Stefan Schymura
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Research Site Leipzig, Permoserstraße 15 04318 Leipzig, Germany.
| | - Julia Neumann
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Moritz Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Thorsten Schäfer
- Friedrich-Schiller-Universität Jena, Institute for Geosciences, Burgweg 11, 07749 Jena, Germany.
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Katharina Müller
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
3
|
Zuo R, Xu Z, Wang X, Yang J, Du X, Du C, Cai W, Xu Y, Wu Z. Adsorption characteristics of strontium by bentonite colloids acting on claystone of candidate high-level radioactive waste geological disposal sites. ENVIRONMENTAL RESEARCH 2022; 213:113633. [PMID: 35700766 DOI: 10.1016/j.envres.2022.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The bentonite colloid produced in the deep geological repository of high-level radioactive waste can directly affect the migration of radionuclide strontium when it acts on claystone. The adsorption characteristics of strontium were investigated on claystone with the presence or absence of bentonite colloids from the Suhongtu area of China. The effects of different influencing factors, such as pH and solid content, on the adsorption process were investigated by batch adsorption experiments, and spectroscopic techniques were used to characterize the samples before and after adsorption of strontium. The results show that the presence of bentonite colloids can promote the adsorption of strontium on claystone under alkaline conditions. and the general order kinetic model provided the best fit to the experimental data. Strontium is adsorbed on the surface of claystone and bentonite colloid by ion exchange and surface complexation. Most of the Sr2+ formed SrCO3 with CO32- after ion exchange with Ca2+ and Mg2+ in plagioclase and dolomite, and a small amount of Sr2+ was adsorbed by complexation with -OH, Al-O and Si-O. These results provide a scientific basis for predicting the migration of strontium in subsurface porous media and the siting of high-level radioactive waste repositories.
Collapse
Affiliation(s)
- Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Zuorong Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Xin Wang
- Jinan Rail Transit Group Co., Ltd., Jinan, 250000, China
| | - Jie Yang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| | - Xiaofeng Du
- Shandong Rail Transit Engineering Consulting Co., Ltd., Jinan, 250000, China
| | - Can Du
- Development and Research Center, China Geological Survey, Beijing, 100037, China
| | - Weihai Cai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Yunxiang Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Ziyi Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| |
Collapse
|
4
|
Hu SZ, Huang T, Zhang N, Lei YZ, Wang Y. Enhanced removal of lead ions and methyl orange from wastewater using polyethyleneimine grafted UiO-66-NH2 nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Demnitz M, Molodtsov K, Schymura S, Schierz A, Müller K, Jankovsky F, Havlova V, Stumpf T, Schmidt M. Effects of surface roughness and mineralogy on the sorption of Cm(III) on crystalline rock. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127006. [PMID: 34481396 DOI: 10.1016/j.jhazmat.2021.127006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Crystalline rock is one of the host rocks considered for a future deep geological repository for highly active radiotoxic nuclear waste. The safety assessment requires reliable information on the retention behavior of minor actinides. In this work, we applied various spatially resolved techniques to investigate the sorption of Curium onto crystalline rock (granite, gneiss) thin sections from Eibenstock, Germany and Bukov, Czech Republic. We combined Raman-microscopy, calibrated autoradiography and µTRLFS (micro-focus time-resolved fluorescence spectroscopy) with vertical scanning interferometry to study in situ the impact of mineralogy and surface roughness on Cm(III) uptake and molecular speciation on the surface. Heterogeneous sorption of Cm(III) on the surface depends primarily on the mineralogy. However, for the same mineral class sorption uptake and strength of Cm(III) increases with growing surface roughness around surface holes or grain boundaries. When competitive sorption between multiple mineral phases occurs, surface roughness becomes the major retention parameter on low sorption uptake minerals. In high surface roughness areas primarily Cm(III) inner-sphere sorption complexation and surface incorporation are prominent and in selected sites formation of stable Cm(III) ternary complexes is observed. Our molecular findings confirm that predictive radionuclide modelling should implement surface roughness as a key parameter in simulations.
