1
|
de Lima RS, Tonholo J, Rangabhashiyam S, Fernandes DP, Georgin J, de Paiva E Silva Zanta CL, Meili L. Enhancing Methylene Blue Dye Removal using pyrolyzed Mytella falcata Shells: Characterization, Kinetics, Isotherm, and Regeneration through Photolysis and Peroxidation. ENVIRONMENTAL MANAGEMENT 2024; 73:425-442. [PMID: 37864753 DOI: 10.1007/s00267-023-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
The potential of pyrolyzed Mytella falcata shells as an adsorbent for removing methylene blue dye molecules from aqueous solutions was investigated. The study found that the adsorbent produced at 600 °C of pyrolysis temperature, with an adsorbent mass of 0.5 g, particle diameter of 0.297-0.149 mm, and pH 12.0, demonstrated the highest dye molecule removal efficiency of 82.41%. The material's porosity was observed through scanning electron microscopy, which is favorable for adsorption, while Fourier-transform infrared spectroscopy and X-Ray diffraction analysis analyses confirmed the presence of calcium carbonate in the crystalline phases. The pseudo-second order model was found to be the best fit for the data, suggesting that the adsorption mechanism involves two steps: external diffusion and diffusion via the solid pores. The Redlich-Peterson isotherm model better represented the equilibrium data, and the methylene blue adsorption was found to be spontaneous, favorable, and endothermic. The hydrogen peroxide with UV oxidation was found to be the most efficient method of regeneration, with a regeneration percentage of 63% achieved using 600 mmol.L-1 of oxidizing agents. The results suggest that pyrolyzed Mytella falcata shells could serve as an ecologically viable adsorbent alternative, reducing the amount of waste produced in the local environment and at the same time removing pollutants from the water. The material's adsorption capacity remained almost constant in the first adsorption-oxidation cycles, indicating its potential for repeated use.
Collapse
Affiliation(s)
- Renata Silva de Lima
- Laboratory of Applied Electrochemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-900, Maceió, AL, Brazil
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, 57072-900, Maceió, AL, Brazil
| | - Josealdo Tonholo
- Laboratory of Applied Electrochemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-900, Maceió, AL, Brazil
| | | | - Daniel Pinto Fernandes
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, 57072-900, Maceió, AL, Brazil
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Atlántico, Colombia
| | - Carmem Lúcia de Paiva E Silva Zanta
- Laboratory of Applied Electrochemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-900, Maceió, AL, Brazil
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas, 57072-900, Maceió, AL, Brazil.
| |
Collapse
|
2
|
Sun S, Zhang X, Zhang Y, Sun T, Zhu L, Shi Z, Zhang D. Preparation of a Series of Highly Efficient Porous Adsorbent PGMA-N Molecules and Its Application in the Co-Removal of Cu(II) and Sulfamethoxazole from Water. Molecules 2023; 28:molecules28114420. [PMID: 37298895 DOI: 10.3390/molecules28114420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This paper presents a highly efficient porous adsorbent PGMA-N prepared through a series of amination reactions between polyglycidyl methacrylate (PGMA) and different polyamines. The obtained polymeric porous materials were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), specific surface area test (BET), and elemental analysis (EA). Thereinto, the PGMA-EDA porous adsorbent exhibited excellent ability to synergistically remove Cu(II) ions and sulfamethoxazole from aqueous solutions. Moreover, we studied the effects of pH, contact time, temperature, and initial concentration of pollutants on the adsorption performance of the adsorbent. The experimental results showed that the adsorption process of Cu(II) followed the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity of PGMA-EDA for Cu(II) ions was 0.794 mmol/g. These results indicate that PGMA-EDA porous adsorbent has great potential for application in treating wastewater coexisting with heavy metals and antibiotics.
