1
|
Khan J, Kim ND, Bromhead C, Truman P, Kruger MC, Mallard BL. Hepatotoxicity of titanium dioxide nanoparticles. J Appl Toxicol 2024. [PMID: 38740968 DOI: 10.1002/jat.4626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The food additive E171 (titanium dioxide, TiO2), is widely used in foods, pharmaceuticals and cosmetics. It is a fine white powder, with at least one third of its particles sized in the nanoparticulate (˂100 nm range, TiO2 NPs). The use of E171 is controversial as its relevant risk assessment has never been satisfactorily accomplished. In vitro and in vivo studies have shown dose-dependent toxicity in various organs including the liver. TiO2 NPs have been shown to induce inflammation, cell death and structural and functional changes within the liver. The toxicity of TiO2 NPs in experimental models varies between organs and according to their physiochemical characteristics and parameters such as dosage and route of administration. Among these factors, ingestion is the most significant exposure route, and the liver is a key target organ. The aim of this review is to highlight the reported adverse effects of orally administered TiO2 NPs on the liver and to discuss the controversial state of its toxicity.
Collapse
Affiliation(s)
- Jangrez Khan
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| | - Nicholas D Kim
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| | - Collette Bromhead
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| | - Marlena C Kruger
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| | - Beth L Mallard
- School of Health Sciences, Massey University, PO Box 756, Wellington, 6021, New Zealand
| |
Collapse
|
2
|
Chen YH, Nguyen D, Brindley S, Ma T, Xia T, Brune J, Brown JM, Tsai CSJ. The dependence of particle size on cell toxicity for modern mining dust. Sci Rep 2023; 13:5101. [PMID: 36991007 PMCID: PMC10060429 DOI: 10.1038/s41598-023-31215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractProgressive massive pulmonary fibrosis among coal miners has unexpectedly increased. It would likely due to the greater generation of smaller rock and coal particles produced by powerful equipment used in modern mines. There is limited understanding of the relationship between micro- or nanoparticles with pulmonary toxicity. This study aims to determine whether the size and chemical characteristics of typical coal-mining dust contribute to cellular toxicity. Size range, surface features, morphology, and elemental composition of coal and rock dust from modern mines were characterized. Human macrophages and bronchial tracheal epithelial cells were exposed to mining dust of three sub- micrometer and micrometer size ranges at varying concentrations, then assessed for cell viability and inflammatory cytokine expression. Coal had smaller hydrodynamic size (180–3000 nm) compared to rock (495–2160 nm) in their separated size fractions, more hydrophobicity, less surface charge, and consisted of more known toxic trace elements (Si, Pt, Fe, Al, Co). Larger particle size had a negative association with in-vitro toxicity in macrophages (p < 0.05). Fine particle fraction, approximately 200 nm for coal and 500 nm for rock particles, explicitly induced stronger inflammatory reactions than their coarser counterparts. Future work will study additional toxicity endpoints to further elucidate the molecular mechanism causing pulmonary toxicity and determine a dose–response curve.
Collapse
|
3
|
A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul Toxicol Pharmacol 2022; 136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
|
4
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
5
|
Zheng Y, Nowack B. Meta-analysis of Bioaccumulation Data for Nondissolvable Engineered Nanomaterials in Freshwater Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1202-1214. [PMID: 35188281 PMCID: PMC9314877 DOI: 10.1002/etc.5312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 06/07/2023]
Abstract
Understanding the bioaccumulation of engineered nanomaterials (ENMs) is essential for making regulatory decisions on potential environmental risks. Research in the field of ENM bioaccumulation has increased in recent years, but the compilation and statistical analysis of the available experimental data have not been updated. We therefore performed a meta-analysis of the existing literature on the bioaccumulation of eight types of nondissolvable ENMs (titanium dioxide [TiO2 ], aluminum oxide [Al2 O3 ], gold [Au], fullerene [C60 ], carbon nanotubes, iron oxide [FeOx ], graphene, and polystyrene) in nonmammalian freshwater aquatic organisms across three trophic levels including phytoplankton, zooplankton, and fish. Three typical endpoints were used to assess the bioaccumulation potential: the bioconcentration factor (BCF), the bioaccumulation factor (BAF), and the biomagnification factor (BMF). Our results suggest that zooplankton has greater mean logarithmic BCF and BAF values than phytoplankton (3.31 vs. 1.42) and fish (2.04). The ENMs are biomagnified in zooplankton, with a mean BMF of 17.4, whereas trophic transfer from primary consumers (zooplankton) to secondary consumers (fish) was not observed (mean BMF of 0.13). No clear dependency was identified between the physicochemical characteristics of ENMs (e.g., primary particle size, zeta potential, or shape) and bioaccumulation, except for coated versus uncoated particles accumulated in phytoplankton. Carbonaceous ENMs were found to be more bioaccumulated than the other ENMs we considered, except for TiO2 . A meta-analysis of bioaccumulation data can (1) deepen the understanding of bioconcentration, bioaccumulation, and biomagnification of ENMs, (2) be used to support grouping strategies as a basis for a safer-by-design approach for ENMs, (3) be integrated into comprehensive hazard and risk assessments, (4) promote the standardization of testing guidelines, and (5) enhance future kinetic bioaccumulation modeling. Environ Toxicol Chem 2022;41:1202-1214. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Yuanfang Zheng
- Technology and Society LabSwiss Federal Laboratories for Materials Science and TechnologyGallenSwitzerland
| | - Bernd Nowack
- Technology and Society LabSwiss Federal Laboratories for Materials Science and TechnologyGallenSwitzerland
| |
Collapse
|
6
|
