1
|
Wang J, Xu B. Removal of radionuclide 99Tc from aqueous solution by various adsorbents: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107267. [PMID: 37598575 DOI: 10.1016/j.jenvrad.2023.107267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Technetium isotope 99Tc is a main radioactive waste produced in the process of nuclear reaction, which has the characteristics of long half-life and strong environmental mobility, and can be bio-accumulated in organisms, resulting in serious threat to human health and ecosystem. Adsorption method is widely used in the field of removing radionuclides from water due to the advantages of high treatment rate, simple and mature industrial application. In this review paper, the recent advances in research and application of various adsorption materials for 99Tc pollution treatment were summarized and analyzed for the first time, including inorganic adsorbents, such as activated carbon, zero-valent iron, metallic minerals, clay minerals, layered double hydroxides (LDHs), tin-based materials, and sulfur-based materials; organic adsorbents, such as porous organic polymers (POPs), covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and ion exchange resin; and biological adsorbents, such as biopolymers (chitosan, cellulose, alginate), and microbial cells. The performance characteristics and the adsorption kinetics and isotherms of various adsorption materials were discussed. This review could deepen the understanding of the adsorptive removal of 99Tc from aqueous solution, and provide a reference for the future research in this field.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Bowen Xu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
2
|
Li W, Zu B, Yang Q, An J, Li J. Nanoplastic adsorption characteristics of bisphenol A: The roles of pH, metal ions, and suspended sediments. MARINE POLLUTION BULLETIN 2022; 178:113602. [PMID: 35381461 DOI: 10.1016/j.marpolbul.2022.113602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/09/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs) are widely found in the environment and can act as a vector for various toxic substances and promote their diffusion and bioenrichment, but the underlying mechanisms are largely unknown. Here, the adsorption characteristics of bisphenol A (BPA) onto NPs were explored. The results show that the adsorption of BPA on NPs was dominated by saturated single-layer adsorption and affected by both intra-particle diffusion and liquid film diffusion. Electrostatic interaction, π-π interaction, and hydrophobic effects played key roles in adsorption. In addition, the introduction of electrolytes inhibited the adsorption of BPA onto NPs. Interestingly, the introduction of suspended sediment promoted the formation of heterogeneous aggregates of NPs-SS, thereby reducing the adsorption capacity, indicating that aggregation may play an important role in the adsorption behavior of NPs. Overall, our results provide new insights into the adsorption behavior of BPA on NPs and the underlying mechanisms under different environmental conditions.
Collapse
Affiliation(s)
- Wang Li
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Bo Zu
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Qingwei Yang
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Junwen An
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jiawen Li
- Chongqing Research Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| |
Collapse
|
3
|
Mayordomo N, Rodríguez DM, Schild D, Molodtsov K, Johnstone EV, Hübner R, Shams Aldin Azzam S, Brendler V, Müller K. Technetium retention by gamma alumina nanoparticles and the effect of sorbed Fe 2. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122066. [PMID: 31972433 DOI: 10.1016/j.jhazmat.2020.122066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Technetium (Tc) retention on gamma alumina nanoparticles (γ-Al2O3 NPs) has been studied in the absence (binary system) and presence (ternary system) of previously sorbed Fe2+ as a reducing agent. In the binary system, γ-Al2O3 NPs sorb up to 6.5% of Tc from solution as Tc(VII). In the ternary system, the presence of previously sorbed Fe2+ on γ-Al2O3 NPs significantly enhances the uptake of Tc from pH 4 to pH 11. Under these conditions, the reaction rate of Tc increases with pH, resulting in a complete uptake for pHs > 6.5. Redox potential (Eh) and X-ray photoelectron spectroscopy (XPS) measurements evince heterogeneous reduction of Tc(VII) to Tc(IV). Here, the formation of Fe-containing solids was observed; Raman and scanning electron microscopy showed the presence of Fe(OH)2, Fe(II)-Al(III)-Cl layered double hydroxide (LDH), and other Fe(II) and Fe(III) mineral phases, e.g. Fe3O4, FeOOH, Fe2O3. These results indicate that Tc scavenging is predominantly governed by the presence of sorbed Fe2+ species on γ-Al2O3 NPs, where the reduction of Tc(VII) to Tc(IV) and overall Tc retention is highly improved, even under acidic conditions. Likewise, the formation of additional Fe solid phases in the ternary system promotes the Tc uptake via adsorption, co-precipitation, and incorporation mechanisms.
