1
|
Justin LD, Olukanni DO, Babaremu KO. Performance assessment of local aquatic macrophytes for domestic wastewater treatment in Nigerian communities: A review. Heliyon 2022; 8:e10093. [PMID: 36042728 PMCID: PMC9420480 DOI: 10.1016/j.heliyon.2022.e10093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/21/2022] [Accepted: 07/22/2022] [Indexed: 10/27/2022] Open
Abstract
The concept of treating wastewater before disposal is a global necessity. Recent mechanisms of doing this include the use of Constructed Wetland Systems (CWS). This technique is believed to be cost-effective and simpler compared to conventional methods. The application of this system is primarily dependent on the use of plants through the phytoremediation process. There is evidence of the potential of some locally found Nigerian aquatic plants such as water lettuce, water hyacinth and duckweed to be applicable for this purpose. However, there is little information on their performance level in remediating domestic wastewater. Thus, this review paper assessed the performance of these local macrophytes for domestic wastewater treatment and the potential of contributing the same in Nigerian communities. This was done by reviewing recent literature on the role of water lettuce, water hyacinth and duckweed, their occurrence and their efficiency in minimising different wastewater contaminants. Contaminant indicators such as total solids, electrical conductivity (EC), BOD, COD, dissolved oxygen, total phosphorous, total nitrogen, and heavy metals have been reduced using these macrophytes. The review indicates that the selected macrophytes do not only have the potential for wastewater purification but high efficiencies in doing so when applied appropriately in the Nigerian communities.
Collapse
Affiliation(s)
- Lazarus D Justin
- Department of Civil Engineering Covenant University, Ota, Ogun State, Nigeria
| | - David O Olukanni
- Department of Civil Engineering Covenant University, Ota, Ogun State, Nigeria
| | - Kunle O Babaremu
- Department of Mechanical Engineering, University of Johannesburg, South Africa.,Directorate of Pan African Universities for Life and Earth Institute, Ibadan, Oyo State, Nigeria
| |
Collapse
|
2
|
An Overview of the Valorization of Aquatic Plants in Effluent Depuration through Phytoremediation Processes. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Environmental biotechnologies are a popular choice for using efficient, low-cost, low-waste, and environmentally friendly methods to clean up and restore polluted sites. In these technologies, plants (terrestrial and aquatic) and their associated micro-organisms are used to eliminate pollutants that threaten the health of humans and animals. They have emerged as alternative methods to conventional techniques that have become increasingly aggressive to the environment. Currently, all actors of the environment, whether governors, industrialists, or citizen associations are more interested in the application and development of these technologies. The present overview provides available information about recent developments in phytoremediation processes using specifically aquatic plants. The main goal is to highlight the key role of this technology in combating the drastic organic and inorganic pollution that threatens our planet daily. Furthermore, this study presents the valorization of aquatic plant after phytoremediation process in energy. In particular, this article tries to identify gaps that are necessary to propose future developments and prospects that could guarantee sustainable development aspired by all generations.
Collapse
|
3
|
Role of Microorganisms in the Remediation of Wastewater in Floating Treatment Wetlands: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12145559] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article provides useful information for understanding the specific role of microbes in the pollutant removal process in floating treatment wetlands (FTWs). The current literature is collected and organized to provide an insight into the specific role of microbes toward plants and pollutants. Several aspects are discussed, such as important components of FTWs, common bacterial species, rhizospheric and endophytes bacteria, and their specific role in the pollutant removal process. The roots of plants release oxygen and exudates, which act as a substrate for microbial growth. The bacteria attach themselves to the roots and form biofilms to get nutrients from the plants. Along the plants, the microbial community also influences the performance of FTWs. The bacterial community contributes to the removal of nitrogen, phosphorus, toxic metals, hydrocarbon, and organic compounds. Plant–microbe interaction breaks down complex compounds into simple nutrients, mobilizes metal ions, and increases the uptake of pollutants by plants. The inoculation of the roots of plants with acclimatized microbes may improve the phytoremediation potential of FTWs. The bacteria also encourage plant growth and the bioavailability of toxic pollutants and can alleviate metal toxicity.