Collapse
Affiliation(s)
- Shishu Sun
- Key Laboratory of Water Pollution Treatment & Resource Reuse, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiaopeng Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yan Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Tianyi Sun
- Key Laboratory of Water Pollution Treatment & Resource Reuse, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Linhua Zhu
- Key Laboratory of Water Pollution Treatment & Resource Reuse, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Zaifeng Shi
- Key Laboratory of Water Pollution Treatment & Resource Reuse, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dashuai Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Engineering Research Center of Biomembrane Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| |
Collapse
|
3
|
The role of Fe(III) in enhancement of interaction between chitosan and vermiculite for synergistic co-removal of Cr(VI) and Cd(II). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Wieszczycka K, Filipowiak K, Wojciechowska I, Aksamitowski P. Novel ionic liquid-modified polymers for highly effective adsorption of heavy metals ions. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Zhang Y, Feng Y, Xiang Q, Liu F, Ling C, Wang F, Li Y, Li A. A high-flux and anti-interference dual-functional membrane for effective removal of Pb(II) from natural water. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121492. [PMID: 31677912 DOI: 10.1016/j.jhazmat.2019.121492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The development of high efficiency filter membranes, particularly those capable of removing trace heavy metals from drinking water sources, is a global challenge. In this study, a dual-functional membrane (PmGn@PVDF) was successfully developed by doping graphene oxide (GO) and then depositing polydopamine (PDA). The pure water flux (Jw) was 188 LMH/bar and Pb(II) could be effectively removed in the water volume of 2106.36 L m-2. Both PDA and GO performed positive functions. PDA layer exhibited a high affinity toward Pb(II) by chelating with amino groups. And doping GO maintained a high pure water flux, which had been decreased by the extra PDA layer. In addition, the effective treatment volume of Pb(II) was elevated to 5029.06 L/m2 by the co-existence of citric acid, since neutral PbHL coordinated with neutral NH2 and cationic PbL- interacted with NH3+ through electrostatic attraction. Furthermore, PmGn@PVDF showed the excellent anti-interference performance in high salt and nature organic matters solutions. Thus, this novel dual-functional membrane could be considered as a competitive alternative of NF/RO for the efficient and advanced removal towards heavy metals from natural water.
Collapse
Affiliation(s)
- Yanhong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuefeng Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Qi Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Chen Ling
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
6
|
Qiu X, Hu H, Yang J, Wang C, Cheng Z. Selective removal of copper from the artificial nickel electrolysis anolyte by a novel chelating resin: batch, column and mechanisms. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2018.1561299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xuejing Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese resources, Central South University, Changsha, China
| | - Huiping Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese resources, Central South University, Changsha, China
| | - Jinpeng Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese resources, Central South University, Changsha, China
| | - Caixia Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese resources, Central South University, Changsha, China
| | - Zeying Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese resources, Central South University, Changsha, China
| |
Collapse
|
7
|
Wang LL, Ling C, Li BS, Zhang DS, Li C, Zhang XP, Shi ZF. Highly efficient removal of Cu(ii) by novel dendritic polyamine–pyridine-grafted chitosan beads from complicated salty and acidic wastewaters. RSC Adv 2020; 10:19943-19951. [PMID: 35520446 PMCID: PMC9054208 DOI: 10.1039/d0ra02034f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/30/2020] [Indexed: 01/03/2023] Open
Abstract
In this study, dendritic polyamine chitosan beads with and without 2-aminomethyl pyridine were facilely prepared and characterized. Compared to CN (without the pyridine function), more adsorption active sites, larger pores, higher nitrogen content, higher specific surface area, and higher strength could be obtained for CNP (with the pyridine function). CNP microspheres afforded a larger adsorption capacity than those obtained by CN for different pH values; further, the uptake amounts of Cu(ii) were 0.84 and 1.12 mmol g−1 for CN and CNP beads, respectively, at pH 5. The CNP microspheres could scavenge Cu(ii) from highly acidic and salty solutions: the maximum simulated uptake amount of 1.93 mmol g−1 at pH 5 could be achieved. Due to the strong bonding ability and weakly basic property of pyridine groups, the adsorption capacity of Cu(ii) at pH 1 was 0.75 mmol g−1 in highly salty solutions, which was comparative to those obtained from the commercial pyridine chelating resin M4195 (QCu(II) = 0.78 mmol g−1 at pH 1). In addition, a distinct salt-promotion effect could be observed for CNP beads at both pH 5 and 1. Therefore, the prepared adsorbent CNP beads can have promising potential applications in the selective capturing of heavy metals in complex solutions with higher concentrations of H+ and inorganic salts, such as wastewaters from electroplating liquid and battery industries. Dendritic polyamine chitosan (CNP) beads containing 2-aminomethyl pyridine were facilely prepared for the efficient removal of Cu(ii) ions from highly acidic and salty solutions.![]()
Collapse
Affiliation(s)
- Li-Li Wang
- College of Chemistry and Chemical Engineering
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- Hainan Normal University
- Haikou 571158
- China
| | - Chen Ling
- College of Biology and the Environment
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Bang-Sen Li
- College of Chemistry and Chemical Engineering
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- Hainan Normal University
- Haikou 571158
- China
| | - Da-Shuai Zhang
- College of Chemistry and Chemical Engineering
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- Hainan Normal University
- Haikou 571158
- China
| | - Chen Li
- College of Chemistry and Chemical Engineering
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- Hainan Normal University
- Haikou 571158
- China
| | - Xiao-Peng Zhang
- College of Chemistry and Chemical Engineering
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- Hainan Normal University
- Haikou 571158
- China
| | - Zai-Feng Shi
- College of Chemistry and Chemical Engineering
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province
- Hainan Normal University
- Haikou 571158
- China
| |
Collapse
|
8
|
Zhang Y, Zhu C, Liu F, Yuan Y, Wu H, Li A. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:265-279. [PMID: 30055489 DOI: 10.1016/j.scitotenv.2018.07.279] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 05/12/2023]
Abstract
Adsorption is one of the most widely used and effective wastewater treatment methods. The role of ionic strength (IS) in shaping the adsorption performances is much necessary due to the ubiquity of electrolyte ions in water body and industrial effluents. The influences of IS on adsorption are rather complex, because electrolyte ions affect both adsorption kinetics and thermodynamics by changing the basic characteristics of adsorbents and adsorbates. For a given adsorption system, multiple or even contradictory effects of IS may coexist under identical experimental conditions, rendering the dominant mechanism recognition and net effect prediction complicated. We herein reviewed the key advancement on the interaction and mechanisms of IS, including change in number of active sites for adsorbents, ion pair for metal ions, molecular aggregation and salting-out effect for organic compounds, site competition for both inorganic and organic adsorbates, and charge compensation for adsorbent-adsorbate reciprocal interactions. The corresponding fundamental theory was thoroughly described, and the efforts made by various researchers were explicated. The structural optimization of adsorbents affected by IS was detailed, also highlighting polyamine materials with exciting "salt-promotion" effects on heavy metal removal from high salinity wastewater. In addition, the research trends and prospects were briefly discussed.
