1
|
Mohy Eldin A, Hossam N. Microbial surfactants: characteristics, production and broader application prospects in environment and industry. Prep Biochem Biotechnol 2023; 53:1013-1042. [PMID: 37651735 DOI: 10.1080/10826068.2023.2175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microbial surfactants are green molecules with high surface activities having the most promising advantages over chemical surfactants including their ability to efficiently reducing surface and interfacial tension, nontoxic emulsion-based formulations, biocompatibility, biodegradability, simplicity of preparation from low cost materials such as residual by-products and renewable resources at large scales, effectiveness and stabilization under extreme conditions and broad spectrum antagonism of pathogens to be part of the biocontrol strategy. Thus, biosurfactants are universal tools of great current interest. The present work describes the major types and microbial origin of surfactants and their production optimization from agro-industrial wastes in the batch shake-flasks and bioreactor systems through solid-state and submerged fermentation industries. Various downstream strategies that had been developed to extract and purify biosurfactants are discussed. Further, the physicochemical properties and functional characteristics of biosurfactants open new future prospects for the development of efficient and eco-friendly commercially successful biotechnological product compounds with diverse potential applications in environment, industry, biomedicine, nanotechnology and energy-saving technology as well.
Collapse
Affiliation(s)
- Ahmed Mohy Eldin
- Department of Microbiology, Soils, Water and Environmental Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt
| | | |
Collapse
|
2
|
Behera S, Das S. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations. Microbiol Res 2023; 273:127399. [PMID: 37150049 DOI: 10.1016/j.micres.2023.127399] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Increasing industrialization and anthropogenic activities have resulted in the release of a wide variety of pollutants into the environment including pesticides, polycyclic aromatic hydrocarbons (PAHs), and heavy metals. These pollutants pose a serious threat to human health as well as to the ecosystem. Thus, the removal of these compounds from the environment is highly important. Mitigation of the environmental pollution caused by these pollutants via bioremediation has become a promising approach nowadays. Actinobacteria are a group of eubacteria mostly known for their ability to produce secondary metabolites. The morphological features such as spore formation, filamentous growth, higher surface area to volume ratio, and cellular mechanisms like EPS secretion, and siderophore production in Actinobacteria render higher resistance and biodegradation ability. In addition, these bacteria possess several oxidoreductase systems (oxyR, catR, furA, etc.) which help in bioremediation. Actinobacteria genera including Arthrobacter, Rhodococcus, Streptomyces, Nocardia, Microbacterium, etc. have shown great potential for the bioremediation of various pollutants. In this review, the bioremediation ability of these bacteria has been discussed in detail. The utilization of various genera of Actinobacteria for the biodegradation of organic pollutants, including pesticides and PAHs, and inorganic pollutants like heavy metals has been described. In addition, the cellular mechanisms in these microbes which help to withstand oxidative stress have been discussed. Finally, this review explores the Actinobacteria mediated strategies and recent technologies such as the utilization of mixed cultures, cell immobilization, plant-microbe interaction, utilization of biosurfactants and nanoparticles, etc., to enhance the bioremediation of various environmental pollutants.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
3
|
Chafale A, Kapley A. Biosurfactants as microbial bioactive compounds in microbial enhanced oil recovery. J Biotechnol 2022; 352:1-15. [DOI: 10.1016/j.jbiotec.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022]
|
4
|
Guerrero DS, Romero CM, Polti MA, Dávila Costa JS. Genome sequencing and genomic analysis of Amycolatopsis tucumanensis DSM 45259 applicable in gray, red, and nano-biotechnology. J Basic Microbiol 2022; 62:779-787. [PMID: 35551685 DOI: 10.1002/jobm.202200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022]
Abstract
Through the years, the genus Amycolatopsis has demonstrated its biotechnological potential. The need to clean up the environment and produce new antimicrobial molecules led to exploit promising bacterial genera such as Amycolatopsis. In this present work, we analyze the genome of the strain Amycolatopsis tucumanensis AB0 previously isolated from copper-polluted sediments. Phylogenomic and comparative analysis with the closest phylogenetic neighbor was performed. Our analysis showed the genetic potential of the strain to deal with heavy metals such as copper and mitigate oxidative stress. In addition, the ability to produce copper oxide nanoparticles and the presence of genes potentially involved in the synthesis of secondary metabolites suggest that A. tucumanensis may find utility in gray, red, and nano-biotechnology. To our knowledge, this is the first genomic analysis of an Amycolatopsis strain with potential for different biotechnological fields.