Wu T, Wang G, Tang H, Xiong Z, Song X, Xia Y, Lai PFH, Ai L. Genes encoding bile salt hydrolase differentially affect adhesion of Lactiplantibacillus plantarum AR113. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1522-1530. [PMID: 34402069 DOI: 10.1002/jsfa.11487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Adhesion is considered important for Lactiplantibacillus to persist in the human gut and for it to exert probiotic effects. Lactiplantibacillus plantarum contains a considerable number and variety of genes encoding bile salt hydrolases (bsh), but their effects on microbial adhesion remain poorly understood. To clarify the effects of four bsh on adhesion, we tried to knock out bsh (Δbsh) of L. plantarum AR113 using the CRISPR-Cas9 method, and compared the growth, auto-aggregation (RAA ), co-aggregation (RCA ), surface hydrophobicity (AHC ) of AR113 wild-type and Δbsh strains and their adhesion abilities to HT29 cells. RESULTS We first obtained the AR113 Δbsh1,3,2,4 strain with four bsh knocked out. Their growth was significantly slower than the wild-type strain cultured in De Man, Rogosa, and Sharpe medium (MRS) with 3.0 g L-1 glyco- or tauro-conjugated bile acid. Bsh had no significant effect on the growth of ten strains cultured in MRS, but Δbsh1 inhibited their growth when cultured in MRS containing 3.0 g L-1 sodium glycocholate, whereas Δbsh4 instead promoted their growth in MRS with 3.0 g L-1 sodium glycocholate and sodium taurocholate. RCA and RAA were linearly positive for all strains except AR113 Δbsh2,4, and AHC and RAA were negatively correlated for most strains excluding AR113 Δbsh2, with RAA = 6.38-25.05%, RCA = 5.17-9.22%, and ACH = 3.22-47.71%. The adhesion ability of ten strains cultured in MRS was higher than that of strains cultured in MRS with 3.0 g L-1 bovine bile, and it was related to bsh2. CONCLUSION Bsh differentially affected the adhesion of AR113 series strains. This adds to the available information about substrate-gene-performance, and provides new information to enable engineering to regulate the colonization of Lactiplantibacillus. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Taoying Wu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Hunan Key Laboratory of Bean Products Processing and Safety Control, School of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongyu Tang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Phoency F-H Lai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Budi HS, Jameel MF, Widjaja G, Alasady MS, Mahmudiono T, Mustafa YF, Fardeeva I, Kuznetsova M. Study on the role of nano antibacterial materials in orthodontics (a review). BRAZ J BIOL 2022; 84:e257070. [PMID: 35195179 DOI: 10.1590/1519-6984.257070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Nanoparticles (NPs) are insoluble particles with a diameter of fewer than 100 nanometers. Two main methods have been utilized in orthodontic therapy to avoid microbial adherence or enamel demineralization. Certain NPs are included in orthodontic adhesives or acrylic resins (fluorohydroxyapatite, fluorapatite, hydroxyapatite, SiO2, TiO2, silver, nanofillers), and NPs (i.e., a thin layer of nitrogen-doped TiO2 on the bracket surfaces) are coated on the surfaces of orthodontic equipment. Although using NPs in orthodontics may open up modern facilities, prior research looked at antibacterial or physical characteristics for a limited period of time, ranging from one day to several weeks, and the limits of in vitro studies must be understood. The long-term effectiveness of nanotechnology-based orthodontic materials has not yet been conclusively confirmed and needs further study, as well as potential safety concerns (toxic effects) associated with NP size.
Collapse
Affiliation(s)
- H S Budi
- Universitas Airlangga, Department of Oral Biology, Surabaya, Indonesia
| | | | - G Widjaja
- Universitas Krisnadwipayana, Jatiwaringin, Indonesia
| | | | - Trias Mahmudiono
- Faculty of Public Health Universitas Airlangga, Trias Mahmudiono, Departemen of Nutrition, Indonesia
| | - Y F Mustafa
- University of Mosul, College of Pharmacy, Department of Pharmaceutical Chemistry, Mosul, Iraq
| | | | - M Kuznetsova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Propaedeutics of Dental Diseases, Moscow, Russian Federation
| |
Collapse
|
8
|
Anastasiadis SH, Chrissopoulou K, Stratakis E, Kavatzikidou P, Kaklamani G, Ranella A. How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:552. [PMID: 35159897 PMCID: PMC8840392 DOI: 10.3390/nano12030552] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
Abstract
The growth in novel synthesis methods and in the range of possible applications has led to the development of a large variety of manufactured nanomaterials (MNMs), which can, in principle, come into close contact with humans and be dispersed in the environment. The nanomaterials interact with the surrounding environment, this being either the proteins and/or cells in a biological medium or the matrix constituent in a dispersion or composite, and an interface is formed whose properties depend on the physicochemical interactions and on colloidal forces. The development of predictive relationships between the characteristics of individual MNMs and their potential practical use critically depends on how the key parameters of MNMs, such as the size, shape, surface chemistry, surface charge, surface coating, etc., affect the behavior in a test medium. This relationship between the biophysicochemical properties of the MNMs and their practical use is defined as their functionality; understanding this relationship is very important for the safe use of these nanomaterials. In this mini review, we attempt to identify the key parameters of nanomaterials and establish a relationship between these and the main MNM functionalities, which would play an important role in the safe design of MNMs; thus, reducing the possible health and environmental risks early on in the innovation process, when the functionality of a nanomaterial and its toxicity/safety will be taken into account in an integrated way. This review aims to contribute to a decision tree strategy for the optimum design of safe nanomaterials, by going beyond the compromise between functionality and safety.
Collapse
Affiliation(s)
- Spiros H. Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
- Department of Chemistry, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
- Department of Physics, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Paraskevi Kavatzikidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Georgia Kaklamani
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| |
Collapse
|
9
|
Xu J, Cen L, Ma Q. Evaluating Membrane Electrical Properties of SMMC7721 Cells with TiO₂ NPs Applications to Cytotoxicity by Dielectric Spectroscopy. J Biomed Nanotechnol 2022; 18:546-556. [PMID: 35484741 DOI: 10.1166/jbn.2022.3265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Titanium dioxide nanoparticles (TiO₂ NPs) represent one of the most frequently applied nanomaterials in numerous areas of daily life. Recent studies show that TiO₂ exposure increases the occupational risk of liver injury and inflammation, and even liver cancer to the workers of factories handling these NPs. However, the potential risks and biophysical effects of TiO₂ on hepatic cells need extensive evaluation. To this end, we explored the electrophysiological changes in the human liver cancer cell line SMMC7721 following exposure to TiO₂ NPs. TiO₂ NPs decreased the first (Δε1) and second dielectric relaxation intensity (Δε₂) of the SMMC7721 cells by 6.62% and 0.86% respectively, and significantly increased the first characteristic frequency (fc1, 4.82%) and the first Cole-Cole parameter (β1, 1.24%). The double spherical-shell model showed that TiO₂ NPs significantly lowered the permittivity of unit-membrane and capacitance, as well as the conductivity of extracellular fluid, cytoplasm, and nuclear contents compared to the untreated control. Conclusively, this study revealed that TiO₂ NPs induce cytotoxic effects by disrupting the permeability and electrical conductivity of unit membranes. Further, we report that dielectric spectrum combined with model parameter analysis can evaluate the bioelectrical effects of TiO₂ NPs on human liver cancer cells.