Collapse
Affiliation(s)
- Natalia Mayordomo
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| | - Diana M Rodríguez
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Dieter Schild
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Konrad Molodtsov
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Erik V Johnstone
- Innovative Fuel Solutions (IFS), 89031, North Las Vegas, NV, USA
| | - René Hübner
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Salim Shams Aldin Azzam
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Vinzenz Brendler
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Katharina Müller
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| |
Collapse
|
4
|
Ji H, Zhu Y, Duan J, Liu W, Zhao D. Reductive immobilization and long-term remobilization of radioactive pertechnetate using bio-macromolecules stabilized zero valent iron nanoparticles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Abstract
Abstract
Pertechnetate anion sorption was investigated on modified bentonites. Mn-, Cr-, Sn-bentonites were prepared by ion exchange process to sorb radioactive pertechnetate ions. In the case of Mn-, Cr-bentonite the sorb amount of metal ion was 70–90% of the cation exchange capacity of the bentonite which is expected. Interestingly in the case of Sn-bentonite this amount was 1.42 times higher than the cation exchange capacity. On Mn-bentonite the sorption was 35% at pH 5. The removal of pertechnetate ions was 100% on Cr-, Sn-bentonites and the significant sorption was achieved below 650 mV/SHE.
Collapse
|
6
|
Khan AA, Khan IA, Siyal MI, Lee CK, Kim JO. Optimization of membrane modification using SiO 2 for robust anti-fouling performance with calcium-humic acid feed in membrane distillation. ENVIRONMENTAL RESEARCH 2019; 170:374-382. [PMID: 30623884 DOI: 10.1016/j.envres.2018.12.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The goal of this study was to prepare a robust anti-wetting and anti-fouling polyethersulfone (PES) membrane for the rejection of a highly saline (NaCl and CaCl2·2H2O) feed solution containing humic acid (HA) in direct contact membrane distillation (DCMD). Response surface methodology (RSM) was used to determine the optimum formulation of the used materials. The variable factors selected were polydimethyl siloxane (PDMS) and silica (SiO2); liquid entry pressure (LEP) and contact angle (CA) were selected as responses. Scanning electron microscopy (SEM) analysis confirmed the SiO2 deposition and Fourier-transform infrared spectroscopy (FTIR) test evidenced the new functional groups i.e., Si-OH, siloxane, and C-F bond vibrations at 3446, 1099 cm-1, and 1150-1240 cm-1 respectively on the membrane surface. The average roughness (Ra) was increased four times for the coated membranes (0.202-0.242 µm) as compared to that for pristine PES membrane (0.053 µm). The optimum PES-13 membrane exhibited consistent flux of 12 LMH and salt rejection (> 99%) with anti-fouling characteristic in DCMD using the feed solution of 3.5 wt% NaCl + 10 mM CaCl2·2H2O + 10 mg L-1 HA. The PES-13 membrane may therefore be a key membrane for application in DCMD against CaCl2·2H2O-containing salty solutions with HA.
