1
|
Lin H, Chen G, Zhang Z, Ren Y. Exploration of the mechanism of 2-CP degradation by Acinetobacter sp. stimulated by Lactobacillus plantarum fermentation waste: A bio-waste reuse. ENVIRONMENTAL RESEARCH 2023; 231:116119. [PMID: 37178747 DOI: 10.1016/j.envres.2023.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Green and economical pollution management methods which reusing bio-waste as biostimulant to effectively improve the removal of target pollutants are receiving more and more attention. In this study, Lactobacillus plantarum fermentation waste solution (LPS) was used to investigate its facilitative effect and the stimulation mechanisms on the degradation of 2-chlorophenol (2-CP) by strain Acinetobacter sp. Strain ZY1 in terms of both cell physiology and transcriptomics. The degradation efficiency of 2-CP was improved from 60% to >80% under LPS treatment. The biostimulant maintained the morphology of strain, reduced the level of reactive oxygen species, and recovered the cell membrane permeability from 39% to 22%. It also significantly increased the level of electron transfer activity and extracellular polymeric substances secretion and improved the metabolic activity of the strain. The transcriptome results revealed the stimulation of LPS to promote biological processes such as bacterial proliferation, metabolism, membrane structure composition, and energy conversion. This study provided new insights and references for the reuse of fermentation waste streams in biostimulation methods.
Collapse
Affiliation(s)
- Han Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Guotao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhen Zhang
- Guangzhou Institute of Microbiology Group Co., Guangzhou, 510663, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institution, PR China.
| |
Collapse
|
2
|
Construction of ionic liquid-filled silica shell microcapsules based on emulsion template and evaluation of their adsorption properties toward 3,4,5-trichlorophenol after various surface functionalization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Sahoo MM, Sahoo NK, Daverey A, Raut S. Co-metabolic biodegradation of 4-bromophenol in a mixture of pollutants system by Arthrobacter chlorophenolicus A6. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:602-614. [PMID: 35059927 DOI: 10.1007/s10646-021-02508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Brominated phenols are listed as priority pollutants together with nitrophenol and chlorophenol are the key components of paper pulp wastewater. However, the biodegradation of bromophenol in a mixed substrate system is very scanty. In the present investigation, simultaneous biodegradation kinetics of three substituted phenols 4-bromophenol (4-BP), 4-nitrophenol (4-NP), and 4-chlorophenol (4-CP) were investigated using Arthrobacter chlorophenolicus A6. A 23 full factorial design was applied with varying 4-BP and 4-CP from 75-125 mg/L and 4-NP from 50-100 mg/L. Almost complete degradation of this mixture of substituted phenols was achieved at initial concentration combinations of 125, 125, and 100 mg/L of 4-CP, 4-BP, and 4-NP, respectively, in 68 h. Statistical analysis of the results revealed that, among the three variables, 4-NP had the most prominent influence on the degradation of both 4-CP and 4-BP, while the concentration of 4-CP had a strong negative interaction effect on the biodegradation of 4-NP. Irrespective of the concentration levels of these three substrates, 4-NP was preferentially biodegraded over 4-CP and 4-BP. Furthermore, 4-BP biodegradation rates were found to be higher than those of 4-CP, followed by 4-NP. Besides, the variation of the biomass yield coefficient of the culture was investigated at different initial concentration combinations of these substituted phenols. Although the actinomycetes consumed 4-NP at a faster rate, the biomass yield was very poor. This revealed that the microbial cells were more stressed when grown on 4-NP compared to 4-BP and 4-CP. Overall, this study revealed the potential of A. chlorophenolicus A6 for the degradation of 4-BP in mixed substrate systems.
