1
|
Wang Z, Tang T, Chen L, Wu S, Li X, Liu Y. Electrokinetic remediation of cadmium-contaminated soil using polarity reversal method: Optimization analysis and mechanism exploration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122732. [PMID: 39369536 DOI: 10.1016/j.jenvman.2024.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Electrokinetic remediation (EKR) has been applied for in-situ removal of Cd from contaminated soil, and the EKR enhanced with polarity reversal has achieved a higher Cd removal efficiency. However, the migration and accumulation mechanisms of Cd in the EKR process have not been investigated. In this paper, the cross-impacts of the voltage gradient, citric acid concentration in the electrolyte, and polarity reversal frequency on the removal efficiency by EKR of Cd and the optimization conditions were investigated. The migration and accumulation mechanisms of Cd were explored by analyzing the changes in electrokinetic process parameters, experimental phenomena, and X-ray diffraction (XRD) analysis. The results showed that the maximum removal efficiency of Cd reached 82.26%. The optimal conditions were determined by fitting the RSM model using the BBD design. In the EKR experiment with polarity reversal, Cd accumulated mainly in the middle part of the soil, attributed to the formation of chemical precipitation focusing area caused by soil pH transition, ion-induced potential gradient well trapping effect (IIPGWTE), or soil compaction induced by water loss. In conclusion, the various parameters have cross-impacts on the EKR of Cd-contaminated soil, and efficient in-situ removal of Cd from the contaminated soil can be achieved by adjusting the parameter conditions.
Collapse
Affiliation(s)
- Zheng Wang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| | - Liuzhou Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| | - Shu Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| | - Xin Li
- Ecological Environment Consulting Department, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing, 100015, China.
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, 100871, China.
| |
Collapse
|
2
|
Li J, Yang X, Zhang X, Zhang L. Effects and mechanisms of microbial ecology and diversity on phytoremediation of cadmium-contaminated soil under the influence of biodegradable organic acids. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2392-2403. [PMID: 39150230 DOI: 10.1080/15226514.2024.2391025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In recent years, heavy metal pollution has become a global environmental problem and poses a great threat to the health of people and ecosystems. Therefore, strategies for the effective remediation of Cd from contaminated soil are urgently needed. In this study, ryegrass was utilized as a remediation plant, and its remediation potential was enhanced through the application of Citric Acid (CA) in conjunction with Bacillus megaterium (B. megaterium). The P3 treatment (CA + Bacillus megaterium) exhibited a significantly higher efficiency in promoting cadmium extraction by ryegrass, resulting in a 1.79-fold increase in shoot cadmium accumulation compared to the control group (CK) with no Bacillus megaterium or CA. Moreover, the P3 treatment led to an increased abundance of Actinobacteriota, Acidobacteriota, and Patescibacteria in the rhizosphere. The concentration of amino derivatives (such as betaine, sulfolithocholylglycine, N-alpha-acetyl-lysine, glycocholic acid, arginyl-threonine) showed significant upregulation following the P3 treatment. In summary, this study proposes a viable approach for phytoremediation of soil contaminated with cadmium by harnessing the mobilizing abilities of soil bacteria.