Collapse
Affiliation(s)
- Yanhong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Changqing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China.
| | - Yuan Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Haide Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| |
Collapse
|
9
|
Preparation of dual-function chelating resin with high capacity and adjustable adsorption selectivity to variety of heavy metal ions. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Ling C, Yue CL, Liu FQ, Wei MM, Chen TP, Zhu JJ. Contrastive study for coadsorption of copper and two dihydroxybenzene isomers by a multi-amine modified resin. JOURNAL OF HAZARDOUS MATERIALS 2018; 352:47-56. [PMID: 29573729 DOI: 10.1016/j.jhazmat.2018.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Coadsorption of Cu(II) and two dihydroxybenzene isomers (hydroquinone, HQ and catechol, CAT) onto a multi-amine modified resin (CEAD) were comparatively studied. The presence of Cu(II) promoted adsorption of both HQ and CAT by a maximum of 25.8% and 41.6%, respectively. However, two diphenols exerted a very different influence on Cu(II) uptake. Higher concentrations of HQ consistently suppressed Cu(II) adsorption while the coexistence of CAT facilitated it, especially at lower CAT concentrations. The interactions among solutes and adsorbents were revealed by means of kinetic tracking, sequential adsorption experiments, and characterizations/calculations (FTIR, XPS, MINTEQ and DFT). Cu(II) and HQ/CAT competed for amine sites with the order of adsorption affinity as HQ > Cu(II) > CAT. The bridging effect of Cu(II) forming ternary complexes (amine-Cu-CAT/HQ) on the resin phase was the dominant mechanism for the enhanced adsorption of diphenols. The [Cu-CAT] complex species showed a lower affinity to bind directly to amine sites compared with free Cu2+. Instead, the complex could be attracted by the polyphenyl matrix of CEAD, contributing to the increase of Cu(II) adsorption. Additionally, Cu(II) and diphenols were successively recovered, and CEAD could be stably reused. The findings will guide adsorbent applications and the environmental fate of concurrent heavy metals and phenolic compounds.
Collapse
Affiliation(s)
- Chen Ling
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Cai-Liang Yue
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fu-Qiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Meng-Meng Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Tai-Peng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
11
|
Dzhardimalieva GI, Uflyand IE. Design Strategies of Metal Complexes Based on Chelating Polymer Ligands and Their Application in Nanomaterials Science. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0841-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Efficient and synergistic removal of tetracycline and Cu(II) using novel magnetic multi-amine resins. Sci Rep 2018; 8:4762. [PMID: 29555934 PMCID: PMC5859091 DOI: 10.1038/s41598-018-23205-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/07/2018] [Indexed: 11/08/2022] Open
Abstract
A series of magnetic multi-amine resins (MMARs, named E1D9-E9D1) was proposed for the removal of tetracycline (TC) and Cu(II) in sole and binary solutions. Results showed that the N content of the resins increased sharply from 1.7% to 15.49%, and the BET surface areas decreased from 1433.4 m2/g to 8.9 m2/g with methyl acrylate ratio increasing from E1D9 to E9D1. Their adsorption capacities for TC and Cu(II) could reach 0.243 and 0.453 mmol/g, respectively. The adsorption isotherms of TC onto MMARs transformed from heterogeneous adsorption to monolayer-type adsorption with DVB monomer ratio in resin matrix decrease, suggesting the dominant physical adsorption between TC and benzene rings. TC adsorption capacity onto E9D1 was higher than that onto E7D3 when the equilibrium concentration of TC exceeded 0.043 mmol/L because the electrostatic interaction between negatively charged groups of TC and protonated amines of adsorbents could compensate for the capacity loss resulting from BET surface area decrease. In the binary system, the electrostatic interaction between negatively charged TC-Cu(II) complex and protonated amines of adsorbents was responsible for the synergistic adsorption onto E7D3 and E9D1. The XPS spectra of magnetic resins before and after adsorption were characterized to prove the probable adsorption mechanisms. This work provides alternative adsorbent for the efficient treatment of multiple pollution with different concentrations of organic micropollutants and heavy metal ions.