Collapse
Affiliation(s)
- Mitali Madhusmita Sahoo
- Centre for Biotechnology, Siksha 'O'Anusandhan, Deemed to be University, Bhubaneswar, 751 030, Odisha, India
| | - Naresh Kumar Sahoo
- Department of Chemistry, Environmental Science and Technology Program, Institute of Technical Education and Research, Siksha'O'Anusandhan, Deemed to be University, Bhubaneswar, 751 030, Odisha, India.
| | - Achlesh Daverey
- School of Environment & Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India
| | - Sangeeta Raut
- Centre for Biotechnology, Siksha 'O'Anusandhan, Deemed to be University, Bhubaneswar, 751 030, Odisha, India
| |
Collapse
|
4
|
Jiang Y, Shang Y, Gong T, Hu Z, Yang K, Shao S. High concentration of Mn 2+ has multiple influences on aerobic granular sludge for aniline wastewater treatment. CHEMOSPHERE 2020; 240:124945. [PMID: 31726594 DOI: 10.1016/j.chemosphere.2019.124945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/08/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effect of high concentration of Mn2+ on the aerobic granular sludge (AGS) systems for aniline wastewater treatment was systematically investigated in terms of AGS formation and pollutant removal efficiency. Two parallel sequencing batch reactors were operated to treat the aniline-rich wastewater with and without 20 mg L-1 of Mn2+. In the presence of Mn2+, the time to granulation was prolonged from 23 d to 30 d due to the toxicity of the high concentration of Mn2+. However, the mature granules with Mn2+ produced more protein and polysaccharides, and had a larger size (870 μm) than that without Mn2+ (740 μm). The extracellular polymeric substances of the granules in the two reactors had similar protein compositions, but some functional groups increased with Mn2+. The reactors showed high overall removal efficiency of chemical oxygen demand, NH4+-N, and total nitrogen with average concentrations below 40, 1.0, and 19 mg L-1, respectively, in the effluents. In one typical operating cycle, however, Mn2+ retarded nitrification and the degradation of aniline, while promoted denitrification. The microbial community analysis revealed that the growth of Terrisporobacter, Pseudomonas, and many other bacteria responsible for aniline degradation was inhibited by Mn2+, and so were the strains involved in nitrification. In contrast, Mn2+ facilitated the growth of denitrifying bacteria.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Yu Shang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Tengjing Gong
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Zixin Hu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Kai Yang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
5
|
Surkatti R, Al-Zuhair S. Microalgae cultivation for phenolic compounds removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33936-33956. [PMID: 30353440 DOI: 10.1007/s11356-018-3450-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Microalgae are promising sustainable and renewable sources of oils that can be used for biodiesel production. In addition, they contain important compounds, such as proteins and pigments, which have large applications in the food and pharmaceutical industries. Combining the production of these valuable products with wastewater treatment renders the cultivation of microalgae very attractive and economically feasible. This review paper presents and discusses the current applications of microalgae cultivation for wastewater treatment, particularly for the removal of phenolic compounds. The effects of cultivation conditions on the rate of contaminants removal and biomass productivity, as well as the chemical composition of microalgae cells are also discussed.