Collapse
Affiliation(s)
- Jiapeng Li
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Xiaoqian Yang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Xiaoxiao Zhang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| |
Collapse
|
3
|
Zhao Z, Chen J, Gao S, Lu T, Li L, Farooq U, Gang S, Lv M, Qi Z. Low-molecular-weight aromatic acids mediated the adsorption of Cd 2+ onto biochars: effects and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15597-15610. [PMID: 38300497 DOI: 10.1007/s11356-024-32253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
Low-molecular-weight aromatic acids (LWMAAs), a ubiquitous organic substance in natural systems, are important in controlling the environmental fate of potentially toxic metals. However, little is known about the effects of LWMAAs on the interactions between biochars and potentially toxic metals. Herein, the influences of three aromatic acids, including benzoic acid (BA), p-hydroxy benzoic acid (PHBA), and syringic acid (SA), on the adsorption of Cd2+ onto biochars generated at three different pyrolysis temperatures under acidic and neutral conditions were examined. Generally, the adsorption ability of biochars for Cd2+ improved with the increase of pyrolysis temperature, which was ascribed to the increased inorganic element contents (e.g., P, S, and Si) and aromaticity, increasing the complexation between mineral anions and metal ions, and the enhanced cation-π interaction. Interestingly, aromatic acids considerably inhibited the adsorption of Cd2+ onto biochars, which was mainly ascribed to multi-mechanisms, including competition of LWMAA molecules and metal ions for adsorption sites, the pore blocking effect, the weakened interaction between mineral anions and Cd2+ induced by the adsorbed aromatic acids, and the formation of water-soluble metal-aromatic acid complexes. Furthermore, the inhibitory effects of LWMAAs on Cd2+ adsorption intensively depended on the aromatic acid type and followed the order of SA > PHBA > BA. This trend was related to the differences in the physicochemical features (e.g., the octanol/water partition coefficient (log Kow) and molecular size) of diverse LMWAAs. The results of this study demonstrate that the effects of coexisting LMWAAs should not be ignored when biochars are applied in soil remediation and wastewater treatment.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, No. 801 Hydrogeology and Engineering Geology Brigade, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, 250353, China
| | - Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Shuai Gao
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, No. 801 Hydrogeology and Engineering Geology Brigade, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, 250353, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Lixia Li
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, No. 801 Hydrogeology and Engineering Geology Brigade, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, 250353, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Shenting Gang
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, No. 801 Hydrogeology and Engineering Geology Brigade, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, 250353, China
| | - Minghui Lv
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, No. 801 Hydrogeology and Engineering Geology Brigade, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, 250353, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Zhao M, Song C, Zhang F, Jia X, Ma D. New-style electrokinetic-adsorption remediation of cadmium-contaminated soil using double-group electrodes coupled with chitosan-activated carbon composite membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166919. [PMID: 37689188 DOI: 10.1016/j.scitotenv.2023.166919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Global soil cadmium (Cd(II)) contamination threatens the soil environment, food safety, and human health. Conventional electrokinetic remediation (EKR) and enhancement methods usually operate in strong electric fields, leading to strong side reactions and uneven removal. In this work, to remove Cd(II) from soil effectively in a low-voltage electric field, a new-style electrokinetic-adsorption remediation using double-group electrodes coupled with chitosan-activated carbon composite membranes (DE-EKR-CAC) was developed. Chitosan-activated carbon (CAC) composite membranes were synthesized for easy recovery and reuse of adsorbents. The effects of pH, contact time, initial concentration, and foreign ions on the removal of Cd(II) by the CAC composite membranes were determined. The CAC composite membranes performed well except in a strongly acidic environment (pH = 2.0). The soil pH varied between 3.4 and 5.0 in DE-EKR-CAC, where the CAC composite membranes were applicable. High concentrations of Ca2+ interfered with the adsorption of Cd(II), which means that the selectivity of CAC composite membranes for Cd(II) is not high enough. The Langmuir (R2 = 0.999) and pseudo-second-order kinetic (R2 = 1.0) models revealed the monolayer coverage and chemisorption mechanism, and the maximum adsorption capacity was 40.81 mg/g. Furthermore, SEM, FTIR, and XPS analyses suggest that physical adsorption, complexation of oxygen-containing functional groups, chelation of amino groups, and ion exchange are potential mechanisms for the adsorption of Cd(II) on CAC. DE-EKR-CAC performed better than the group remediated with one set of electrodes, with higher removal efficiencies and more uniform removal. The lowest energy consumption was 3.33 kWh/m3, which is lower than other enhancement methods. Separation of CAC composite membranes from soil is easy, and reuse performance is good. DE-EKR-CAC provides a potential option for Cd(II) removal from soil because of its better performance using low-voltage direct current, low energy consumption, and ease of recycling the adsorbent.