Collapse
Affiliation(s)
- Daiana S Guerrero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Marta A Polti
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina
| | - José S Dávila Costa
- Planta Piloto de Procesos Industriales Microbiológicos- (PROIMI-CONICET), Tucumán, Argentina
| |
Collapse
|
5
|
Gao Y, Wang H, Xu R, Wang YN, Sun Y, Bian R, Li W. Remediation of Cr(VI)-contaminated soil by combined chemical reduction and microbial stabilization: The role of biogas solid residue (BSR). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113198. [PMID: 35033874 DOI: 10.1016/j.ecoenv.2022.113198] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, the use of chemical reduction combined with microbial stabilization to remediate Cr(VI) in contaminated soil was systematically investigated. The effectiveness, phytotoxicity and microbial diversity resulting from the combination of ferrous sulfate with microbial stabilization by biogas solid residue (BSR) were determined. The stabilization experiments showed that the optimum Cr(VI) conversion rate of 99.92% was achieved with an Fe (II)/Cr(VI) molar ratio of 3:1, a BSR dose of 5.2% (wt), and a water content of 40%. Under these conditions, the residual Cr(VI) content was 0.80 mg/kg, which satisfied the risk screening value (≤ 5.7 mg/kg) for soil contamination of land for general development in China. The remaining Cr(VI) level was stable for 90 days during the chemical reduction and biogenic stabilization process. Moreover, Zucconi test analysis suggested that the soil phytotoxicity to Brassica campestris L. disappeared. The results of microbial diversity analysis indicated that the bacterial community changed significantly during chemical reduction and microbial stabilization processes, and Bacillus, Pseudomonas and Psychrobacter may participate in the reduction of Cr(VI) into Cr(III).
Collapse
Affiliation(s)
- Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Rong Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Rongxing Bian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Weihua Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
6
|
Secondary Metabolites of the Genus Amycolatopsis: Structures, Bioactivities and Biosynthesis. Molecules 2021; 26:molecules26071884. [PMID: 33810439 PMCID: PMC8037709 DOI: 10.3390/molecules26071884] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Actinomycetes are regarded as important sources for the generation of various bioactive secondary metabolites with rich chemical and bioactive diversities. Amycolatopsis falls under the rare actinomycete genus with the potential to produce antibiotics. In this review, all literatures were searched in the Web of Science, Google Scholar and PubMed up to March 2021. The keywords used in the search strategy were “Amycolatopsis”, “secondary metabolite”, “new or novel compound”, “bioactivity”, “biosynthetic pathway” and “derivatives”. The objective in this review is to summarize the chemical structures and biological activities of secondary metabolites from the genus Amycolatopsis. A total of 159 compounds derived from 8 known and 18 unidentified species are summarized in this paper. These secondary metabolites are mainly categorized into polyphenols, linear polyketides, macrolides, macrolactams, thiazolyl peptides, cyclic peptides, glycopeptides, amide and amino derivatives, glycoside derivatives, enediyne derivatives and sesquiterpenes. Meanwhile, they mainly showed unique antimicrobial, anti-cancer, antioxidant, anti-hyperglycemic, and enzyme inhibition activities. In addition, the biosynthetic pathways of several potent bioactive compounds and derivatives are included and the prospect of the chemical substances obtained from Amycolatopsis is also discussed to provide ideas for their implementation in the field of therapeutics and drug discovery.