Collapse
Affiliation(s)
- Riham Surkatti
- Chemical Engineering Department, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates
| | - Sulaiman Al-Zuhair
- Chemical Engineering Department, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
6
|
Ma Y, Jia ZM, Bai FY, Pan XM, Zhao L. Theoretical study on the formation mechanisms, dynamics and the effective catalysis of the nitrophenols. ChemistrySelect 2018. [DOI: 10.1002/slct.201802006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Ma
- Institute of Functional Material Chemistry; National & Local United Engineering Lab for Power Battery; Faculty of Chemistry; Northeast Normal University, 130024, Changchun, People's Republic of; China
| | - Zi-man Jia
- Civil and Environmental Engineering; Henry Samueli School of Engineering and Applied Science; University of California, Los Angeles, California; 90095 United States
| | - Feng-yang Bai
- Institute of Functional Material Chemistry; National & Local United Engineering Lab for Power Battery; Faculty of Chemistry; Northeast Normal University, 130024, Changchun, People's Republic of; China
| | - Xiu-mei Pan
- Institute of Functional Material Chemistry; National & Local United Engineering Lab for Power Battery; Faculty of Chemistry; Northeast Normal University, 130024, Changchun, People's Republic of; China
| | - Liang Zhao
- Institute of Functional Material Chemistry; National & Local United Engineering Lab for Power Battery; Faculty of Chemistry; Northeast Normal University, 130024, Changchun, People's Republic of; China
| |
Collapse
|
7
|
Salas-Cortés JA, Cuervo-López FDM, Texier AC. Simultaneous oxidation of ammonium and cresol isomers in a sequencing batch reactor: physiological and kinetic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25667-25675. [PMID: 26894615 DOI: 10.1007/s11356-016-6293-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to evaluate the physiological and kinetic capacities of a nitrifying consortium to simultaneously oxidize ammonium (138 mg N/L day), m-cresol, o-cresol, and p-cresol (180 mg C/L day in mixture) in a sequencing batch reactor (SBR). A 1-L SBR was firstly operated without cresol addition (phase I) for stabilizing the nitrification respiratory process with ammonium consumption efficiencies close to 100 % and obtaining nitrate as the main end product. When cresols were added (phase II m-cresol (10, 20, and 30 mg C/L); phase III m-cresol (30 mg C/L) and o-cresol (10, 20, and 30 mg C/L); phase IV a mixture of three isomers (30 mg C/L each one)), inhibitory effects were evidenced by decreased values of the specific rates of nitrification compared with values from phase I. However, the inhibition diminished throughout the operation cycles, and the overall nitrifying physiological activity of the sludge was not altered in terms of efficiency and nitrate yield. The different cresols were totally consumed, being o-cresol the most recalcitrant. The use of SBR allowed a metabolic adaptation of the consortium to oxidize the cresols as the specific rates of consumption increased throughout the cycles, showing that this type of reactor can be a good alternative for treating industrial effluents in a unique reactor.
Collapse
Affiliation(s)
- Juan Antonio Salas-Cortés
- Departamento de Biotecnología, División CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, C.P. 09340, México, D.F., Mexico
| | - Flor de María Cuervo-López
- Departamento de Biotecnología, División CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, C.P. 09340, México, D.F., Mexico
| | - Anne-Claire Texier
- Departamento de Biotecnología, División CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, C.P. 09340, México, D.F., Mexico.
| |
Collapse
|
8
|
Xiao F, Li W, Fang L, Wang D. Synthesis of akageneite (beta-FeOOH)/reduced graphene oxide nanocomposites for oxidative decomposition of 2-chlorophenol by Fenton-like reaction. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:11-20. [PMID: 26808238 DOI: 10.1016/j.jhazmat.2016.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
In this work, the composite of reduced graphene oxide and akageneite (Ak/rGO) was synthesised by co-precipitating and reduction processes. The morphological and structural features of the synthesized composites (Ak/rGO) were characterized by XRD, SEM, BET, FTIR, Zeta potential and XPS. The results revealed that (1) beta-FeOOH was successfully loaded on the reduced graphene oxide (rGO); (2) the presence of strong interfacial interactions (Fe-O-C bonds) between rGO and beta-FeOOH was observed; (3) the reduction of graphene oxide may be inhabited in the formation process of beta-FeOOH, producing rGO sheets rather than rGO sphere. In the heterogeneous Fenton-like reaction, the degradation rate constants of 2-chlorophenol (2-CP) increased 2-5 times after the addition of rGO probably due to the Fe-O-C bond. The increase of the content of rGO could contribute to the removal of 2-CP, due to the synergy of catalysis and 2-CP adsorption towards Ak/rGO. In this study, the Ak/rGO composite has exhibited great potential and significant prospects for environmental application.