Collapse
Affiliation(s)
- Aftab Ahmad Khan
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Imtiaz Afzal Khan
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Muhammad Irfan Siyal
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chang-Kyu Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Research Engineering Development Inc., 488 Maesohol-ro, Michuhol-gu, Incheon 22223, Republic of Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
7
|
Ji H, Zhu Y, Liu W, Bozack MJ, Qian T, Zhao D. Sequestration of pertechnetate using carboxymethyl cellulose stabilized FeS nanoparticles: Effectiveness and mechanisms. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Saptiama I, Kaneti YV, Oveisi H, Suzuki Y, Tsuchiya K, Takai K, Sakae T, Pradhan S, Hossain MSA, Fukumitsu N, Ariga K, Yamauchi Y. Molybdenum Adsorption Properties of Alumina-Embedded Mesoporous Silica for Medical Radioisotope Production. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170295] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Indra Saptiama
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8576
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044
| | - Hamid Oveisi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Department of Materials and Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Yoshitaka Suzuki
- Japan Atomic Energy Agency (JAEA), 4002 Narita, Oarai, Higashi-Ibaraki, Ibaraki 311-1393
| | - Kunihiko Tsuchiya
- Japan Atomic Energy Agency (JAEA), 4002 Narita, Oarai, Higashi-Ibaraki, Ibaraki 311-1393
| | - Kimiko Takai
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044
| | - Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8576
| | - Subrata Pradhan
- Institute for Plasma Research, Gandhinagar 382 428, Gujarat, India
| | - Md. Shahriar A. Hossain
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
| | - Nobuyoshi Fukumitsu
- Department of Radiation Oncology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8576
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| | - Yusuke Yamauchi
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
- School of Chemical Engineering & Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
9
|
Asmussen RM, Pearce CI, Miller BW, Lawter AR, Neeway JJ, Lukens WW, Bowden ME, Miller MA, Buck EC, Serne RJ, Qafoku NP. Getters for improved technetium containment in cementitious waste forms. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:238-247. [PMID: 28787657 DOI: 10.1016/j.jhazmat.2017.07.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/03/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This work focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon entering the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ∼0.08wt% of the total waste form mass. The observed diffusion (Dobs) of Tc decreased from 4.6±0.2×10-12cm2/s for Cast Stone that did not contain a getter to 5.4±0.4×10-13cm2/s for KMS-2 containing Cast Stone. It was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc Dobs when using the KMS-2.
Collapse
Affiliation(s)
- R Matthew Asmussen
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, USA.
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, USA
| | - Brian W Miller
- College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, AZ, USA
| | - Amanda R Lawter
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, USA
| | - James J Neeway
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, USA
| | - Wayne W Lukens
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley, CA, USA
| | - Mark E Bowden
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, USA
| | - Micah A Miller
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, USA
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, USA
| | - R Jeffery Serne
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, USA
| | - Nikolla P Qafoku
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, USA
| |
Collapse
|
10
|
Shen Y, Zhao W, Zhang C, Shan Y, Shi J. Degradation of streptomycin in aquatic environment: kinetics, pathway, and antibacterial activity analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14337-14345. [PMID: 28429270 DOI: 10.1007/s11356-017-8978-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Streptomycin used in human and veterinary medicine is released into the environment mainly through excretions. As such, its elimination in water should be investigated to control pollution. In this study, the degradation of streptomycin in water was studied, and the influence of variables, including light exposure, solution pH, temperature, ionic strength, dissolved organic matter (DOM), and coexisting surfactants, on degradation was investigated. Streptomycin degradation was consistent with the first-order model in aquatic environments. Its degradation rate under light exposure was 2.6-fold faster than that in the dark. Streptomycin was stable under neutral conditions, but it was easily decomposed in acidic and basic environments. Streptomycin degradation was enhanced by high temperature, and its half-life decreased from 103.4 days at 15 °C to 30.9 days at 40 °C. This process was also accelerated by the presence of Ca2+ and slightly improved by the addition of HA. Streptomycin degradation was suppressed by high levels of the cationic surfactant cetyltri- methylammonium bromide (CTAB), but was promoted by the anionic surfactant sodium dodecyl benzene sulfonate (SDBS). The main degradation intermediates/products were identified through liquid chromatography-mass spectrometry, and the possible degradation pathway was proposed. The antibacterial activity of streptomycin solution was also determined during degradation. Results showed that STR degradation generated intermediates/products with weaker antibacterial activity than the parent compound.
Collapse
Affiliation(s)
- Yanru Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Wenyan Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Chunling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yujie Shan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Junxian Shi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
11
|
Huo L, Xie W, Qian T, Guan X, Zhao D. Reductive immobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles. CHEMOSPHERE 2017; 174:456-465. [PMID: 28187392 DOI: 10.1016/j.chemosphere.2017.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Radioactive technetium (99Tc) is of intense concern because of its toxicity and high mobility in the environment. Reduction of Tc(VII) to Tc(IV) decreases the mobility and availability of technetium in soil and groundwater. In this study, pyrite nanoparticles (FeS2) were synthesized, characterized and tested for immobilizing/removing 99Tc(VII) in soil and groundwater through batch and column experiments. Influences of particle dosage, dissolved organic matter (DOM), and pH on the reductive immobilization kinetics were examined. At a dosage of 0.28 g/L as Fe, the pyrite nanoparticles were able to rapidly and completely remove 4.88 × 10-7 M of Tc(VII) by converting it to insoluble Tc(IV), with a retarded first-order rate constant of 0.30 h-1. The presence of high concentrations of DOM only moderately inhibited the reduction effectiveness, and acidic pH was more favorable for Tc(VII) reduction. Column experiments showed that embedding a 0.8 cm pyrite layer of the material in a soil bed, simulating a permeable reactive barrier, was able to retard technetium transport 710 times more than a model sandy soil. The results demonstrated that the pyrite particles may serve as a long-lasting reactive material to remediate Tc-contaminated soil, groundwater and solid wastes.