Collapse
Affiliation(s)
- Miaomiao Zhao
- Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Chunfeng Song
- Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Fan Zhang
- Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Xiaoyu Jia
- Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Degang Ma
- Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
5
|
Zeng G, Yang R, Tian S, Zhou Z, Wang Q, Yu X, Fu R, Lyu S. Elucidating the effect of different desorbents on naphthalene desorption and degradation: Performance and kinetics investigation. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128803. [PMID: 35405604 DOI: 10.1016/j.jhazmat.2022.128803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
In this work, the effect of different desorbents (low molecular weight organic acids (LMWOAs), surfactants, and inorganic salts) on naphthalene (NAP) desorption in soil was investigated, and the results showed that NAP desorption pattern fitted the pseudo-second-order kinetics. The addition of LMWOAs, especially citric acid (CA), could stimulate the reactive oxygen species (ROS) generation and NAP degradation in Fe(II) activated persulfate (PS) system, while the presence of surfactants and CaCl2 could inhibit the NAP removal due to the competitive consumption of ROS. The maximum removal of NAP was 97.5% within 120 min at the PS/Fe(II)/CA/NAP molar ratio of 15/5/1/1, and the pseudo-first-order kinetic constant of NAP removal increased from 0.0110 min-1 to 0.0783 min-1 with the addition of CA. Compared with surfactants and inorganic salts, LMWOAs, especially CA, were more suitable as desorbent in soil washing coupled with in situ chemical oxidation technique. Moreover, 1.86 mg L-1 desorbed amount and 36.1% removal of NAP from soil could be obtained with the presence of 1 mM CA. Finally, the significant removal of NAP and other contaminants (phenanthrene, fluoranthene, and benzene series) in actual groundwater could provide theoretical basis and technical support for the remediation of organic contaminated sites with desorbents.
Collapse
Affiliation(s)
- Guilu Zeng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Rumin Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Tian
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zelong Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xiu Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Rongbing Fu
- Center for Environmental Risk Management & Remediation of Soil & Groundwater, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Zou K, Wei J, Wang D, Kong Z, Zhang H, Wang H. A novel remediation method of cadmium (Cd) contaminated soil: Dynamic equilibrium of Cd 2+ rapid release from soil to water and selective adsorption by PP-g-AA fibers-ball at low concentration. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125884. [PMID: 34492822 DOI: 10.1016/j.jhazmat.2021.125884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/13/2023]
Abstract
The acid-extractable fraction Cd(II) in soil accumulates easily in organisms, migrates and transforms in the ecological environment, which has posed potential health risks to human. This study found that the acid-extractable fraction Cd(II) in soil could be released rapidly into water at very low Cd2+ concentration. Carboxylated polypropylene (PP-g-AA) fibers-ball with high selectivity as adsorbent was used in the Cd(II) contaminated soil-water system. It could remove promptly trace Cd2+ from water even in the presence of interfering metal ions. Moreover, Cd(II) desorbed from soil to water could be continuously adsorbed by PP-g-AA fibers-ball, which kept the Cd2+ concentration always at a low level. This forms a dynamic equilibrium of rapid release- selective adsorption toward the acid-extractable fraction Cd(II) in the soil-water system. Here, the migratory pathway for the acid-extractable fraction Cd(II) to be released from contaminated soil to water and adsorbed simultaneously on the surface of PP-g-AA fibers-ball was established. This work offers a novel protocol that can remove more than 90% of the acid-extractable fraction Cd(II) from contaminated soil within 12 h, thereby contributes better to mitigate the risk of Cd(II) from soil to the food chain without changing the physical and chemical properties of soil.
Collapse
Affiliation(s)
- Kaijian Zou
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| | - Di Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; Shool of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhiyun Kong
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; Tianjin Engineering Center for Safety Evaluation of Water & Safeguards Technology, Tianjin 300387, China; Shool of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; Tianjin Engineering Center for Safety Evaluation of Water & Safeguards Technology, Tianjin 300387, China; Shool of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huicai Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
7
|
Cruz Y, Villar S, Gutiérrez K, Montoya-Ruiz C, Gallego JL, Delgado MDP, Saldarriaga JF. Gene expression and morphological responses of Lolium perenne L. exposed to cadmium (Cd 2+) and mercury (Hg 2+). Sci Rep 2021; 11:11257. [PMID: 34045631 PMCID: PMC8160004 DOI: 10.1038/s41598-021-90826-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 05/17/2021] [Indexed: 11/27/2022] Open
Abstract
Soil contamination with heavy metals is a major problem worldwide, due to the increasing impact mainly caused by anthropogenic activities. This research evaluated the phytoremediation capacity of, Lolium perenne for heavy metals such as cadmium (Cd2+) and mercury (Hg2+), and the effects of these metals on morphology, biomass production, and the changes on gene expression. Seeds of L. perenne were exposed to six concentrations of Cd2+ and Hg2+ in the range of 0 to 25 mg L−1, and two mixtures of Cd2+–Hg2. The Non-Observed Effect Level (NOEL) was established with dose response curves and the expression of specific genes was evaluated applying a commercially available quantitative reverse transcription (RT-qPCR) assay. There was no significant effect when exposing the seeds to Hg2+, for Cd2+ the maximum concentration was established in 0.1 mg L−1, and for the two concentrations of mixtures, there was a negative effect. An increase of expression of genes that regulate antioxidant activity and stress was found when the plant was exposed to heavy metals. Given the high tolerance to metals analyzed that was reflected both, the development of the plant and in its molecular response, these results highlight that L. perenne is a plant with phytoremediator potential.