Collapse
Affiliation(s)
- Jia Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Lichao Cen
- School of Medicine, Ningbo University, Zhejiang Province, Ningbo, 315211, China
| | - Qing Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, China
| |
Collapse
|
10
|
Sun S, Deng P, Mu L, Hu X, Guo S. Bionanoscale Recognition Underlies Cell Fate and Therapy. Adv Healthc Mater 2021; 10:e2101260. [PMID: 34523248 DOI: 10.1002/adhm.202101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Indexed: 11/09/2022]
Abstract
Understanding the bionanoscale recognition of nanostructured architectures is critical to the design and application of nanomaterials, but the related information is not well understood. In this study, it is found that bionanoscale recognition underlies cell fate and therapy. For example, 1T phase (octahedral coordination) monolayer MoS2 exhibits a markedly stronger affinity for fibronectin than the 2H structure (triangular prism coordination) and promotes cell spreading and differentiation. The van der Waals energy and increased turn components contribute to the high adhesion of fibronectin onto the 1T-MoS2 structure. 1T-MoS2 exhibits a significantly stronger affinity (KD , 6.59 × 10-7 m) for liposomes than 2H-MoS2 (1.21 × 10-6 m) due to strong hydrophobic interactions. The existence of octahedrally coordinated atomic structures that improve cell viability by enhancing the neurite length is first proven by random forest and structural equation models. Consequently, octahedral coordination disaggregates α-synuclein (e.g., by decreasing β-sheets and increasing coil structures) and protects cells and hosts against Parkinson's disease. As a proof-of-principle demonstration, these findings indicate that bionanoscale recognition underlies the design of biomaterials and cell therapeutics.
Collapse
Affiliation(s)
- Shan Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Li Mu
- Tianjin Key Laboratory of Agro‐environment and Safe‐product Key Laboratory for Environmental Factors Control of Agro‐product Quality Safety (Ministry of Agriculture and Rural Affairs) Institute of Agro‐environmental Protection Ministry of Agriculture and Rural Affairs Tianjin 300191 China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| |
Collapse
|
11
|
Behaviour of Titanium Dioxide Particles in Artificial Body Fluids and Human Blood Plasma. Int J Mol Sci 2021; 22:ijms221910614. [PMID: 34638952 PMCID: PMC8509028 DOI: 10.3390/ijms221910614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
The growing application of materials containing TiO2 particles has led to an increased risk of human exposure, while a gap in knowledge about the possible adverse effects of TiO2 still exists. In this work, TiO2 particles of rutile, anatase, and their commercial mixture were exposed to various environments, including simulated gastric fluids and human blood plasma (both representing in vivo conditions), and media used in in vitro experiments. Simulated body fluids of different compositions, ionic strengths, and pH were used, and the impact of the absence or presence of chosen enzymes was investigated. The physicochemical properties and agglomeration of TiO2 in these media were determined. The time dependent agglomeration of TiO2 related to the type of TiO2, and mainly to the type and composition of the environment that was observed. The presence of enzymes either prevented or promoted TiO2 agglomeration. TiO2 was also observed to exhibit concentration-dependent cytotoxicity. This knowledge about TiO2 behavior in all the abovementioned environments is critical when TiO2 safety is considered, especially with respect to the significant impact of the presence of proteins and size-related cytotoxicity.
Collapse
|
12
|
Cytokine-Mediated Inflammation in the Oral Cavity and Its Effect on Lipid Nanocarriers. NANOMATERIALS 2021; 11:nano11051330. [PMID: 34070004 PMCID: PMC8157841 DOI: 10.3390/nano11051330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/17/2023]
Abstract
Topical drug administration to the oral mucosa proves to be a promising treatment alternative for inflammatory diseases. However, disease-related changes in the cell barrier must be considered when developing such delivery systems. This study aimed at investigating the changes in the lining mucosa caused by inflammation and evaluating the consequences on drug delivery systems such as nanostructured lipid carriers (NLC). For this, TR146 cells were treated with inflammatory cytokines and bacterial components. Cell viability and integrity, reactive oxygen species (ROS), and interleukin (IL)-8 release were used as endpoints to assess inflammation. Translocation of phosphatidylserine, cytoskeletal arrangement, opening of desmosomes, and cell proliferation were examined. Transport studies with NLC were performed considering active and passive pathways. The results showed that IL-1ß and tumor necrosis factor α induced inflammation by increasing IL-8 and ROS production (22-fold and 2-fold). Morphologically, loss of cell–cell connections and formation of stress fibers and hyperplasia were observed. The charge of the cell membrane shifted from neutral to negative, which increased the absorption of NLC due to the repulsive interactions between the hydrophobic negative particles and the cell membrane on the one hand, and interactions with lipophilic membrane proteins such as caveolin on the other.
Collapse
|
13
|
Sun T, Kang Y, Liu J, Zhang Y, Ou L, Liu X, Lai R, Shao L. Nanomaterials and hepatic disease: toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J Nanobiotechnology 2021; 19:108. [PMID: 33863340 PMCID: PMC8052793 DOI: 10.1186/s12951-021-00843-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of nanomaterials (NMs) has raised concerns that exposure to them may introduce potential risks to the human body and environment. The liver is the main target organ for NMs. Hepatotoxic effects caused by NMs have been observed in recent studies but have not been linked to liver disease, and the intrinsic mechanisms are poorly elucidated. Additionally, NMs exhibit varied toxicokinetics and induce enhanced toxic effects in susceptible livers; however, thus far, this issue has not been thoroughly reviewed. This review provides an overview of the toxicokinetics of NMs. We highlight the possibility that NMs induce hepatic diseases, including nonalcoholic steatohepatitis (NASH), fibrosis, liver cancer, and metabolic disorders, and explore the underlying intrinsic mechanisms. Additionally, NM toxicokinetics and the potential induced risks in the livers of susceptible individuals, including subjects with liver disease, obese individuals, aging individuals and individuals of both sexes, are summarized. To understand how NM type affect their toxicity, the influences of the physicochemical and morphological (PCM) properties of NMs on their toxicokinetics and toxicity are also explored. This review provides guidance for further toxicological studies on NMs and will be important for the further development of NMs for applications in various fields.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatological Hospital, Foshan University, Foshan, 528000, China.
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China.
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lingling Ou
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Xiangning Liu
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Renfa Lai
- Medical Center of Stomatology, The First Affiliated Hospital, Guangzhou, 510630, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
14
|
Bischoff NS, de Kok TM, Sijm DT, van Breda SG, Briedé JJ, Castenmiller JJ, Opperhuizen A, Chirino YI, Dirven H, Gott D, Houdeau E, Oomen AG, Poulsen M, Rogler G, van Loveren H. Possible Adverse Effects of Food Additive E171 (Titanium Dioxide) Related to Particle Specific Human Toxicity, Including the Immune System. Int J Mol Sci 2020; 22:ijms22010207. [PMID: 33379217 PMCID: PMC7795714 DOI: 10.3390/ijms22010207] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide (TiO2) is used as a food additive (E171) and can be found in sauces, icings, and chewing gums, as well as in personal care products such as toothpaste and pharmaceutical tablets. Along with the ubiquitous presence of TiO2 and recent insights into its potentially hazardous properties, there are concerns about its application in commercially available products. Especially the nano-sized particle fraction (<100 nm) of TiO2 warrants a more detailed evaluation of potential adverse health effects after ingestion. A workshop organized by the Dutch Office for Risk Assessment and Research (BuRO) identified uncertainties and knowledge gaps regarding the gastrointestinal absorption of TiO2, its distribution, the potential for accumulation, and induction of adverse health effects such as inflammation, DNA damage, and tumor promotion. This review aims to identify and evaluate recent toxicological studies on food-grade TiO2 and nano-sized TiO2 in ex-vivo, in-vitro, and in-vivo experiments along the gastrointestinal route, and to postulate an Adverse Outcome Pathway (AOP) following ingestion. Additionally, this review summarizes recommendations and outcomes of the expert meeting held by the BuRO in 2018, in order to contribute to the hazard identification and risk assessment process of ingested TiO2.