Collapse
|
7
|
Williams SC, Forsberg AP, Lee J, Vizcarra CL, Lopatkin AJ, Austin RN. Investigation of the prevalence and catalytic activity of rubredoxin-fused alkane monooxygenases (AlkBs). J Inorg Biochem 2021; 219:111409. [PMID: 33752122 DOI: 10.1016/j.jinorgbio.2021.111409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 02/21/2021] [Indexed: 10/21/2022]
Abstract
Interest in understanding the environmental distribution of the alkane monooxygenase (AlkB) enzyme led to the identification of over 100 distinct alkane monooxygenase (AlkB) enzymes containing a covalently bound, or fused, rubredoxin. The rubredoxin-fused AlkB from Dietzia cinnamea was cloned as a full-length protein and as a truncated protein with the rubredoxin domain deleted. A point mutation (V91W) was introduced into the full-length protein, with the goal of assessing how steric bulk in the putative substrate channel might affect selectivity. Based on activity studies with alkane and alkene substrates, the rubredoxin-fused AlkB oxidizes a similar range of alkane substrates relative to its rubredoxin domain-deletion counterpart. Oxidation of terminal alkenes generated both an epoxide and a terminal aldehyde. The products of V91W-mutant-catalyzed oxidation of alkenes had a higher aldehyde-to-epoxide ratio than the products formed in the presence of the wild type protein. These results are consistent with this mutation causing a structural change impacting substrate positioning.
Collapse
Affiliation(s)
- Shoshana C Williams
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY 10027, USA
| | - Allison P Forsberg
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY 10027, USA
| | - Juliet Lee
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY 10027, USA
| | - Christina L Vizcarra
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY 10027, USA
| | - Allison J Lopatkin
- Department of Biology, Barnard College, 3009 Broadway, New York, NY 10027, USA; Data Science Institute Columbia University, New York, NY 10027 USA
| | - Rachel N Austin
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY 10027, USA.
| |
Collapse
|
8
|
Fu L, Feng A, Xiao J, Wu Q, Ye Q, Peng S. Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123847. [PMID: 33264926 DOI: 10.1016/j.jhazmat.2020.123847] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
In order to solve the problem of re-oxidation after chemical remediation of soil contaminated with high levels of hexavalent chromium (Cr(VI)), we investigated the use of chemical reduction combined with microbial stabilization to remediate soils contaminated with high Cr(VI) concentration. The leaching toxicity and microbial diversity of Cr(VI)-contaminated soil and the leaching toxicity of remediated soil oxidized by potassium permanganate (KMnO4) were measured. The results indicate that the conversion rate of Cr(VI) reached 97 %, and the concentration of Cr(VI) in toxic solutions leaching can be reduced by 95 % after 40 days of microbial stabilization. Sterilization experiments showed that the reduction of Cr(VI) by microorganisms is stable. The results of microbial diversity analysis indicate that bacterial community changed more than fungal community during the reduction process of Cr(VI), and the species abundance and species evenness of bacteria decreased. Bacillus spp. and Halomonas spp. were the dominant species in this study.
Collapse
Affiliation(s)
- Lijuan Fu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Aixi Feng
- Yuhuan Environmental Science and Technology Co., Ltd, No. 88, Hongqi Street, Qiaoxi District, Shijiazhuang, Hebei Province, 050000, China
| | - Jingjing Xiao
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Qing Wu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Qunying Ye
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
9
|
Gianni de Carvalho K, Gómez JE, Vallejo M, Marguet ER, Peroti NI, Donato M, Itri R, Colin VL. Production and properties of a bioemulsifier obtained from a lactic acid bacterium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109553. [PMID: 31416012 DOI: 10.1016/j.ecoenv.2019.109553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/05/2019] [Accepted: 08/06/2019] [Indexed: 05/26/2023]
Abstract
In the present work, the production of bioemulsifier (BE) by a lactic acid bacterium (LAB) grown at 25 °C in lactic whey-based media for 24 h was evaluated. Maximum production was detected in a medium containing yeast extract, peptone and lactic whey (LAPLW medium), with a yield of 270 mg L-1. The BE proved to be more innocuous for Caco-2 cells, used as a toxicological indicator, than the non-ionic surfactant Triton X-100. In addition, the microbial product presented higher stability to changes in temperature (37 °C to 100 °C), pH (2-10), and salt concentration (5% and 20%, w/v) than the synthetic surfactant. Regarding emulsifying capacity tested against different hydrophobic substrates (kerosene, motor oil, diesel, sunflower oil, and grape oil), the BE displayed E24 values similar to or even better than those of Triton X-100. Finally, Triton X-100 caused irreversible modifications on the giant unilamellar vesicles (used as model membrane system), promoting the solubilization of the lipid bilayers. Nevertheless, BE induced temporary modifications of the membrane, which is associated with incorporation of the bioproduct in the outer layer. These results demonstrate the role of BE in biological processes, including reversible changes in microbial membranes to enhance the access to hydrophobic substrates.