Collapse
Affiliation(s)
- Yuby Cruz
- Department Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombia
| | - Sharik Villar
- Department Biological Sciences, Universidad de los Andes, Carrera 1 #18A-10, Bogotá, Colombia
| | - Karen Gutiérrez
- Department Biological Sciences, Universidad de los Andes, Carrera 1 #18A-10, Bogotá, Colombia
| | - Carolina Montoya-Ruiz
- Department Biological Sciences, Universidad de los Andes, Carrera 1 #18A-10, Bogotá, Colombia.,Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín Calle 59A #63-20, Medellín, Colombia, 050034
| | - Jorge L Gallego
- Environmental Research Group (GIA), Department Engineering, Fundación Universitaria Tecnológico Comfenalco, Carrera 44 D # 30A-91, 130015, Cartagena, Colombia
| | - Maria Del Pilar Delgado
- Department Biological Sciences, Universidad de los Andes, Carrera 1 #18A-10, Bogotá, Colombia
| | - Juan F Saldarriaga
- Department Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá, Colombia.
| |
Collapse
|
8
|
Li X, Yang Z, He X, Liu Y. Optimization analysis and mechanism exploration on the removal of cadmium from contaminated soil by electrokinetic remediation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Efficacy of Enzymatically Induced Calcium Carbonate Precipitation in the Retention of Heavy Metal Ions. SUSTAINABILITY 2020. [DOI: 10.3390/su12177019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the efficacy of enzyme induced calcite precipitation (EICP) in restricting the mobility of heavy metals in soils. EICP is an environmentally friendly method that has wide ranging applications in the sustainable development of civil infrastructure. The study examined the desorption of three heavy metals from treated and untreated soils using ethylene diamine tetra-acetic acid (EDTA) and citric acid (C6H8O7) extractants under harsh conditions. Two natural soils spiked with cadmium (Cd), nickel (Ni), and lead (Pb) were studied in this research. The soils were treated with three types of enzyme solutions (ESs) to achieve EICP. A combination of urea of one molarity (M), 0.67 M calcium chloride, and urease enzyme (3 g/L) was mixed in deionized (DI) water to prepare enzyme solution 1 (ES1); non-fat milk powder (4 g/L) was added to ES1 to prepare enzyme solution 2 (ES2); and 0.37 M urea, 0.25 M calcium chloride, 0.85 g/L urease enzyme, and 4 g/L non-fat milk powder were mixed in DI water to prepare enzyme solution 3 (ES3). Ni, Cd, and Pb were added with load ratios of 50 and 100 mg/kg to both untreated and treated soils to study the effect of EICP on desorption rates of the heavy metals from soil. Desorption studies were performed after a curing period of 40 days. The curing period started after the soil samples were spiked with heavy metals. Soils treated with ESs were spiked with heavy metals after a curing period of 21 days and then further cured for 40 days. The amount of CaCO3 precipitated in the soil by the ESs was quantified using a gravimetric acid digestion test, which related the desorption of heavy metals to the amount of precipitated CaCO3. The order of desorption was as follows: Cd > Ni > Pb. It was observed that the average maximum removal efficiency of the untreated soil samples (irrespective of the load ratio and contaminants) was approximately 48% when extracted by EDTA and 46% when extracted by citric acid. The soil samples treated with ES2 exhibited average maximum removal efficiencies of 19% and 10% when extracted by EDTA and citric acid, respectively. It was observed that ES2 precipitated a maximum amount of calcium carbonate (CaCO3) when compared to ES1 and ES3 and retained the maximum amount of heavy metals in the soil by forming a CaCO3 shield on the heavy metals, thus decreasing their mobility. An approximate improvement of 30% in the retention of heavy metal ions was observed in soils treated with ESs when compared to untreated soil samples. Therefore, the study suggests that ESs can be an effective alternative in the remediation of soils contaminated with heavy metal ions.