Collapse
Affiliation(s)
- Nicolaj S. Bischoff
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
- Correspondence:
| | - Theo M. de Kok
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Dick T.H.M. Sijm
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Simone G. van Breda
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Jacco J. Briedé
- Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (T.M.d.K.); (D.T.H.M.S.); (S.G.v.B.); (J.J.B.)
| | - Jacqueline J.M. Castenmiller
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Antoon Opperhuizen
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonóma de México, Mexico City 54090, Mexico;
| | - Hubert Dirven
- Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway;
| | - David Gott
- Food Standard Agency, London SW1H9EX, UK;
| | - Eric Houdeau
- French National Research Institute for Agriculture, Food and Environment (INRAE), 75338 Paris, France;
| | - Agnes G. Oomen
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Morten Poulsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark;
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, 8091 Zurich, Switzerland;
| | - Henk van Loveren
- Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands; (J.J.M.C.); (A.O.); (H.v.L.)
| |
Collapse
|
15
|
Osteoclast-mediated biocorrosion of pure titanium in an inflammatory microenvironment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111610. [PMID: 33321654 DOI: 10.1016/j.msec.2020.111610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 01/15/2023]
Abstract
Titanium (Ti) and alloys thereof are commonly utilized in biomedical settings owing to their desirable mechanical properties and good biocompatibility. However, when exposed to biological systems for extended periods of time, Ti still undergoes corrosion. In the present study, we therefore explore the impact of osteoclasts (OC) on the surface characteristics and corrosion of commercially pure Titanium (cpTi) in the context of lipopolysaccharide (LPS)-induced inflammation. We utilized tartrate resistant acidic phosphatase (TRAP) and fluorescence staining to assess OC properties, while scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), optical profilometer, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization tests, and inductively coupled plasma atomic emission spectrometry (ICP-AES) were used to evaluate metal microstructure, surface composition and roughness, electrochemical corrosion properties, and metal ion release. SEM findings demonstrated that the surface of cpTi exhibited micro-pitting as well as the presence of viable OCs. Correspondingly, cpTi that had been exposed to OCs exhibited reduced levels of Ti, oxygen, and oxides within the corroded regions relative to smooth Ti as measured via EDS and XPS. OC exposure was also associated with significant changes in cpTi surface roughness, a significant decrease in corrosion resistance, and a significant increase in the release of Ti ions into the surrounding medium. In summary, these findings indicate that OC culture on the surface of cpTi can directly corrode titanium and lead to the release of Ti ions.
Collapse
|
16
|
Wang Z, Tang M. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J Appl Toxicol 2020; 41:683-700. [DOI: 10.1002/jat.4121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| |
Collapse
|
17
|
Xu LN, Yu XY, Chen WQ, Zhang SM, Qiu J. Biocorrosion of pure and SLA titanium surfaces in the presence of Porphyromonas gingivalis and its effects on osteoblast behavior. RSC Adv 2020; 10:8198-8206. [PMID: 35497867 PMCID: PMC9049922 DOI: 10.1039/d0ra00154f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/20/2020] [Indexed: 01/25/2023] Open
Abstract
Objective: The study aims to investigate the biocorrosion behavior of Porphyromonas gingivalis on pure and SLA titanium surfaces and its effects on surface characteristics and osteoblast behavior. Methods: Pure and SLA titanium specimens were immersed in culture medium with P. gingivalis and incubated for 7 days. P. gingivalis colonization on the pure and SLA titanium surfaces was observed by scanning electron microscopy (SEM). The pure and SLA titanium surface characteristics were analyzed via X-ray photoelectron spectroscopy (XPS), surface roughness and surface wettability. The corrosion behaviors of pure and SLA titanium specimens were evaluated by electrochemical corrosion test. The osteoblast behavior of MC3T3-E1 cells on the pure and SLA titanium surfaces after P. gingivalis colonization was investigated by cell adhesion and western blot assays. Results: P. gingivalis colonized on the pure and SLA titanium surfaces was observed by SEM. The XPS analysis demonstrated reductions in the relative levels of titanium and oxygen and obvious reductions of dominant titanium dioxide (TiO2) on both titanium surfaces after immersing the metal in P. gingivalis culture. In addition, their roughness and wettability were changed. Correspondingly, the electrochemical corrosion test results revealed significant decreases in the corrosion resistance and increases in the corrosion rate of the pure and SLA titanium specimens after immersion in P. gingivalis culture. The results of the in vitro study showed that the pre-corroded pure and SLA titanium surfaces by P. gingivalis exhibited lower osteocompatibility and down-regulated the adhesion, spreading and osteogenic differentiation abilities of MC3T3-E1 cells. Conclusions: P. gingivalis was able to colonize on the pure and SLA titanium surfaces and weaken their surface properties, especially a decrease in the protective TiO2 film, which induced the biocorrosion and further negatively affected the osteoblast behavior. The study demonstrated that P. gingivalis could colonize on pure and SLA titanium surfaces and weaken their surface properties, especially the protective TiO2 film, which induced the biocorrosion and further negatively affected osteoblast behavior.![]()
Collapse
Affiliation(s)
- Li-na Xu
- Department of Oral Implantology
- Affiliated Hospital of Stomatology
- Nanjing Medical University
- Nanjing
- PR China
| | - Xiao-yu Yu
- Department of Oral Implantology
- Affiliated Hospital of Stomatology
- Nanjing Medical University
- Nanjing
- PR China
| | - Wan-qing Chen
- Department of Oral Implantology
- Affiliated Hospital of Stomatology
- Nanjing Medical University
- Nanjing
- PR China
| | - Song-mei Zhang
- Department of General Dentistry
- Eastman Institute for Oral Health
- University of Rochester
- Rochester
- USA
| | - Jing Qiu
- Department of Oral Implantology
- Affiliated Hospital of Stomatology
- Nanjing Medical University
- Nanjing
- PR China
| |
Collapse
|
18
|
Pokrowiecki R, Wojnarowicz J, Zareba T, Koltsov I, Lojkowski W, Tyski S, Mielczarek A, Zawadzki P. Nanoparticles And Human Saliva: A Step Towards Drug Delivery Systems For Dental And Craniofacial Biomaterials. Int J Nanomedicine 2019; 14:9235-9257. [PMID: 31819427 PMCID: PMC6886554 DOI: 10.2147/ijn.s221608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/27/2019] [Indexed: 12/02/2022] Open
Abstract
Aim The aims of this study were to investigate new nano-formulations based on ZnO and Ag nanoparticle (NP) compounds when used against clinical strains of oral gram-positive and gram-negative bacteria, and to examine the stability and behaviour of nano-formulation mixtures in saliva based on different compositions of Ag NPs, ZnO NPs and ZnO+x·Ag NPs. Methods: ZnO NPs with and without nanosilver were obtained by microwave solvothermal synthesis. Then, antibacterial activity was evaluated against bacteria isolated from human saliva. Behavior and nanoparticle solutions were evaluated in human saliva and control (artificial saliva and deionized water). Results were statistically compared. Results The NP mixtures had an average size of 30±3 nm, while the commercial Ag NPs had an average size of 55±5 nm. The suspensions displayed differing antibacterial activities and kinetics of destabilisation processes, depending on NPs composition and fluid types. Conclusion The present study showed that all NPs suspensions displayed significant destabilisation and high destabilisation over the 24 h of the analyses. The agglomeration processes of NPs in human saliva can be reversible.