Collapse
Affiliation(s)
- K Gianni de Carvalho
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina
| | - J E Gómez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina
| | - M Vallejo
- Laboratorio de Biotecnología Bacteriana, Universidad Nacional de la Patagonia San Juan Bosco, 9 de Julio 25, 9100, Trelew, Chubut, Argentina
| | - E R Marguet
- Laboratorio de Biotecnología Bacteriana, Universidad Nacional de la Patagonia San Juan Bosco, 9 de Julio 25, 9100, Trelew, Chubut, Argentina
| | - N I Peroti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina
| | - M Donato
- Institute of Physics, University of Sao Paulo, SP, Brazil
| | - R Itri
- Institute of Physics, University of Sao Paulo, SP, Brazil
| | - V L Colin
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina.
| |
Collapse
|
10
|
Bourguignon N, Irazusta V, Isaac P, Estévez C, Maizel D, Ferrero MA. Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:19-28. [PMID: 30878660 DOI: 10.1016/j.ecoenv.2019.02.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
In the present study the polycyclic aromatic hydrocarbon removal and metabolic adaptation of Amycolatopsis tucumanensis DSM 45259 were investigated. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed differential synthesis of proteins which were identified by MALDI-TOF. To elucidate the phenanthrene metabolic pathway in A. tucumanensis DSM45259, two-dimensional electrophoresis and detection of phenanthrene degradation intermediates by GS-MS were performed. The presence of aromatic substrates resulted in changes in the abundance of proteins involved in the metabolism of aromatic compounds, oxidative stress response, energy production and protein synthesis. The obtained results allowed us to clarify the phenanthrene catabolic pathway, by confirming the roles of several proteins involved in the degradation process and comprehensive adaptation. This may clear the way for more efficient engineering of bacteria in the direction of more effective bioremediation applications.
Collapse
Affiliation(s)
- Natalia Bourguignon
- Universidad Tecnológica Nacional (UTN), Facultad Regional de Haédo, París 532, 1706 Haedo, Buenos Aires, Argentina.
| | - Verónica Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), CONICET-UNSa, Argentina; Facultad de Ciencias Naturales, UNSa, Salta, Argentina
| | - Paula Isaac
- Centro de Investigaciones y Transferencia de Villa María (CIT Villa María), CONICET-Instituto de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Cristina Estévez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), Tucumán, Argentina
| | - Daniela Maizel
- Instituto de Astronomía y Física del Espacio, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Buenos Aires, Intendente Güiraldes 2160, C1428EGA CABA, Argentina
| | - Marcela A Ferrero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), Tucumán, Argentina
| |
Collapse
|
11
|
Fonseca Bastos Santos T, Aparecida de Almeida M, da Silva GF, Silveira Duarte IC. Production of Bioemulsifier by Yeast from the Meyerozyma guilliermondii Complex Isolated from Soil Contaminated with Diesel Oil. TENSIDE SURFACT DET 2019. [DOI: 10.3139/113.110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The objective of the present study was to analyze different sources of carbon (diesel oil, soybean oil and frying oil) to optimize the production of bioemulsifier by a yeast isolated from soil contaminated with diesel oil. A total of 45 autochthonous yeast were isolated from soil contaminated with diesel oil. Cell growth was achieved in soybean oil and frying oil at 30°C and agitation of 200 rpm. Growth in diesel oil was significantly lower, with a mean of 2.99 g/L. Detection of bioemulsifiers was performed with the emulsification index (E24), the drop-collapse test, the flowability of oil and measurement of surface tension. The mean emulsification indices obtained were between 29.27 % and 43 %, with greater production in the cultivation with diesel oil. This study showed that a stronger emulsifying activity is achieved with yeast growing in a medium with diesel oil, and thus that carbon source should be used for bioemulsifier production.