Collapse
|
10
|
Zhang X, Lou X, Zhang H, Ren W, Tang M. Effects of sodium sulfide application on the growth of Robinia pseudoacacia, heavy metal immobilization, and soil microbial activity in Pb-Zn polluted soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110563. [PMID: 32278824 DOI: 10.1016/j.ecoenv.2020.110563] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 05/22/2023]
Abstract
Sodium sulfide (Na2S) is usually used as an amendment in industrial sewage treatment. To evaluate the effects of Na2S on the growth of Robinia pseudoacacia (black locust), heavy metal immobilization, and soil microbial activity, the R. pseudoacacia biomass and nutrient content and the soil heavy metal bioavailability, enzyme activity, and arbuscular mycorrhizal (AM) fungal community were measured by a single-factor pot experiment. The Pb-Zn-contaminated soil was collected from a Pb-Zn mine that had been remediated by R. pseudoacacia for five years. Three pollution levels (unpolluted, mildly polluted, and severely polluted) were evaluated by the pollution load index. Na2S application increased the shoot biomass under severe and mild contamination. In soil, Na2S application decreased the bioavailable Pb and Zn contents under severe and mild contamination, which resulted in a decrease in the Pb and Zn content in R. pseudoacacia. However, Na2S application did not affect the total Pb content per plant and enhanced the total Zn content per plant because of the higher biomass of the plants under Na2S application. Increased phosphatase activity and increased available phosphorous content may promote the uptake of phosphorus in R. pseudoacacia. Moreover, Na2S application is beneficial to the diversity of AM fungi under mild and severe pollution. Overall, Na2S application has great potential for enhancing soil heavy metal immobilization, enhancing soil microbial activity, and improving the growth of R. pseudoacacia in polluted soils. Therefore, Na2S is suitable for use in Pb-Zn remediation to ameliorate environmental heavy metal pollution.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, PR China
| | - Xiao Lou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, PR China
| | - Haoqiang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, PR China.
| | - Wei Ren
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, PR China
| | - Ming Tang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
11
|
Zhang H, Lu T, Wang M, Jin R, Song Y, Zhou Y, Qi Z, Chen W. Inhibitory role of citric acid in the adsorption of tetracycline onto biochars: Effects of solution pH and Cu2+. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Yan G, Mao L, Jiang B, Chen X, Gao Y, Chen C, Li F, Chen L. The source apportionment, pollution characteristic and mobility of Sb in roadside soils affected by traffic and industrial activities. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121352. [PMID: 31629593 DOI: 10.1016/j.jhazmat.2019.121352] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 09/17/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Antimony (Sb), as an emerging pollutant, has aroused people's concerns for its wide usage in industrial production. In this study, we identify and quantify the traffic-derived Sb and investigate its mobility in roadside soils affected by traffic and industrial activities. 73 surface roadside soils and 5 transects in three areas nearby different industries (smelting, power and refining, and waste incineration) were collected and analyzed. Results showed that the Sb concentration ranged between 0.54 and 9.32 mg/kg, and the mean EFs value was 4.63, which indicated moderate to significant Sb enrichment. Significantly high concentrations of Sb occurred at locations with heavy traffic and frequent braking process, with an average concentration of 4.13 mg/kg, compared to the control sites (2.01 mg/kg). Moreover, Sb diffused exponentially with increasing distance from road edges. These results suggested that traffic activities were the main source of Sb in roadside soils. According to the quantitative calculation, the average contributions from traffic, industrial activities and soil parent material to Sb accumulation in roadside soils were 50.73%, 21.38% and 27.88%, respectively. Even though Sb was slightly mobile, roadside soils was a persistent source of potentially mobile Sb which may release into water and cause long-term environmental risk.