Collapse
Affiliation(s)
- Rafal Pokrowiecki
- Department of Cranio-Maxillofacial Surgery, Oral Surgery and Implantology, Medical University of Warsaw, Warsaw, Poland.,Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Private Practice, Warsaw, Poland
| | - Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Zareba
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| | - Iwona Koltsov
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Lojkowski
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Mielczarek
- Department of Conservative Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Pawel Zawadzki
- Department of Cranio-Maxillofacial Surgery, Oral Surgery and Implantology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Chen Z, Zhou D, Wang Y, Zhao L, Hu G, Liu J, Feng H, Long C, Yan T, Zhou S, Jia G. Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. J Appl Toxicol 2018; 39:590-602. [PMID: 30427543 DOI: 10.1002/jat.3750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have already been used as food additive in various products and are usually consumed with a considerable amount of sugar. Oral consumption of TiO2 NPs poses concerning health risks; however, research on the combined effect of ingested TiO2 NPs and glucose is limited. We examined young Sprague-Dawley rats administrated TiO2 NPs orally at doses of 0, 2, 10 and 50 mg/kg body weight per day with and without 1.8 g/kg body weight glucose for 30 and 90 days. Heart rate, systolic and diastolic blood pressure, blood biochemical parameters and histopathology of cardiac tissues was assessed to quantify cardiovascular damage. The results showed that oral exposure to TiO2 NPs and high doses of glucose both could induce cardiovascular injuries. The toxic effects were dose-, time- and gender-dependent. The interaction effects between oral-exposed TiO2 NPs and glucose existed and revealed to be antagonism in most of the biological parameters. However, toxic effects of the high-dose glucose seemed to be more severe than TiO2 NPs and the interaction of TiO2 NPs with glucose. These results suggest that it may be more important to control the sugar intake than TiO2 NPs for protecting the health of TiO2 NP consumers.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Di Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Lin Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Guiping Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jiaxing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Huimin Feng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Changmao Long
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Tenglong Yan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shupei Zhou
- Department of Laboratory Animal Science, Health Science Center, Peking University, Beijing, 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
20
|
Sohal IS, O'Fallon KS, Gaines P, Demokritou P, Bello D. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Part Fibre Toxicol 2018; 15:29. [PMID: 29970114 PMCID: PMC6029122 DOI: 10.1186/s12989-018-0265-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Engineered nanomaterials (ENM) are used extensively in food products to fulfill a number of roles, including enhancement of color and texture, for nutritional fortification, enhanced bioavailability, improved barrier properties of packaging, and enhanced food preservation. Safety assessment of ingested engineered nanomaterials (iENM) has gained interest in the nanotoxicology community in recent years. A variety of test systems and approaches have been used for such evaluations, with in vitro monoculture cell models being the most common test systems, owing to their low cost and ease-of-use. The goal of this review is to systematically assess the current state of science in toxicological testing of iENM, with particular emphasis on model test systems, their physiological relevance, methodological strengths and challenges, realistic doses (ranges and rates), and then to identify future research needs and priorities based on these assessments. METHODS Extensive searches were conducted in Google Scholar, PubMed and Web of Science to identify peer-reviewed literature on safety assessment of iENM over the last decade, using keywords such as "nanoparticle", "food", "toxicity", and combinations thereof. Relevant literature was assessed based on a set of criteria that included the relevance of nanomaterials tested; ENM physicochemical and morphological characterization; dispersion and dosimetry in an in vitro system; dose ranges employed, the rationale and dose realism; dissolution behavior of iENM; endpoints tested, and the main findings of each study. Observations were entered into an excel spreadsheet, transferred to Origin, from where summary statistics were calculated to assess patterns, trends, and research gaps. RESULTS A total of 650 peer-reviewed publications were identified from 2007 to 2017, of which 39 were deemed relevant. Only 21% of the studies used food grade nanomaterials for testing; adequate physicochemical and morphological characterization was performed in 53% of the studies. All in vitro studies lacked dosimetry and 60% of them did not provide a rationale for the doses tested and their relevance. Only 12% of the studies attempted to consider the dissolution kinetics of nanomaterials. Moreover, only 1 study attempted to prepare and characterize standardized nanoparticle dispersions. CONCLUSION We identified 5 clusters of factors deemed relevant to nanotoxicology of food-grade iENM: (i) using food-grade nanomaterials for toxicity testing; (ii) performing comprehensive physicochemical and morphological characterization of iENM in the dry state, (iii) establishing standard NP dispersions and their characterization in cell culture medium, (iv) employing realistic dose ranges and standardized in vitro dosimetry models, and (v) investigating dissolution kinetics and biotransformation behavior of iENM in synthetic media representative of the gastrointestinal (GI) tract fluids, including analyses in a fasted state and in the presence of a food matrix. We discussed how these factors, when not considered thoughtfully, could influence the results and generalizability of in vitro and in vivo testing. We conclude with a set of recommendations to guide future iENM toxicity studies and to develop/adopt more relevant in vitro model systems representative of in vivo animal and human iENM exposure scenarios.
Collapse
Affiliation(s)
- Ikjot Singh Sohal
- Biomedical Engineering & Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Kevin S O'Fallon
- Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760, USA
| | - Peter Gaines
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Philip Demokritou
- Harvard T.H. Chan School of Public Health, Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Boston, MA, 02115, USA
| | - Dhimiter Bello
- Biomedical Engineering & Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
- Harvard T.H. Chan School of Public Health, Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Boston, MA, 02115, USA.