Collapse
|
12
|
Production of a microbial emulsifier with biotechnological potential for environmental applications. Colloids Surf B Biointerfaces 2019; 174:459-466. [DOI: 10.1016/j.colsurfb.2018.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/19/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022]
|
13
|
Rocha e Silva NMP, Meira HM, Almeida FCG, Soares da Silva RDCF, Almeida DG, Luna JM, Rufino RD, Santos VA, Sarubbo LA. Natural Surfactants and Their Applications for Heavy Oil Removal in Industry. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1474477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nathalia Maria P. Rocha e Silva
- Northeast Biotechnology Network, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Hugo M. Meira
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Fabíola Carolina G. Almeida
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Rita de Cássia F. Soares da Silva
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Darne G. Almeida
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Juliana M. Luna
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Raquel D. Rufino
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Valdemir A. Santos
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| | - Leonie A. Sarubbo
- Advanced Institute of Technology and Innovation (IATI), Recife, Pernambuco, Brazil
- Centre for Sciences and Technology, Catholic University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
14
|
Alvarez A, Saez JM, Davila Costa JS, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. CHEMOSPHERE 2017; 166:41-62. [PMID: 27684437 DOI: 10.1016/j.chemosphere.2016.09.070] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 05/03/2023]
Abstract
Actinobacteria exhibit cosmopolitan distribution since their members are widely distributed in aquatic and terrestrial ecosystems. In the environment they play relevant ecological roles including recycling of substances, degradation of complex polymers, and production of bioactive molecules. Biotechnological potential of actinobacteria in the environment was demonstrated by their ability to remove organic and inorganic pollutants. This ability is the reason why actinobacteria have received special attention as candidates for bioremediation, which has gained importance because of the widespread release of contaminants into the environment. Among organic contaminants, pesticides are widely used for pest control, although the negative impact of these chemicals in the environmental balance is increasingly becoming apparent. Similarly, the extensive application of heavy metals in industrial processes lead to highly contaminated areas worldwide. Several studies focused in the use of actinobacteria for cleaning up the environment were performed in the last 15 years. Strategies such as bioaugmentation, biostimulation, cell immobilization, production of biosurfactants, design of defined mixed cultures and the use of plant-microbe systems were developed to enhance the capabilities of actinobacteria in bioremediation. In this review, we compiled and discussed works focused in the study of different bioremediation strategies using actinobacteria and how they contributed to the improvement of the already existing strategies. In addition, we discuss the importance of omic studies to elucidate mechanisms and regulations that bacteria use to cope with pollutant toxicity, since they are still little known in actinobacteria. A brief account of sources and harmful effects of pesticides and heavy metals is also given.
Collapse
Affiliation(s)
- Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán 4000, Argentina.
| | - Juliana Maria Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - José Sebastian Davila Costa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - Veronica Leticia Colin
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - María Soledad Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - Sergio Antonio Cuozzo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán 4000, Argentina.
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán 4000, Argentina.
| | - María Julia Amoroso
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| |
Collapse
|
15
|
Cai Q, Zhang B, Chen B, Zhu Z, Zhao Y. A novel bioemulsifier produced by Exiguobacterium sp. strain N4-1P isolated from petroleum hydrocarbon contaminated coastal sediment. RSC Adv 2017. [DOI: 10.1039/c7ra07411e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study,ExiguobacteriumN4-1P is reported as a bioemulsifier producer for the first time.