Collapse
Affiliation(s)
- Geng Yan
- State Key Laboratory on Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Lingchen Mao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Bingyang Jiang
- State Key Laboratory on Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xinran Chen
- State Key Laboratory on Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ya Gao
- State Key Laboratory on Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chunzhao Chen
- State Key Laboratory on Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Feipeng Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Ling Chen
- State Key Laboratory on Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
13
|
Efficient Removal of Lead from Washing Effluent of Lead-contaminated Soil with Garlic Peel. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8019-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Enhanced electrokinetic remediation of cadmium-contaminated natural clay using organophosphonates in comparison with EDTA. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Gu YY, Zhao C, Li H, An H. The enhancement of synthesized wastewater on non-uniform electrokinetic remediation of a Cd-spiked natural clayey soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1103-1114. [PMID: 29079978 DOI: 10.1007/s11356-017-0491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
It is usually very difficult to achieve satisfactory extraction efficiencies in electrokinetic remediation of heavy metal-contaminated soils of high acid/base buffer capacity. Enhancement agent is often required. In this study, synthesized citric acid industrial wastewater (CAIW) is used as the enhancement agent to remediate cadmium-spiked natural clayey soil from Shanghai, China. Four electrokinetic extraction experiments were carried out to evaluate the enhancement effects of CAIW on the remediation of metal-spiked clayed soil of high buffer capacity and the effects of treatment time and initial cadmium concentration on the migration of cadmium in the specimen. The results of electrokinetic experiments indicated that CAIW can efficiently enhance the transport of cadmium in comparison with HNO3 of the same pH. Cadmium mobilization was enhanced with prolonged treatment time from 104 to 261.2 h, but the average cadmium removal efficiency was not significantly enhanced. A non-uniform cadmium distribution in the specimen was observed after the enhanced electrokinetic experiments due to the localized electrical gradients with an electrical gradient of approximately 1 V/cm and a ratio of the distance between electrodes of the same polarity to the outer diameter of electrode of 2.8 (50:18 mm).
Collapse
Affiliation(s)
- Ying-Ying Gu
- Department of Environmental & Safety Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Chaocheng Zhao
- Department of Environmental & Safety Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hongjiang Li
- Qingdao Water Group Co. Ltd., Qingdao, 266002, China
| | - Hui An
- Department of Environmental & Safety Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
16
|
Tang H, Shuai W, Wang X, Liu Y. Extraction of rare earth elements from a contaminated cropland soil using nitric acid, citric acid, and EDTA. ENVIRONMENTAL TECHNOLOGY 2017; 38:1980-1986. [PMID: 27776464 DOI: 10.1080/09593330.2016.1244563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.
Collapse
Affiliation(s)
- Hailong Tang
- a College of Environmental Sciences and Engineering, Peking University , People's Republic of China
- b Beijing Key Laboratory for Municipal Solid Waste Utilization and Management , Beijing , People's Republic of China
| | - Weitao Shuai
- a College of Environmental Sciences and Engineering, Peking University , People's Republic of China
- b Beijing Key Laboratory for Municipal Solid Waste Utilization and Management , Beijing , People's Republic of China
| | - Xiaojing Wang
- a College of Environmental Sciences and Engineering, Peking University , People's Republic of China
- b Beijing Key Laboratory for Municipal Solid Waste Utilization and Management , Beijing , People's Republic of China
| | - Yangsheng Liu
- a College of Environmental Sciences and Engineering, Peking University , People's Republic of China
- b Beijing Key Laboratory for Municipal Solid Waste Utilization and Management , Beijing , People's Republic of China
| |
Collapse
|
17
|
Tang Q, Chu J, Wang Y, Zhou T, Liu Y. Characteristics and factors influencing Pb(II) desorption from a Chinese clay by citric acid. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1216128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qiang Tang
- School of Urban Rail Transportation, Soochow University, China
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, China
- Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, China
| | - Jiaming Chu
- School of Urban Rail Transportation, Soochow University, China
| | - Yan Wang
- Faculty of Architectural, Civil Engineering and Environment College, Ningbo University, China
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Ting Zhou
- School of Urban Rail Transportation, Soochow University, China