Collapse
|
4
|
Ekperusi AO, Sikoki FD, Nwachukwu EO. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. CHEMOSPHERE 2019; 223:285-309. [PMID: 30784736 DOI: 10.1016/j.chemosphere.2019.02.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 05/18/2023]
Abstract
Over the past 50 years, different strategies have been developed for the remediation of polluted air, land and water. Driven by public opinion and regulatory bottlenecks, ecological based strategies are preferable than conventional methods in the treatments of chemical effluents. Ecological systems with the application of microbes, fungi, earthworms, plants, enzymes, electrode and nanoparticles have been applied to varying degrees in different media for the remediation of various categories of pollutants. Aquatic macrophytes have been used extensively for the remediation of pollutants in wastewater effluents and aquatic environment over the past 30 years with the common duckweed (L. minor) as one of the most effective macrophytes that have been applied for remediation studies. Duckweed has shown strong potentials for the phytoremediation of organic pollutants, heavy metals, agrochemicals, pharmaceuticals and personal care products, radioactive waste, nanomaterials, petroleum hydrocarbons, dyes, toxins, and related pollutants. This review covers the state of duckweed application for the remediation of diverse aquatic pollutants and identifies gaps that are necessary for further studies as we find pragmatic and sound ecological solutions for the remediation of polluted environment for sustainable development.
Collapse
Affiliation(s)
- Abraham O Ekperusi
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemicals Research, Institute of Petroleum Studies, University of Port Harcourt, Choba, Rivers State, Nigeria; Department of Marine Environment & Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria.
| | - Francis D Sikoki
- Department of Animal & Environmental Biology, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| | - Eunice O Nwachukwu
- Department of Plant Science & Biotechnology, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria
| |
Collapse
|
5
|
Zhang C, Guo J, Lian J, Song Y, Lu C, Li H. Bio-mixotrophic perchlorate reduction to control sulfate production in a step-feed sulfur-based reactor: A study of kinetics, ORP and bacterial community structure. BIORESOURCE TECHNOLOGY 2018; 269:40-49. [PMID: 30149253 DOI: 10.1016/j.biortech.2018.08.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 05/13/2023]
Abstract
Excess sulfate production and low concentration of perchlorate removal are the main problems for sulfur-based perchlorate reduction reactor. In this study, the problems were firstly solved by step-feeding under mixotrophic conditions. The performances of step-feed sulfur-based reactor (SFSBR) and up-flow sulfur-based reactor (UFSBR) are compared. At perchlorate of 194 mg/L, acetate of 28.8 mg/L and hydraulic retention time of 0.9 h, the Half-order reaction rate constant and the sulfate production of SFSBR were 29.7 mg1/2/L1/2·h and 171 mg/L, respectively, which were superior to those of UFSBR. The oxidation-reduction potential values of SFSBR were lower than that of UFSBR. Meanwhile, the biodiversity along the height of the reactor was decreased by step-feeding. Principal component analysis showed significant interrelations existed among the bacterial community composition and the operational/environmental conditions in each treatment zone. Consequently, the SFSBR provides an effectively alteration for the removal of high perchlorate concentration and control sulfate.
Collapse
Affiliation(s)
- Chao Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China; School of Environment Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianbo Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China.
| | - Jing Lian
- School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang 050018, PR China
| | - Yuanyuan Song
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| | - Caicai Lu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| | - Haibo Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| |
Collapse
|
6
|
Luo J, He M, Qi S, Wu J, Gu XS. Effect of planting density and harvest protocol on field-scale phytoremediation efficiency by Eucalyptus globulus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11343-11350. [PMID: 29417481 DOI: 10.1007/s11356-018-1427-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
The phytoremediation efficiency of multi-metal-polluted sites in an electronic waste recycling town by Eucalyptus globulus was evaluated through a series of 2-year field experiments. Different initial planting densities (2500, 5000, and 10,000 plants per ha), coppice rotations, and harvesting position (5 or 30 cm above the ground) protocols were designed to improve the remediation potential of the species. There were unnoticeable variations in metal concentrations and distribution characteristics in plant tissues in a low and medium planting-density field during the experimental period. At the end of the experiment, total biomass production per hectare in different protocols displayed a wide range with maximum yield produced in high density, moderate harvesting, and coppice rotation protocol being 2.9 times higher than the minimum yield. The moderate harvest protocol performed with medium planting density was the optimal Cd and Cu decontamination technique. Although the high planting-density field without coppice rotation had the strongest potential for Pb decontamination, it would take more time to remove other metals for the multi-metal-polluted soil decontamination. Considering the remediation efficiency and maintainability of the cultivation system, the moderate harvest protocol performed with the medium planting density was commended for phytoremediation of e-waste recycling impacted area.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, People's Republic of China.