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 883 Broadway Street, Dugan 110-S, Lowell, MA, 01854, USA.
| |
Collapse
|
21
|
Talbot P, Radziwill-Bienkowska JM, Kamphuis JBJ, Steenkeste K, Bettini S, Robert V, Noordine ML, Mayeur C, Gaultier E, Langella P, Robbe-Masselot C, Houdeau E, Thomas M, Mercier-Bonin M. Food-grade TiO 2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection. J Nanobiotechnology 2018; 16:53. [PMID: 29921300 PMCID: PMC6009062 DOI: 10.1186/s12951-018-0379-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Titanium dioxide (TiO2) particles are commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, the risk of gut barrier disruption is an increasing concern because of the presence of a nano-sized fraction. Food-grade E171 may interact with mucus, a gut barrier protagonist still poorly explored in food nanotoxicology. To test this hypothesis, a comprehensive approach was performed to evaluate in vitro and in vivo interactions between TiO2 and intestinal mucus, by comparing food-grade E171 with NM-105 (Aeroxyde P25) OECD reference nanomaterial. Results We tested E171-trapping properties of mucus in vitro using HT29-MTX intestinal epithelial cells. Time-lapse confocal laser scanning microscopy was performed without labeling to avoid modification of the particle surface. Near-UV irradiation of E171 TiO2 particles at 364 nm resulted in fluorescence emission in the visible range, with a maximum at 510 nm. The penetration of E171 TiO2 into the mucoid area of HT29-MTX cells was visualized in situ. One hour after exposure, TiO2 particles accumulated inside “patchy” regions 20 µm above the substratum. The structure of mucus produced by HT29-MTX cells was characterized by MUC5AC immunofluorescence staining. The mucus layer was thin and organized into regular “islands” located approximately 20 µm above the substratum. The region-specific trapping of food-grade TiO2 particles was attributed to this mucus patchy structure. We compared TiO2-mediated effects in vivo in rats after acute or sub-chronic oral daily administration of food-grade E171 and NM-105 at relevant exposure levels for humans. Cecal short-chain fatty acid profiles and gut mucin O-glycosylation patterns remained unchanged, irrespective of treatment. Conclusions Food-grade TiO2 is trapped by intestinal mucus in vitro but does not affect mucin O-glycosylation and short-chain fatty acid synthesis in vivo, suggesting the absence of a mucus barrier impairment under “healthy gut” conditions. Electronic supplementary material The online version of this article (10.1186/s12951-018-0379-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pauline Talbot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Jasper B J Kamphuis
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Karine Steenkeste
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Sarah Bettini
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Véronique Robert
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Marie-Louise Noordine
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Camille Mayeur
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Eric Gaultier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Catherine Robbe-Masselot
- Univ.lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000, Lille, France
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Muriel Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
22
|
Dudefoi W, Villares A, Peyron S, Moreau C, Ropers MH, Gontard N, Cathala B. Nanoscience and nanotechnologies for biobased materials, packaging and food applications: New opportunities and concerns. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Azria D, Blanquer S, Verdier JM, Belamie E. Nanoparticles as contrast agents for brain nuclear magnetic resonance imaging in Alzheimer's disease diagnosis. J Mater Chem B 2017; 5:7216-7237. [PMID: 32264173 DOI: 10.1039/c7tb01599b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear Magnetic Resonance Imaging (MRI) of amyloid plaques is a powerful non-invasive approach for the early and accurate diagnosis of Alzheimer's disease (AD) along with clinical observations of behavioral changes and cognitive impairment. The present article aims at giving a critical and comprehensive review of recent advances in the development of nanoparticle-based contrast agents for brain MRI. Nanoparticles considered for the MRI of AD must comply with a highly stringent set of requirements including low toxicity and the ability to cross the blood-brain-barrier. In addition, to reach an optimal signal-to-noise ratio, they must exhibit a specific ability to target amyloid plaques, which can be achieved by grafting antibodies, peptides or small molecules. Finally, we propose to consider new directions for the future of MRI in the context of Alzheimer's disease, in particular by enhancing the performances of contrast agents and by including therapeutic functionalities following a theranostic strategy.
Collapse
Affiliation(s)
- David Azria
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
24
|
Mercier-Bonin M, Despax B, Raynaud P, Houdeau E, Thomas M. Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles. Crit Rev Food Sci Nutr 2017; 58:1023-1032. [PMID: 27740849 DOI: 10.1080/10408398.2016.1243088] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the growing use of nanotechnology in many common consumer products, including foods, evaluation of the consequences of chronic exposure to nanoparticles in humans has become a major public health issue. The oral route of exposure has been poorly explored, despite the presence of a fraction of nanosized particles in certain food additives/supplements and the incorporation of such particles into packaging in contact with foods. After their ingestion, these nanoparticles pass through the digestive tract, where they may undergo physicochemical transformations, with consequences for the luminal environment, before crossing the epithelial barrier to reach the systemic compartment. In this review, we consider two examples, nanosilver and nanotitanium dioxide. Despite the specific features of these particles and the differences between them, both display a close relationship between physicochemical reactivity and bioavailability/biopersistence in the gastrointestinal tract. Few studies have focused on the interactions of nanoparticles of silver or titanium dioxide with the microbiota and mucus. However, the microbiota and mucus play key roles in intestinal homeostasis and host health and are undoubtedly involved in controlling the distribution of nanoparticles in the systemic compartment.
Collapse
Affiliation(s)
- Muriel Mercier-Bonin
- a Toxalim (Research Centre in Food Toxicology) , Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse , France , France
| | - Bernard Despax
- b LAPLACE, Université de Toulouse, CNRS, INPT, UPS , Toulouse cedex 9 , France
| | - Patrice Raynaud
- b LAPLACE, Université de Toulouse, CNRS, INPT, UPS , Toulouse cedex 9 , France
| | - Eric Houdeau
- a Toxalim (Research Centre in Food Toxicology) , Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse , France , France
| | - Muriel Thomas
- c Micalis Institute, INRA, AgroParisTech , Université Paris-Saclay , France
| |
Collapse
|
25
|
Bermejo-Nogales A, Connolly M, Rosenkranz P, Fernández-Cruz ML, Navas JM. Negligible cytotoxicity induced by different titanium dioxide nanoparticles in fish cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:309-319. [PMID: 28062079 DOI: 10.1016/j.ecoenv.2016.12.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 10/28/2016] [Accepted: 12/30/2016] [Indexed: 06/06/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) have a wide number of applications in cosmetic, solar and paint industries due to their photocatalyst and ultraviolet blocking properties. The continuous increase in the production of TiO2-NPs enhances the risk for this manufactured nanomaterial to enter water bodies through treated effluents or agricultural amendments. TiO2-NPs have shown very low toxicity in a number of aquatic organisms. However, there are no conclusive data about their deleterious effects and on their possible mechanisms of toxic action. At this level, in vitro cell culture systems are a useful tool to gain insight about processes underlying the toxicity of a wide variety of substances, including nanomaterials. Differences in the physiology of different taxa make advisable the use of cells coming from the taxon of interest, but collecting data from a variety of cellular types allows a better understanding of the studied processes. Taking all this into account, the aim of the present study was to assess the toxicity of three types of TiO2-NP, rutile hydrophobic (NM-103), rutile hydrophilic (NM-104) and rutile-anatase (NM-105), obtained from the EU Joint Research Centre (JRC) repository, using various fish cell lines (RTG-2, PLHC-1, RTH-149, RTL-W1) and rainbow trout primary hepatocytes. For comparative purposes, the effect of different dispersion protocols, end-point assays and extended exposure time was studied in a fish cell line (RTG-2) and in the rat hepatoma cell line (H4IIE). TiO2-NPs dispersions showed a variable degree of aggregation in cell culture media. Disruption of mitochondrial metabolic activity, plasma membrane integrity and lysosome function was not detected in any cell line after exposure to TiO2-NPs at any time and concentration ranges tested. These results are indicative of a low toxicity of the TiO2-NPs tested and show the usefulness of fish cells maintained in vitro as high throughput screening methods that can facilitate further testing in the framework of integrated testing strategies.