Collapse
|
13
|
Selective removal of copper from simulated nickel electrolyte by polystyrene-supported 2-aminomethylpyridine chelating resin. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0436-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Zhang YH, Liu FQ, Zhu CQ, Zhang XP, Wei MM, Wang FH, Ling C, Li AM. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:290-298. [PMID: 28183018 DOI: 10.1016/j.jhazmat.2017.01.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/07/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H2PO4- from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H2PO4- were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H2PO4- accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H2PO4-. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.
Collapse
Affiliation(s)
- Yan-Hong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Fu-Qiang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China.
| | - Chang-Qing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Xiao-Peng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Meng-Meng Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Feng-He Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Chen Ling
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| |
Collapse
|
15
|
Han F, Xu C, Sun WZ, Yu ST, Xian M. Effective removal of salicylic and gallic acids from single component and impurity-containing systems using an isatin-modified adsorption resin. RSC Adv 2017. [DOI: 10.1039/c7ra01377a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Studies on the adsorption properties of salicylic and gallic acids by an isatin-modified resin from single and impurity-containing systems.
Collapse
Affiliation(s)
- Fei Han
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Biomass Energy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Chao Xu
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Biomass Energy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Wei-Zhi Sun
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Biomass Energy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Shi-Tao Yu
- College of Chemical Engineering
- Qingdao University of Science & Technology
- Qingdao 266042
- People's Republic of China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Biomass Energy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| |
Collapse
|
16
|
Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin. Sci Rep 2015; 5:9944. [PMID: 25962970 PMCID: PMC4649996 DOI: 10.1038/srep09944] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL− and Cu2L22−) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids.
Collapse
|
17
|
Zhu C, Liu F, Xu C, Gao J, Chen D, Li A. Enhanced removal of Cu(II) and Ni(II) from saline solution by novel dual-primary-amine chelating resin based on anion-synergism. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:234-242. [PMID: 25661170 DOI: 10.1016/j.jhazmat.2015.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/04/2015] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
A novel dual-primary-amine chelating resin (EDTB) was newly synthesized for the effective removal of Cu(II) and Ni(II) from saline solutions. NaNO3 as well as Ca(NO3)2, NaCl and CaCl2 unexpectedly promoted the adsorption of Cu(II) or Ni(II) by up to 63.42% or 133.49% in single heavy-metal species systems. Meanwhile, inorganic salts enhanced both Cu(II) and Ni(II) uptake capacities in binary heavy-metal species systems. Anions significantly increased the amount of adsorption sites by condensing the double electric layer. Interestingly, increasing Ni(NO3)2 concentrations elevated the adsorption capacity of EDTB for Cu(II) by 2.10-11.69% in aqueous media without salts while in the presence of salts, rising Ni(NO3)2 concentrations suppressed Cu(II)-adsorption by 2.42-7.68%. The marginal analysis of anion-synergism depending on salt concentrations quantitatively explained such opposite effects using a promotion index. Furthermore, the solid characterizations and a newly-proposed metastable-state model based on pre-loading experiments conformably indicated the reciprocal relationships between cations and anions involving site competition, displacement effect and anion enhancement. Because of such salt-enhanced removal performance and excellent regeneration efficiency higher than 99%, EDTB is potentially eligible for reusing heavy-metals from actual wastewaters especially containing high-concentration salts.
Collapse
Affiliation(s)
- Changqing Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China.
| | - Chao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jie Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Da Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| |
Collapse
|
18
|
Zhang XP, Liu FQ, Zhu CQ, Xu C, Chen D, Wei MM, Liu J, Li CH, Ling C, Li AM, You XZ. A novel tetraethylenepentamine functionalized polymeric adsorbent for enhanced removal and selective recovery of heavy metal ions from saline solutions. RSC Adv 2015. [DOI: 10.1039/c5ra16969k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel tetraethylenepentamine functionalized polymeric adsorbent with polymethacrylate–divinylbenzene as the substrate was facilely prepared for the enhanced removal and selective recovery of Cu(ii) and Ni(ii) from saline solutions.
Collapse
|