Collapse
Affiliation(s)
- Feng Xiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing 100085, China.
| | - Wentao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing 100085, China
| | - Liping Fang
- Faculty of Material Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Wuhan 430074, China.
| | - Dongsheng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, No. 18, Shuangqing Road, Haidian District, Beijing 100085, China
| |
Collapse
|
9
|
Ramos C, Suárez-Ojeda ME, Carrera J. Long-term performance and stability of a continuous granular airlift reactor treating a high-strength wastewater containing a mixture of aromatic compounds. JOURNAL OF HAZARDOUS MATERIALS 2016; 303:154-161. [PMID: 26530892 DOI: 10.1016/j.jhazmat.2015.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Continuous feeding operation of an airlift reactor and its inoculation with mature aerobic granules allowed the successful treatment of a mixture of aromatic compounds (p-nitrophenol, o-cresol and phenol). Complete biodegradation of p-nitrophenol, o-cresol, phenol and their metabolic intermediates was achieved at an organic loading rate of 0.61 g COD L(-1)d(-1). Stable granulation was obtained throughout the long-term operation (400 days) achieving an average granule size of 2.0 ± 1 mm and a sludge volumetric index of 26 ± 1 mL g(-1) TSS. The identified genera in the aerobic granular biomass were heterotrophic bacteria able to consume aromatic compounds. Therefore, the continuous feeding regimen and the exposure of aerobic granules to a mixture of aromatic compounds make possible to obtain good granulation and high removal efficiency.
Collapse
Affiliation(s)
- Carlos Ramos
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Edifici Q, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
10
|
Xu P, Ma W, Han H, Hou B, Jia S. Biodegradation and interaction of quinoline and glucose in dual substrates system. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 94:365-369. [PMID: 25283366 DOI: 10.1007/s00128-014-1388-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/18/2014] [Indexed: 06/03/2023]
Abstract
An indigenous mixed culture of microorganisms, isolated from a full-scale coal gasification wastewater treatment plant, was used in degrading quinoline in presence of glucose as an alternative carbon source. The results showed that biodegradation kinetics of both quinoline and glucose could be described by first-order reaction kinetics model. It was also found that the biodegradation rate of quinoline was accelerated by the presence of glucose, while glucose degradation was inhibited by the presence of quinoline. Both the biomass yield coefficient and specific growth rate were increased with the increasing of the glucose concentrations in the dual substrates system. A sum kinetics model was used to describe the relative effects of the two substrates on their individual uptakes. The interaction parameter values indicated that quinoline exhibits stronger inhibition on glucose degradation. But for glucose, its effect on quinoline utilization was stimulative. Furthermore, the stimulation was positively correlated with the concentration of glucose in the system.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Postbox 2062, Second Campus of Harbin Institute of Technology, Haihe Road 202, Harbin, 150090, China
| | | | | | | | | |
Collapse
|
11
|
Jemaat Z, Suárez-Ojeda ME, Pérez J, Carrera J. Partial nitritation and o-cresol removal with aerobic granular biomass in a continuous airlift reactor. WATER RESEARCH 2014; 48:354-362. [PMID: 24140352 DOI: 10.1016/j.watres.2013.09.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/28/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
Several chemical industries produce wastewaters containing both, ammonium and phenolic compounds. As an alternative to treat this kind of complex industrial wastewaters, this study presents the simultaneous partial nitritation and o-cresol biodegradation in a continuous airlift reactor using aerobic granular biomass. An aerobic granular sludge was developed in the airlift reactor for treating a high-strength ammonium wastewater containing 950 ± 25 mg N-NH4(+) L(-1). Then, the airlift reactor was bioaugmented with a p-nitrophenol-degrading activated sludge and o-cresol was added progressively to the ammonium feed to achieve 100 mg L(-1). The results showed that stable partial nitritation and full biodegradation of o-cresol were simultaneously maintained obtaining a suitable effluent for a subsequent anammox reactor. Moreover, two o-cresol shock-load events with concentrations of 300 and 1000 mg L(-1) were applied to assess the capabilities of the system. Despite these shock load events, the partial nitritation process was kept stable and o-cresol was totally biodegraded. Fluorescence in situ hybridization technique was used to identify the heterotrophic bacteria related to o-cresol biodegradation and the ammonia oxidising bacteria along the granules.
Collapse
Affiliation(s)
- Zulkifly Jemaat
- Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|