Collapse
Affiliation(s)
- Azucena Bermejo-Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain; Heriott-Watt University, School of Life Sciences, Edinburgh, UK.
| | - Philipp Rosenkranz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | - María-Luisa Fernández-Cruz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | - José M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Ambiente, Carretera de la Coruña, Km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
26
|
Fan W, Liu L, Peng R, Wang WX. High bioconcentration of titanium dioxide nanoparticles in Daphnia magna determined by kinetic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1224-1231. [PMID: 27392581 DOI: 10.1016/j.scitotenv.2016.06.197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
The environmental risk assessments of titanium dioxide nanoparticles (TiO2 NPs) have drawn wide attention and one of the required critical information is the bioconcentration potentials of these nanoparticles in aquatic organisms. In the present study, the bioconcentration of six commercially available TiO2 NPs with different sizes and surface properties were quantified in a freshwater cladoceran Daphnia magna using kinetic modeling approach. We first calculated the uptake rate constant (ku) and depuration rate constant (ke) of TiO2 NPs and then employed a first-order kinetic model to predict the bioconcentration factors (BCF) at different TiO2 NPs concentrations. Both the ku and ke of TiO2 NPs were significantly affected by the exposure concentration and the nanoparticle property. The predicted BCF values in D. magna of six TiO2 NPs ranged from 2.40×10(5)L/kg to 1.52×10(6)L/kg, and had no clear correlation with the exposure concentration. Large nominal size resulted in a lower BCF of TiO2 NPs at lower exposure concentration. Higher hydrophobicity and Al(OH)3 coating also resulted in a higher BCF. All the six TiO2 NPs in this study were therefore considered very bioaccumulative. More attention should be paid to bioconcentration in the environmental risk assessments of TiO2 NPs, and the physicochemical properties of TiO2 NPs should be taken into account.
Collapse
Affiliation(s)
- Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Lingling Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China; Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and HKUST Shenzhen Research Institute, Shenzhen 518057, PR China
| | - Ruishuang Peng
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and HKUST Shenzhen Research Institute, Shenzhen 518057, PR China.
| |
Collapse
|
27
|
Rahman L, Wu D, Johnston M, William A, Halappanavar S. Toxicogenomics analysis of mouse lung responses following exposure to titanium dioxide nanomaterials reveal their disease potential at high doses. Mutagenesis 2016; 32:59-76. [PMID: 27760801 PMCID: PMC5180171 DOI: 10.1093/mutage/gew048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) induce lung inflammation in experimental animals. In this study, we conducted a comprehensive toxicogenomic analysis of lung responses in mice exposed to six individual TiO2NPs exhibiting different sizes (8, 20 and 300nm), crystalline structure (anatase, rutile or anatase/rutile) and surface modifications (hydrophobic or hydrophilic) to investigate whether the mechanisms leading to TiO2NP-induced lung inflammation are property specific. A detailed histopathological analysis was conducted to investigate the long-term disease implications of acute exposure to TiO2NPs. C57BL/6 mice were exposed to 18, 54, 162 or 486 µg of TiO2NPs/mouse via single intratracheal instillation. Controls were exposed to dispersion medium only. Bronchoalveolar lavage fluid (BALF) and lung tissue were sampled on 1, 28 and 90 days post-exposure. Although all TiO2NPs induced lung inflammation as measured by the neutrophil influx in BALF, rutile-type TiO2NPs induced higher inflammation with the hydrophilic rutile TiO2NP showing the maximum increase. Accordingly, the rutile TiO2NPs induced higher number of differentially expressed genes. Histopathological analysis of lung sections on Day 90 post-exposure showed increased collagen staining and fibrosis-like changes following exposure to the rutile TiO2NPs at the highest dose tested. Among the anatase, the smallest TiO2NP of 8nm showed the maximum response. The anatase TiO2NP of 300nm was the least responsive of all. The results suggest that the severity of lung inflammation is property specific; however, the underlying mechanisms (genes and pathways perturbed) leading to inflammation were the same for all particle types. While the particle size clearly influenced the overall acute lung responses, a combination of small size, crystalline structure and hydrophilic surface contributed to the long-term pathological effects observed at the highest dose (486 µg/mouse). Although the dose at which the pathological changes were observed is considered physiologically high, the study highlights the disease potential of certain TiO2NPs of specific properties.