Collapse
Affiliation(s)
- Qinhong Cai
- Faculty of Engineering and Applied Science
- Memorial University of Newfoundland
- St. John's
- Canada A1B 3X5
| | - Baiyu Zhang
- Faculty of Engineering and Applied Science
- Memorial University of Newfoundland
- St. John's
- Canada A1B 3X5
| | - Bing Chen
- Faculty of Engineering and Applied Science
- Memorial University of Newfoundland
- St. John's
- Canada A1B 3X5
| | - Zhiwen Zhu
- Faculty of Engineering and Applied Science
- Memorial University of Newfoundland
- St. John's
- Canada A1B 3X5
| | - Yuming Zhao
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada A1B 3X5
| |
Collapse
|
16
|
Bourguignon N, Bargiela R, Rojo D, Chernikova TN, de Rodas SAL, García-Cantalejo J, Näther DJ, Golyshin PN, Barbas C, Ferrero M, Ferrer M. Insights into the degradation capacities of Amycolatopsis tucumanensis DSM 45259 guided by microarray data. World J Microbiol Biotechnol 2016; 32:201. [PMID: 27785708 DOI: 10.1007/s11274-016-2163-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
The analysis of catabolic capacities of microorganisms is currently often achieved by cultivation approaches and by the analysis of genomic or metagenomic datasets. Recently, a microarray system designed from curated key aromatic catabolic gene families and key alkane degradation genes was designed. The collection of genes in the microarray can be exploited to indicate whether a given microbe or microbial community is likely to be functionally connected with certain degradative phenotypes, without previous knowledge of genome data. Herein, this microarray was applied to capture new insights into the catabolic capacities of copper-resistant actinomycete Amycolatopsis tucumanensis DSM 45259. The array data support the presumptive ability of the DSM 45259 strain to utilize single alkanes (n-decane and n-tetradecane) and aromatics such as benzoate, phthalate and phenol as sole carbon sources, which was experimentally validated by cultivation and mass spectrometry. Interestingly, while in strain DSM 45259 alkB gene encoding an alkane hydroxylase is most likely highly similar to that found in other actinomycetes, the genes encoding benzoate 1,2-dioxygenase, phthalate 4,5-dioxygenase and phenol hydroxylase were homologous to proteobacterial genes. This suggests that strain DSM 45259 contains catabolic genes distantly related to those found in other actinomycetes. Together, this study not only provided new insight into the catabolic abilities of strain DSM 45259, but also suggests that this strain contains genes uncommon within actinomycetes.
Collapse
Affiliation(s)
- Natalia Bourguignon
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina
| | - Rafael Bargiela
- Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Madrid, Spain
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain
| | | | - Sara A López de Rodas
- Unidad de Genómica-Campus Moncloa, C.A.I. Genómica y Proteómica, Facultad CC. Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús García-Cantalejo
- Unidad de Genómica-Campus Moncloa, C.A.I. Genómica y Proteómica, Facultad CC. Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Daniela J Näther
- Institute for Microbiology, Biocentre, Goethe University, Frankfurt, Germany
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain
| | - Marcela Ferrero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán, Argentina
| | - Manuel Ferrer
- Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Madrid, Spain.
| |
Collapse
|
17
|
Colin VL, Cortes ÁAJ, Aparicio JD, Amoroso MJ. Potential application of a bioemulsifier-producing actinobacterium for treatment of vinasse. CHEMOSPHERE 2016; 144:842-7. [PMID: 26421623 DOI: 10.1016/j.chemosphere.2015.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Vinasse is a complex effluent created during production of ethyl alcohol, which can present serious pollution hazard in areas where it is discharged. A variety of technologies, many based upon recovery of the effluent via microbial pathways, are continually being evaluated in order to mitigate the pollution potential of vinasse. The present work reports on initial advances related to the effectiveness of the actinobacterium Streptomyces sp. MC1 for vinasse treatment. Alternative use of raw vinasse as a substrate for producing metabolites of biotechnological interest such as bioemulsifiers, was also evaluated. The strain was able to grow at very high vinasse concentrations (until 50% v/v) and remove over 50% of the biodegradable organic matter in a time period as short as 4 d. Potentially toxic metals such as Mn, Fe, Zn, As, and Pb were also effectively removed during bacterial growth. Decrease in the pollution potential of treated vinasse compared to raw effluent, was reflected in a significant increase in the vigour index of Lactuca sativa (letucce) used as bioremediation indicator. Finally, significant bioemulsifier production was detected when this strain was incubated in a vinasse-based culture medium. These results represent the first advances on the recovery and re-valuation of an actual effluent, by using an actinobacterium from our collection of cultures.