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| | - Mei He
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, People's Republic of China
| | - Shihua Qi
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Jian Wu
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Xiaowen Sophie Gu
- The University of Melbourne, Grattan Street Parkville, Melbourne, VIC, 3010, Australia
| |
Collapse
|
7
|
Zhang C, Guo J, Lian J, Lu C, Ngo HH, Guo W, Song Y, Guo Y. Characteristics of electron transport chain and affecting factors for thiosulfate-driven perchlorate reduction. CHEMOSPHERE 2017; 185:539-547. [PMID: 28719873 DOI: 10.1016/j.chemosphere.2017.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/28/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
The mechanism for perchlorate reduction was investigated using thiosulfate-driven (T-driven) perchlorate reduction bacteria. The influences of various environmental conditions on perchlorate reduction, including pH, temperature and electron acceptors were examined. The maximum perchlorate removal rate was observed at pH 7.5 and 40 °C. Perchlorate reduction was delayed due to the coexistence of perchlorate-chlorate and perchlorate-nitrate. The mechanism of the T-driven perchlorate reduction electron transport chain (ETC) was also investigated by utilizing different inhibitors. The results were as follows: firstly, the NADH dehydrogenase was not involved in the ETC; secondly, the FAD dehydrogenase and quinone loop participated in the ETC; and thirdly, cytochrome oxidase was the main pathway in the ETC. Meanwhile, microbial consortium structure analysis indicated that Sulfurovum which can oxidize sulfur compounds coupled to the reduction of nitrate or perchlorate was the primary bacterium in the T-driven and sulfur-driven consortium. This study generates a better understanding of the mechanism of T-driven perchlorate reduction.
Collapse
Affiliation(s)
- Chao Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China; School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang 050018, PR China
| | - Jianbo Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China; School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang 050018, PR China.
| | - Jing Lian
- School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang 050018, PR China
| | - Caicai Lu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Yuanyuan Song
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26#, Tianjin 300384, PR China
| | - Yankai Guo
- School of Environmental Science and Engineering & Pollution Prevention Biotechnology Laboratory of Hebei Province, Hebei University of Science and Technology, Yuhua East Road 70#, Shijiazhuang 050018, PR China
| |
Collapse
|
8
|
Grijalbo L, Becerril JM, Barrutia O, Gutierrez-Mañero J, Lucas Garcia JA. Lemna minor tolerance to metal-working fluid residues: implications for rhizoremediation. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:695-702. [PMID: 27007194 DOI: 10.1111/plb.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
For the first time in the literature, duckweed (Lemna minor) tolerance (alone or in combination with a consortium of bacteria) to spent metal-working fluid (MWF) was assessed, together with its capacity to reduce the chemical oxygen demand (COD) of this residue. In a preliminary study, L. minor response to pre-treated MWF residue (ptMWF) and vacuum-distilled MWF water (MWFw) was tested. Plants were able to grow in both residues at different COD levels tested (up to 2300 mg·l(-1) ), showing few toxicity symptoms (mainly growth inhibition). Plant response to MWFw was more regular and dose responsive than when exposed to ptMWF. Moreover, COD reduction was less significant in ptMWF. Thus, based on these preliminary results, a second study was conducted using MWFw to test the effectiveness of inoculation with a bacterial consortium isolated from a membrane bioreactor fed with the same residue. After 5 days of exposure, COD in solutions containing inoculated plants was significantly lower than in non-inoculated ones. Moreover, inoculation reduced β+γ-tocopherol levels in MWFw-exposed plants, suggesting pollutant imposed stress was reduced. We therefore conclude from that L. minor is highly tolerant to spent MWF residues and that this species can be very useful, together with the appropriate bacterial consortium, in reducing COD of this residue under local legislation limits and thus minimise its potential environmental impact. Interestingly, the lipophilic antioxidant tocopherol (especially the sum of β+γ isomers) proved to be an effective plant biomarker of pollution.