Collapse
Affiliation(s)
- Lijuan Huo
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbo Xie
- Environmental Engineering Program, Department of Civil Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849, USA
| | - Tianwei Qian
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dongye Zhao
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China; Environmental Engineering Program, Department of Civil Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
12
|
Lin J, Zhang Z, Zhan Y. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12195-12211. [PMID: 28353102 DOI: 10.1007/s11356-017-8873-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.
Collapse
Affiliation(s)
- Jianwei Lin
- College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Shanghai, 201306, China.
| | - Zhe Zhang
- College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Shanghai, 201306, China
| | - Yanhui Zhan
- College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Shanghai, 201306, China
| |
Collapse
|
13
|
Mouelhi M, Giraudet S, Amrane A, Hamrouni B. Competitive adsorption of fluoride and natural organic matter onto activated alumina. ENVIRONMENTAL TECHNOLOGY 2016; 37:2326-2336. [PMID: 26849225 DOI: 10.1080/09593330.2016.1149521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Natural organic matter (NOM) is a major water constituent that affects the performance of water treatment processes. Several studies have shown that NOM can be adsorbed on the surface of oxides and may compete with other ions. The overall goal of this study was essentially to investigate the competitive adsorption between fluoride and NOM on activated alumina (AA). For this purpose, a humic acid (HA) was used as a model compound for NOM. The interaction of NOM with fluoride, the simultaneous competitive adsorption, and the effect of preloading AA with NOM were investigated. The specific absorbance of HA was determined at 254 nm. Size-exclusion chromatography measurements confirmed the adsorption of aromatic fractions of NOM onto AA. The presence of HA in the system inhibited fluoride sorption onto AA and the removal yield using fresh AA decreased from 70.4 % to 51.0 % in the presence of HA. The decrease was more pronounced using AA preloaded with HA, reaching 37.7 %. The interference of coexisting ions and their effect on fluoride removal capacity were evaluated, showing a severe impact of the presence of phosphate on the removal capacity unlike nitrates and sulfates, which slightly improved the fluoride sorption.
Collapse
Affiliation(s)
- Meral Mouelhi
- a Desalination and Water Treatment Research Unit, Faculty of Sciences of Tunis , University of Tunis El Manar , Tunis , Tunisia
| | - Sylvain Giraudet
- b Ecole Nationale Supérieure de Chimie de Rennes, CNRS , Rennes , France
| | - Abdeltif Amrane
- b Ecole Nationale Supérieure de Chimie de Rennes, CNRS , Rennes , France
| | - Béchir Hamrouni
- a Desalination and Water Treatment Research Unit, Faculty of Sciences of Tunis , University of Tunis El Manar , Tunis , Tunisia
| |
Collapse
|
14
|
Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060575. [PMID: 27294942 PMCID: PMC4924032 DOI: 10.3390/ijerph13060575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/31/2023]
Abstract
Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water.
Collapse
|
15
|
Guo X, Yin Y, Yang C, Zhang Q. Remove mechanisms of sulfamethazine by goethite: the contributions of pH and ionic strength. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2472-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Petrović Đ, Đukić A, Kumrić K, Babić B, Momčilović M, Ivanović N, Matović L. Mechanism of sorption of pertechnetate onto ordered mesoporous carbon. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3249-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Li C, Wang CL, Liu XY, Zheng Z, Wang LH, Zhu QQ, Kang ML, Chen T, Liu CL. Effects of ionic strength and humic acid on 99TcO4 − sorption and diffusion in Beishan granite. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1746-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|