Collapse
Affiliation(s)
- Verónica L Colin
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina; Universidad de San Pablo-Tucumán, Argentina.
| | - Álvaro A Juárez Cortes
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina
| | - Juan D Aparicio
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina
| | - María J Amoroso
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino-Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 4000, Tucumán, Argentina
| |
Collapse
|
18
|
Brumano LP, Soler MF, da Silva SS. Recent Advances in Sustainable Production and Application of Biosurfactants in Brazil and Latin America. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2015.0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Larissa Pereira Brumano
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Matheus Francisco Soler
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Silvio Silvério da Silva
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| |
Collapse
|
19
|
Fuentes MS, Colin VL, Amoroso MJ, Benimeli CS. Selection of an actinobacteria mixed culture for chlordane remediation. Pesticide effects on microbial morphology and bioemulsifier production. J Basic Microbiol 2015; 56:127-37. [DOI: 10.1002/jobm.201500514] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022]
Affiliation(s)
- María S. Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET); Avenida Belgrano y Pasaje Caseros; Tucumán Argentina
| | - Verónica L. Colin
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET); Avenida Belgrano y Pasaje Caseros; Tucumán Argentina
- Universidad de San Pablo-Tucumán; Argentina
| | - María J. Amoroso
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET); Avenida Belgrano y Pasaje Caseros; Tucumán Argentina
- Universidad del Norte Santo Tomás de Aquino; Tucumán Argentina
- Facultad de Bioquímica; Química y Farmacia; Universidad Nacional de Tucumán; Tucumán Argentina
| | - Claudia S. Benimeli
- Universidad del Norte Santo Tomás de Aquino; Tucumán Argentina
- Unidad de Administración Territorial; Centro Científico Tecnológico; CONICET-Tucumán; Tucumán Argentina
| |
Collapse
|
20
|
Kügler JH, Le Roes-Hill M, Syldatk C, Hausmann R. Surfactants tailored by the class Actinobacteria. Front Microbiol 2015; 6:212. [PMID: 25852670 PMCID: PMC4365757 DOI: 10.3389/fmicb.2015.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.
Collapse
Affiliation(s)
- Johannes H. Kügler
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Marilize Le Roes-Hill
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of TechnologyBellville, South Africa
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Rudolf Hausmann
- Bioprocess Engineering, Institute of Food Science and Biotechnology, University of HohenheimStuttgart, Germany
| |
Collapse
|
21
|
Dávila Costa JS, Amoroso MJ. Current biotechnological applications of the genus Amycolatopsis. World J Microbiol Biotechnol 2014; 30:1919-26. [PMID: 24557749 DOI: 10.1007/s11274-014-1622-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/08/2014] [Indexed: 01/07/2023]
Abstract
Recently there has been increasing interest in possible biotechnological applications of the bacterial genus Amycolatopsis. This genus originally attracted attention for its antibiotic producing capabilities; although it is actually a multifaceted genus and a more diverse range of studies involving biotechnological processes have now been undertaken. Several works have demonstrated that the versatility shown by these bacteria is valuable in industrial applications. Here, we provide a condensed overview of the most important biotechnological applications such as bioremediation, biodegradation and bioconversion, as well as aspects that need to be explored further in order to gain a fuller insight into this genus, including its possible potential in the production of biofuel. Antibiotic production is not discussed since this is well covered by the latest edition of Bergey's Manual of Systematic Bacteriology. To our knowledge this is the first report highlighting the versatility and biotechnological potential of the genus Amycolatopsis.
Collapse
Affiliation(s)
- José Sebastián Dávila Costa
- Regional Center of Research and Scientific-Technological Development (CRIDECIT), National University of Patagonia San Juan Bosco, km 4-Ciudad Universitaria, 9000, Comodoro Rivadavia, Chubut, Argentina,
| | | |
Collapse
|