Collapse
Affiliation(s)
- M Demnitz
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - K Molodtsov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - S Schymura
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Research Site Leipzig, Permoserstr. 15, 04318 Leipzig, Germany
| | - A Schierz
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - K Müller
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - F Jankovsky
- ÚJV Rez, a.s., Hlavni 130, Rez, 250 68 Husinec, Czech Republic
| | - V Havlova
- ÚJV Rez, a.s., Hlavni 130, Rez, 250 68 Husinec, Czech Republic
| | - T Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - M Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
6
|
Bao L, Cai Y, Liu Z, Li B, Bian Q, Hu B, Wang X. High Sorption and Selective Extraction of Actinides from Aqueous Solutions. Molecules 2021; 26:molecules26237101. [PMID: 34885684 PMCID: PMC8658866 DOI: 10.3390/molecules26237101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
The selective elimination of long-lived radioactive actinides from complicated solutions is crucial for pollution management of the environment. Knowledge about the species, structures and interaction mechanism of actinides at solid–water interfaces is helpful to understand and to evaluate physicochemical behavior in the natural environment. In this review, we summarize recent works about the sorption and interaction mechanism of actinides (using U, Np, Pu, Cm and Am as representative actinides) on natural clay minerals and man-made nanomaterials. The species and microstructures of actinides on solid particles were investigated by advanced spectroscopy techniques and computational theoretical calculations. The reduction and solidification of actinides on solid particles is the most effective way to immobilize actinides in the natural environment. The contents of this review may be helpful in evaluating the migration of actinides in near-field nuclear waste repositories and the mobilization properties of radionuclides in the environment.
Collapse
Affiliation(s)
- Linfa Bao
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| | - Yawen Cai
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| | - Zhixin Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
- Correspondence:
| | - Bingfeng Li
- Power China Sichuan Electric Power Engineering Co., Ltd., Chengdu 610041, China;
| | - Qi Bian
- Shaoxing ZeYuan Science Technology Ltd., Shaoxing 312000, China;
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| |
Collapse
|
7
|
Sorption of U(VI) on Schiff-base functionalized metal–organic frameworks UiO-66-NH2. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-020-07550-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Volkov IV, Polyakov EV. Interaction of Humic Acids with Microelements/Radionuclides in Sorption Systems. RADIOCHEMISTRY 2020. [DOI: 10.1134/s1066362220020010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Du C, Zuo R, Chen M, Wang J, Liu X, Liu L, Lin Y. Influence of colloidal Fe(OH) 3 on the adsorption characteristics of strontium in porous media from a candidate high-level radioactive waste geological disposal site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113997. [PMID: 32014743 DOI: 10.1016/j.envpol.2020.113997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Colloids in groundwater or geological barriers generally play a key role in the migration of special nuclides. Adsorption characteristics of strontium were investigated on porous media in the presence of colloidal Fe(OH)3 from the Beishan Site, the only high-level radioactive waste disposal site candidate in China. The effects of colloid amounts, solid contents, and pH were determined and studied by batch texts. The results revealed that the presence of colloidal Fe(OH)3 in porous media contributed to promotion of the sorption effect, and the influencing factors had a significant impact on the adsorption process. The sorption ability increased with increasing colloid amount when the equilibrium time was approximately 10 h under an optimal solid-liquid ratio of 20 g L-1. The sorption effect in alkaline conditions was better than that under acidic conditions. The sorption kinetics indicated that the strong chemical interaction and/or surface complexation contributed primarily to strontium sorption. The sorption isotherms and model fitting revealed that the sorption of strontium onto porous media in the presence of colloidal Fe(OH)3 was a monolayer adsorption, and the presence of colloidal Fe(OH)3 is an important factor that greatly influences the removal of strontium from aqueous solutions. These findings provide useful information for the treatment of strontium in radioactive waste disposal sites.