Collapse
Affiliation(s)
- Luna Rahman
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture Bldg. 8, Ottawa, Ontario K1A 0K9, Canada and
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture Bldg. 8, Ottawa, Ontario K1A 0K9, Canada and
| | - Michael Johnston
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Andrew William
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture Bldg. 8, Ottawa, Ontario K1A 0K9, Canada and
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture Bldg. 8, Ottawa, Ontario K1A 0K9, Canada and
| |
Collapse
|
28
|
Cao Y, Li J, Liu F, Li X, Jiang Q, Cheng S, Gu Y. Consideration of interaction between nanoparticles and food components for the safety assessment of nanoparticles following oral exposure: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:206-210. [PMID: 27497726 DOI: 10.1016/j.etap.2016.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/14/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Nanoparticles (NPs) are increasingly used in food, and the toxicity of NPs following oral exposure should be carefully assessed to ensure the safety. Indeed, a number of studies have shown that oral exposure to NPs, especially solid NPs, may induce toxicological responses both in vivo and in vitro. However, most of the toxicological studies only used NPs for oral exposure, and the potential interaction between NPs and food components in real life was ignored. In this review, we summarized the relevant studies and suggested that the interaction between NPs and food components may exist by that 1) NPs directly affect nutrients absorption through disruption of microvilli or alteration in expression of nutrient transporter genes; 2) food components directly affect NP absorption through physico-chemical modification; 3) the presence of food components affect oxidative stress induced by NPs. All of these interactions may eventually enhance or reduce the toxicological responses induced by NPs following oral exposure. Studies only using NPs for oral exposure may therefore lead to misinterpretation and underestimation/overestimation of toxicity of NPs, and it is necessary to assess the synergistic effects of NPs in a complex system when considering the safety of NPs used in food.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Fang Liu
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Xiyue Li
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Qin Jiang
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Shanshan Cheng
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| | - Yuxiu Gu
- Key Laboratory of Environment-Friendly Chemistry and Applications Ministry Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| |
Collapse
|
29
|
Fröhlich E, Roblegg E. Oral uptake of nanoparticles: human relevance and the role of in vitro systems. Arch Toxicol 2016; 90:2297-314. [PMID: 27342244 DOI: 10.1007/s00204-016-1765-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 06/14/2016] [Indexed: 01/03/2023]
Abstract
Nanoparticles (NPs) present in environment, consumer and health products, food and medical applications lead to a high degree of human exposure and concerns about potential adverse effects on human health. For the general population, the exposure through contact with the skin, inhalation and oral uptake are most relevant. Since in vivo testing is only partly able to study the effects of human oral exposure, physiologically relevant in vitro systems are being developed. This review compared the three routes taking into account the estimated concentration, size of the exposed area, morphology of the involved barrier and translocation rate. The high amounts of NPs in food, the large absorption area and the relatively high translocation rate identified oral uptake as most important portal of entry for NPs into the body. Changes of NP properties in the physiological fluids, mechanisms to cross mucus and epithelial barrier, and important issues in the use of laboratory animals for oral exposure are mentioned. The ability of in vitro models to address the varying conditions along the oro-gastrointestinal tract is discussed, and requirements for physiologically relevant in vitro testing of orally ingested NPs are listed.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010, Graz, Austria.
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of Graz, Graz, Austria
| |
Collapse
|
30
|
Fage SW, Muris J, Jakobsen SS, Thyssen JP. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis 2016; 74:323-45. [PMID: 27027398 DOI: 10.1111/cod.12565] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations for detection of type IV hypersensitivity is currently inadequate for Ti. Although several other methods for contact allergy detection have been suggested, including lymphocyte stimulation tests, none has yet been generally accepted, and the diagnosis of Ti allergy is therefore still based primarily on clinical evaluation. Reports on clinical allergy and adverse events have rarely been published. Whether this is because of unawareness of possible adverse reactions to this specific metal, difficulties in detection methods, or the metal actually being relatively safe to use, is still unresolved.
Collapse
Affiliation(s)
- Simon W Fage
- Department of Dermato-Venereology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Joris Muris
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stig S Jakobsen
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermato-Allergology, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| |
Collapse
|
31
|
Liu H, Zhou J, Huang H. Amine-functionalized TiO 2 nanoparticles for highly selective enrichment of phosphopeptides. Talanta 2015; 143:431-437. [DOI: 10.1016/j.talanta.2015.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 01/20/2023]
|
32
|
Meindl C, Kueznik T, Bösch M, Roblegg E, Fröhlich E. Intracellular calcium levels as screening tool for nanoparticle toxicity. J Appl Toxicol 2015; 35:1150-9. [PMID: 25976553 PMCID: PMC4606983 DOI: 10.1002/jat.3160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/01/2015] [Accepted: 03/16/2015] [Indexed: 01/11/2023]
Abstract
The use of engineered nano-sized materials led to revolutionary developments in many industrial applications and in the medical field. These materials, however, also may cause cytotoxicity. In addition to size, surface properties and shape were identified as relevant parameters for cell damage. Cell damage may occur as disruption of membrane integrity, induction of apoptosis and by organelle damage. Generation of oxidative stress may serve as an indicator for cytotoxicity. Effects occurring upon short contact of particles with cells, for instance in the systemic blood circulation, could be identified according to increases of intracellular [Ca(2+) ] levels, which are caused by variety of toxic stimuli. Negatively charged, neutral and positively charged polystyrene particles of different sizes were used to study the role of size and surface properties on viability, membrane disruption, apoptosis, lysosome function, intracellular [Ca(2+) ] levels and generation of oxidative stress. Silica particles served to test this hypothesis. Twenty nm polystyrene particles as well as 12 nm and 40 nm silica particles caused membrane damage and apoptosis with no preference of the surface charge. Only 20 nm plain and amine functionalized polystyrene particles cause oxidative stress and only the plain particles lysosomal damage. A potential role of surface charge was identified for 200 nm polystyrene particles, where only the amidine particles caused lysosomal damage. Increases in intracellular [Ca(2+) ] levels and cytotoxicity after 24 h was often linked but determination of intracellular [Ca(2+) ] levels could serve to characterize further the type of membrane damage.
Collapse
Affiliation(s)
- Claudia Meindl
- Center for Medical Research, Medical University of GrazAustria
| | - Tatjana Kueznik
- Center for Medical Research, Medical University of GrazAustria
| | - Martina Bösch
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of GrazAustria
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University of GrazAustria
| | | |
Collapse
|
33
|
Contado C. Nanomaterials in consumer products: a challenging analytical problem. Front Chem 2015; 3:48. [PMID: 26301216 PMCID: PMC4527077 DOI: 10.3389/fchem.2015.00048] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/13/2015] [Indexed: 01/10/2023] Open
Abstract
Many products used in everyday life are made with the assistance of nanotechnologies. Cosmetic, pharmaceuticals, sunscreen, powdered food are only few examples of end products containing nano-sized particles (NPs), generally added to improve the product quality. To evaluate correctly benefits vs. risks of engineered nanomaterials and consequently to legislate in favor of consumer's protection, it is necessary to know the hazards connected with the exposure levels. This information implies transversal studies and a number of different competences. On analytical point of view the identification, quantification and characterization of NPs in food matrices and in cosmetic or personal care products pose significant challenges, because NPs are usually present at low concentration levels and the matrices, in which they are dispersed, are complexes and often incompatible with analytical instruments that would be required for their detection and characterization. This paper focused on some analytical techniques suitable for the detection, characterization and quantification of NPs in food and cosmetics products, reports their recent application in characterizing specific metal and metal-oxide NPs in these two important industrial and market sectors. The need of a characterization of the NPs as much as possible complete, matching complementary information about different metrics, possible achieved through validate procedures, is what clearly emerges from this research. More work should be done to produce standardized materials and to set-up methodologies to determine number-based size distributions and to get quantitative date about the NPs in such a complex matrices.
Collapse
Affiliation(s)
- Catia Contado
- Department of Chemical and Pharmaceutical Sciences, University of FerraraFerrara, Italy
| |
Collapse
|