1
|
Wang X, Liu N, Zeng R, Liu G, Yao H, Fang J. Change of core microorganisms and nitrogen conversion pathways in chicken manure composts by different substrates to reduce nitrogen losses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14959-14970. [PMID: 38285254 DOI: 10.1007/s11356-024-31901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Due to the rapid development of animal husbandry, the associated environmental problems cannot be ignored, with the management of livestock and poultry manure emerging as the most prominent issue. Composting technology has been widely used in livestock and poultry manure management. A deeper understanding of the nitrogen conversion process during composting offers a theoretical foundation for selecting compost substrates. In this study, the effects of sawdust (CK) and spent mushroom compost (T1) as auxiliary materials on nitrogen as well as microbial structure in the composting process when composted with chicken manure were investigated. At the end of composting, the nitrogen loss of T1 was reduced by 17.18% relative to CK. When used as a compost substrate, spent mushroom compost accelerates the succession of microbial communities within the compost pile and alters the core microbial communities within the microbial community. Bacterial genera capable of cellulose degradation (Fibrobacter, Herbinix) are new core microorganisms that influence the assimilation of nitrate reduction during compost maturation. Using spent mushroom compost as a composting substrate increased the enzyme activity of nitrogen assimilation while decreasing the enzyme activity of the denitrification pathway.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
2
|
S R, Sabumon PC. A critical review on slaughterhouse waste management and framing sustainable practices in managing slaughterhouse waste in India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116823. [PMID: 36455438 DOI: 10.1016/j.jenvman.2022.116823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Global meat consumption is on a rise with around 253 million metric tons of meat produced globally in the year 2020. Because of the rise in population and change in food preferences, meat consumption trend is likely to continue. Meat production by animal slaughtering increases the slaughterhouse wastes in the form of both solid and liquid wastes. Although various technologies for slaughterhouse waste management are available in developed countries, the effective utilization of slaughterhouse waste management is still missing in developing countries like India. India plays an active role in the meat export business globally and stood 2nd in the world with a total export valuation of 2.89 billion US $ in the year 2020. In this context, this study presents a critical overview of the current technological advancements in the global slaughterhouse waste management including utilization of by-products and further, the prevailing slaughterhouse waste management of India is discussed. Finally, a sustainable slaughterhouse waste management strategy emphasizing circular economy and regulations improvements have been suggested for India to compete in this sector at global scale.
Collapse
Affiliation(s)
- Ragasri S
- School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, India
| | - P C Sabumon
- School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, India.
| |
Collapse
|
3
|
Shi M, Liu C, Zhao Y, Wei Z, Zhao M, Jia L, He P. Insight into the effects of regulating denitrification on composting: Strategies to simultaneously reduce environmental pollution risk and promote aromatic humic substance formation. BIORESOURCE TECHNOLOGY 2021; 342:125901. [PMID: 34555754 DOI: 10.1016/j.biortech.2021.125901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Denitrification during composting is a hidden danger that causes environmental pollution risk and aromatic humic substance damage, which needs to be better regulate urgently. In this study, two denitrification regulation methods, moisture and biochar amendment, were conducted during chicken manure composting. Denitrification performance data showed two regulation methods obviously reduced NO3--N, NO2--N and N2 contents. Humic substance increased by 25.3 % and 29.1 % under two regulations. Microbiological analysis indicated that two regulation methods could decreasing denitrifying functional microbes with aroma degradation capability. Subsequently, denitrification gene narG, nirS, nosZ were significantly inhibited (p < 0.05) and the aromatic degradation metabolism pathways were down-regulated. Correlation analysis further revealed the important influence of interspecific interactions and non-biological characteristics on functional microbes. These results provided important scientific basis to denitrification regulation in the practice of composting, which achieved the purpose of simultaneously controlling environmental pollution risk and conducing end-product formation.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chengguo Liu
- Instrumental Analysis Center, Northeast Agricultural University, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Maoyuan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liming Jia
- Heilongjiang Province Environmental Monitoring Centre, Harbin 150056, China
| | - Pingping He
- Heilongjiang Province Environmental Science Research Institute, Harbin 150056, China
| |
Collapse
|
4
|
Zhang S, Chen Z, Wen Q, Ma J, He Z. Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra: Characteristics of chemical and fluorescent parameters of water-extractable organic matter. CHEMOSPHERE 2016; 155:358-366. [PMID: 27135697 DOI: 10.1016/j.chemosphere.2016.04.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
To investigate characteristics of water-extractable organic matter (WEOM) from different stages and evaluate the maturity for co-composting penicillin mycelial dreg (PMD) via fluorescence regional integration (FRI) of fluorescence excitation-emission matrix (EEM), a pilot-scale co-composting was carried out. The results showed that a classical temperature profile showed and a degradation rate of 98.1% for residual penicillin was obtained on the 6th day. DOC and DOC/DON ratio were in a low level of 4.0 g kg(-1) and 3.7, respectively, after the 32nd day. In addition, respirometric rate (SOUR) decreased to 0.87 mg O2 g(-1) VS h(-1) finally. The EEM showed that the specific Ex/Em peak related to microbial byproduct-like vanished on the 32nd day, while those related to fulvic-like and humic acid-like appearing on the 24th day. The fluorescence regional integration (FRI) results demonstrated that PV,n/PIII,n increased to 3.28 finally, suggesting a desirable maturity for co-composting PMD. The EEM-FRI consequently has the potential for characterizing the WEOM from the co-composting of PMD.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China.
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China.
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, China
| | - Zhonghua He
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, China
| |
Collapse
|
5
|
Zhang S, Chen Z, Wen Q, Yang L, Wang W, Zheng J. Effectiveness of bulking agents for co-composting penicillin mycelial dreg (PMD) and sewage sludge in pilot-scale system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:1362-70. [PMID: 26362639 DOI: 10.1007/s11356-015-5357-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/01/2015] [Indexed: 05/18/2023]
Abstract
Penicillin mycelial dreg (PMD) has a distinguishing characteristic of the high content of penicillin residue and nutrients. The existing handling of PMD used as feed additive of livestock and poultry is facing a direct challenge of penicillin transportation into environment due to the inadequate absorption through the digestive system. This work aims at examining the feasibility of co-composting of PMD with sewage sludge (SWS) in a pilot-scale system and evaluating the effect of four bulking agents. Seven treatments were co-composted over a 32-day period in 390-L reactors using the same PMD and SWS with different bulking agents, corresponding to the seven formulas (T-1: PMD + SWS + RS; T-2: PMD + SWS + WS; T-3: PMD + SWS + RS + SD; T-4: PMD + SWS + WS + SD; T-5: PMD + SWS + SD; T-6: PMD + SWS + RS + WS; control: PMD + SWS). The parameters monitored over this period included temperature, organic matter (OM), TN, NH4(+)-N, NO3(-)-N, pH, EC, penicillin residue, as well as germination index (GI). The results showed that co-composting PMD and SWS with BA is feasible. The highest rate of OM mineralization was observed in T-3, while below 30% for T-2, T-4, and T-5. Furthermore, the SD addition resulted in both the increase in the duration of thermophilic stage and maximum temperature and the decrease in TN losses, particularly in T-3, suggesting that the formula of the T-3 is very suitable option for the co-composting of PMD and SWS.
Collapse
Affiliation(s)
- Shihua Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243002, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China.
| | - Lian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Wenyan Wang
- School of Economics and Management, Tongji University, Shanghai, 200092, China
| | - Jun Zheng
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243002, China
| |
Collapse
|