Collapse
Affiliation(s)
- Can Du
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Minhua Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jinsheng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Xin Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Li Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Yuanhui Lin
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| |
Collapse
|
10
|
Effect of Colloidal Silicate on the Migration Behaviour of Strontium in Groundwater Environment of Geological Disposal Candidate Site. J CHEM-NY 2019. [DOI: 10.1155/2019/9606121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Various colloids are present in the natural groundwater environment, and colloids act on the processes involved when radionuclides leak from a repository in a high-level waste disposal site. This paper investigates the effect of colloidal silicate in natural groundwater environments on the migration behaviour of Sr(II). Three different experimental cases have been designed: (1) effect in the presence of colloidal silicate, (2) effect in the presence of a porous medium, and (3) effect in the presence of both colloidal silicate and porous medium (referred to as CS, PM, and PC, respectively). Batch experiments were used to study the effect of influencing factors on Sr(II) migration behaviour, such as the amount of CS, solid-to-liquid ratio, pH, contact time, and initial concentration of Sr(II). The experiments showed that the effect of PC on the migration behaviour of Sr(II) was greatest, and the presence of CS enhanced the sorption. The colloid amount, pH, and solid-to-liquid ratio significantly affected the migration behaviour. The more the colloids were added, the better the adsorption effect. The optimal pH and solid-to-liquid ratio were 6 and 20 : 1, respectively. The alkaline environment is more conductive to colloid sorption. When the solid-to-liquid ratio was 20 : 1, the sorption percentage of PC is 0.5 times larger than PM. Although the PC has a longer adsorption equilibrium time, the percentage of adsorption can be larger than that in the other two cases. The kinetics and isotherms of Sr(II) were best described by the pseudo-second-order and Langmuir models. It was inferred that strong chemical interactions and/or surface complexation contributed primarily to Sr(II) sorption, and the process was on the monolayer adsorption of the outer surface. These findings provide valuable information for the migration behaviour of strontium in groundwater environments of geological disposal site. At the same time, it provides information for the implementation of permeable reactive barrier technology to control the transport of radioactive Sr(II) and its species in natural surface and groundwater.
Collapse
|
11
|
Götzke L, Schaper G, März J, Kaden P, Huittinen N, Stumpf T, Kammerlander KK, Brunner E, Hahn P, Mehnert A, Kersting B, Henle T, Lindoy LF, Zanoni G, Weigand JJ. Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Evaluation of sorption capability and aqueous stability of Ba2TiSi2O8 (BTS). J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-016-5066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Li S, Wang X, Huang Z, Du L, Zhang D, Tan Z, Fu Y, Wang X. Sorption–desorption hysteresis of uranium(VI) on/from GMZ bentonite. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4831-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Dihydroxy bezladely derivatives functionalized mesoporous silica SBA-15 for the sorption of U(VI). J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4779-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Boggs MA, Dai Z, Kersting AB, Zavarin M. Plutonium(IV) sorption to montmorillonite in the presence of organic matter. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 141:90-96. [PMID: 25562752 DOI: 10.1016/j.jenvrad.2014.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
The effect of altering the order of addition in a ternary system of plutonium(IV), organic matter (fulvic acid, humic acid and desferrioxamine B), and montmorillonite was investigated. A decrease in Pu(IV) sorption to montmorillonite in the presence of fulvic and humic acid relative to the binary Pu-montmorillonite system, is attributed to strong organic aqueous complex formation with aqueous Pu(IV). No dependence on the order of addition was observed. In contrast, in the system where Pu(IV) was equilibrated with desferrioxamine B (DFOB) prior to addition of montmorillonite, an increase in Pu(IV) sorption was observed relative to the binary system. When DFOB was equilibrated with montmorillonite prior to addition of Pu(IV), Pu(IV) sorption was equivalent to the binary system. X-ray diffraction and transmission electron microscopy revealed that DFOB accumulated in the interlayer of montmorillonite. The order of DFOB addition plays an important role in the observed sorption/desorption behavior of Pu. The irreversible nature of DFOB accumulation in the montmorillonite interlayer leads to an apparent dependence of Pu sorption on the order of addition in the ternary system. This work demonstrates that the order of addition will be relevant in ternary systems in which at least one component exhibits irreversible sorption behavior.
Collapse
Affiliation(s)
- Mark A Boggs
- Glenn T. Seaborg Institute, Physical and Life Sciences, Lawrence Livermore National Laboratory, PO Box 808 L-231, 94550 CA, USA.
| | - Zurong Dai
- Glenn T. Seaborg Institute, Physical and Life Sciences, Lawrence Livermore National Laboratory, PO Box 808 L-231, 94550 CA, USA
| | - Annie B Kersting
- Glenn T. Seaborg Institute, Physical and Life Sciences, Lawrence Livermore National Laboratory, PO Box 808 L-231, 94550 CA, USA
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Physical and Life Sciences, Lawrence Livermore National Laboratory, PO Box 808 L-231, 94550 CA, USA
| |
Collapse
|