Collapse
Affiliation(s)
- L Grijalbo
- Department of Pharmaceutical & Health Sciences, Facultad Farmacia, Urb. Monteprincipe, Universidad San Pablo CEU, Madrid, Spain
| | - J M Becerril
- Department of Plant Biology and Ecology, University of the Basque Country/EHU, Bilbao, Spain
| | - O Barrutia
- Department of Plant Biology and Ecology, University of the Basque Country/EHU, Bilbao, Spain
| | - J Gutierrez-Mañero
- Department of Pharmaceutical & Health Sciences, Facultad Farmacia, Urb. Monteprincipe, Universidad San Pablo CEU, Madrid, Spain
| | - J A Lucas Garcia
- Department of Pharmaceutical & Health Sciences, Facultad Farmacia, Urb. Monteprincipe, Universidad San Pablo CEU, Madrid, Spain
| |
Collapse
|
9
|
Chen GK, Li XB, He HZ, Li HS, Zhang ZM. Varietal differences in the growth of rice seedlings exposed to perchlorate and their antioxidative defense mechanisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1926-1933. [PMID: 25898795 DOI: 10.1002/etc.3028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
A hydroponic experiment was conducted to investigate perchlorate (ClO4 (-) ) phytotoxicity in different rice varieties. Considerable variations were observed when 24 rice varieties were treated with ClO4 (-) . The shoot height, root length, and biomass of most varieties were significantly reduced by ClO4 (-) . The roots were more sensitive than the shoots. Hierarchical clustering analysis demonstrated primarily 4 groups: ClO4 (-) -sensitive, medium ClO4 (-) -sensitive, medium ClO4 (-) tolerant, and ClO4 (-) -tolerant. Gannuoxiang (a ClO4 (-) -tolerant variety) and IR65598-112-2 (a ClO4 (-) -sensitive variety) were chosen to explore their antioxidant response when exposed to 0.2 mmol/L, 2.0 mmol/L, and 4.0 mmol/L ClO4 (-) . The results showed that the activities of superoxide dismutase and catalase increased in the shoots and roots of gannuoxiang with increasing doses of ClO4 (-) , but both of them decreased at higher concentrations of ClO4 (-) in IR65598-112-2. The addition of ClO4 (-) led to a significant increase in peroxidase activities for both of the varieties, whereas the increase was more pronounced in gannuoxiang than in IR65598-112-2. No significant difference was found in malondialdehyde (MDA) contents in gannuoxiang, whereas the addition of ClO4 (-) increased the MDA level significantly in IR65598-112-2. The results indicated that gannuoxiang has higher activities of antioxidant enzymes than IR65598-112-2 to cope with oxidative damage caused by ClO4 (-) stress, which may be the main cause of its high tolerance.
Collapse
Affiliation(s)
- Gui-Kui Chen
- Key Laboratory of Agro-Environment in the Tropics, South China Agricultural University, Ministry of Agriculture, Guangzhou, China
| | - Xiao-Bing Li
- Key Laboratory of Agro-Environment in the Tropics, South China Agricultural University, Ministry of Agriculture, Guangzhou, China
| | - Hong-Zhi He
- Key Laboratory of Agro-Environment in the Tropics, South China Agricultural University, Ministry of Agriculture, Guangzhou, China
| | - Hua-Shou Li
- Key Laboratory of Agro-Environment in the Tropics, South China Agricultural University, Ministry of Agriculture, Guangzhou, China
| | - Ze-Min Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Sankar S, Prajeesh GPV, Anupama VN, Krishnakumar B, Hareesh P, Nair BN, Warrier KG, Hareesh UNS. Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate removal. JOURNAL OF HAZARDOUS MATERIALS 2014; 275:222-229. [PMID: 24872208 DOI: 10.1016/j.jhazmat.2014.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Porous lanthanum phosphate substrates, obtained by an environmentally benign colloidal forming process employing methyl cellulose, are reported here as excellent adsorbents of perchlorate with >98% efficiency and with 100% reusability. Additionally, the effectiveness of such substrates as biocatalyst supports that facilitate biofilm formation of perchlorate reducing microbes (Serratia marcescens NIIST 5) is also demonstrated for the first time. The adsorption of perchlorate ions is attributed to the pore structure of lanthanum phosphate substrate and the microbial attachment is primarily ascribed to its intrinsic hydrophobic property. Lanthanum phosphate thus emerges as a dual functional material that possesses an integrated adsorption/bioremediation property for the effective removal of ClO4(-) which is an increasingly important environmental contaminant.
Collapse
Affiliation(s)
| | - Gangadharan Puthiya Veetil Prajeesh
- Process Engineering and Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India
| | - Vijaya Nadaraja Anupama
- Process Engineering and Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India
| | - Bhaskaran Krishnakumar
- Process Engineering and Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India; Academy of Scientific and Industrial Research (AcSIR), India
| | | | | | - Krishna Gopakumar Warrier
- Materials Science and Technology Division, India; Academy of Scientific and Industrial Research (AcSIR), India
| | | |
Collapse
|