| | - Yang Liu
- School of Urban Rail Transportation, Soochow University, China
| |
Collapse
|
18
|
Wang F, Ouyang W, Hao F, Jiao W, Shan Y, Lin C. Role of freeze-thaw cycles and chlorpyrifos insecticide use on diffuse Cd loss and sediment accumulation. Sci Rep 2016; 6:27302. [PMID: 27250820 PMCID: PMC4889996 DOI: 10.1038/srep27302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/16/2016] [Indexed: 11/12/2022] Open
Abstract
Freeze-thaw cycles are predicted to increase in cold temperate regions. The potential influence of the interactions of freeze-thaw cycles and agrochemicals on the release of Cd into river water is unknown. In this study, the interactions of freeze-thaw cycles and chlorpyrifos (FC) on Cd mobility in soils were analysed. The spatial variability of soil Cd under long-term intensive tillage in a freeze-thaw agro-system was also identified. The temporal variation of sediment Cd was detected based on analysis of the sediment geochemistry. The results showed that FC increased soil Cd mobility, with an increase of approximately 10% in CaCl2-extractable Cd. The increased mobile fractions of water-soluble and exchangeable Cd originated from the decreased fraction of Fe-Mn-oxide-associated Cd and organic matter-bound Cd. The total Cd content in the surface soil followed the zonally decreasing trend of dry land > paddy land > natural land. The Cd concentrations and sedimentation rates of the sediment core generally increased from 1943 to 2013 due to agricultural exploration and farmland irrigation system construction, indicating an increase of the Cd input flux into water. The results provide valuable information about the soil Cd transport response to the influence of climatic and anthropogenic factors in cold intensive agro-systems.
Collapse
Affiliation(s)
- Fangli Wang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Fanghua Hao
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Wei Jiao
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Yushu Shan
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
19
|
|
20
|
Lee YW, Kim C. Remediation of lead-contaminated soil with non-toxic biodegradable natural ligands extracted from soybean. ENVIRONMENTAL TECHNOLOGY 2012; 33:2415-20. [PMID: 23393984 DOI: 10.1080/09593330.2012.670270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bench-scale soil washing studies were performed to evaluate the potential application of non-toxic, biodegradable extracted soybean-complexing ligands for the remediation of lead-contaminated soils. Results showed that, with extracted soybean-complexing ligands, lead solubility extensively increased when pH of the solution was higher than 6, and approximately 10% (500 mg/kg) of lead was removed from a rifle range soil. Two potential primary factors controlling the effectiveness of lead extraction from lead-contaminated soils with natural ligands are adsorption of extracted aqueous lead ions onto the ground soybean and the pH of the extraction solution. More complexing ligands were extracted from the ground soybean as the reaction pH increased. As a result, significantly higher lead extraction efficiency was observed under basic environments. In addition, less adsorption onto soybean was observed when the pH of the solution was higher than 7. Among two available Lewis base functional groups in the extracted soybean-complexing ligands such as carboxylate and the alpha-amino functional groups, the non-protonated alpha-amino functional groups may play an important role for the dissolution of lead from lead-contaminated soil through the formation of soluble lead--ligand complexes.
Collapse
Affiliation(s)
- Yong-Woo Lee
- Department of Applied Chemistry, Hanyang University, 1271 Sa-3 dong, Ansan, Republic of Korea 426-791
| | | |
Collapse
|
21
|
Yeung AT, Gu YY. A review on techniques to enhance electrochemical remediation of contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2011; 195:11-29. [PMID: 21889259 DOI: 10.1016/j.jhazmat.2011.08.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 05/27/2023]
Abstract
Electrochemical remediation is a promising remediation technology for soils contaminated with inorganic, organic, and mixed contaminants. A direct-current electric field is imposed on the contaminated soil to extract the contaminants by the combined mechanisms of electroosmosis, electromigration, and/or electrophoresis. The technology is particularly effective in fine-grained soils of low hydraulic conductivity and large specific surface area. However, the effectiveness of the technology may be diminished by sorption of contaminants on soil particle surfaces and various effects induced by the hydrogen ions and hydroxide ions generated at the electrodes. Various enhancement techniques have been developed to tackle these diminishing effects. A comprehensive review of these techniques is given in this paper with a view to providing useful information to researchers and practitioners in this field.
Collapse
Affiliation(s)
- Albert T Yeung
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | | |
Collapse
|