1
|
Xu Z, Wang W, Liu Y, Zhao Y, Zhang X, Ban Y. Performances and mechanisms of simultaneous removal of nitrate and phosphate by biofilter assembled with sponge iron/copper and corn cobs. BIORESOURCE TECHNOLOGY 2023; 386:129516. [PMID: 37468007 DOI: 10.1016/j.biortech.2023.129516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Sponge iron (SI) is a potential material for removing nitrate and phosphate from water. We decorated the SI with copper (Cu) to enhance its removal performance. To gain insight into the nitrate and phosphate removal utilizing SI/Cu and microbial coupling systems, three biofilters filled with corn cob (CC), corn cob + sponge iron (CS) and corn cob + sponge iron/copper (CSCu) were constructed. The results showed that the effluent NO3--N and PO43--P concentrations of CSCu remained consistently below 1 and 0.1 mg/L. The introduction of SI/Cu led to the enrichment of the Dechloromonas genus, making it the dominant microbial group, occupying 42.65% of the effective sequences. Modification of SI with Cu increased nitrogen cycle-related functional genes abundance in CSCu, with a 634% increase in nirS compared to CS. These findings proved that SI/Cu was a promising material, providing an approach to concomitantly removing nitrate and phosphate.
Collapse
Affiliation(s)
- Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Wuyi Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yubo Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yinqi Zhao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Li H, Shi Y, Jia W, Gong Y, Song N, Du Z, Shao X, Gu W, Xing W, Ju Y. Bifunctional catalytic degradation of diclofenac over Cu-Pd co-modified sponge iron-based trimetal: Parameter optimization. ENVIRONMENTAL RESEARCH 2023; 227:115640. [PMID: 36933636 DOI: 10.1016/j.envres.2023.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 05/08/2023]
Abstract
Currently, the pharmaceutical and personal care products (PPCPs) have posed great challenge to advanced oxidation techniques (AOTs). In this study, we decorated sponge iron (s-Fe0) with Cu and Pd (s-Fe0-Cu-Pd) and further optimized the synthesis parameters with a response surface method (RSM) to rapidly degrade diclofenac sodium (DCF). Under the RSM-optimized conditions of Fe: Cu: Pd = 100: 4.23: 0.10, initial solution pH of 5.13, and input dosage of 38.8 g/L, 99% removal of DCF could be obtained after 60 min of reaction. Moreover, the morphological structure of trimetal was characterized with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS). Electron spin resonance (ESR) signals have also been applied to capture reactive hydrogen atoms (H*), superoxygen anions, hydroxyl radicals, and single state oxygen (1O2). Furthermore, the variations of DCF and its selective degradation products over a series of s-Fe0-based bi(tri)metals have been compared. Additionally, the degradation mechanism of DCF has also been explored. To our best knowledge, this is the first report revealing the selective dechlorination of DCF with low toxicity over Pd-Cu co-doped s-Fe0 trimetal.
Collapse
Affiliation(s)
- He Li
- School of Civil Engineering, Southeast University, Nanjing, 210096, PR China
| | - Yongquan Shi
- School of Civil Engineering, Southeast University, Nanjing, 210096, PR China; Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Wenchao Jia
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, PR China
| | - Yu Gong
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Ninghui Song
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Ziyan Du
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Xiang Shao
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Wen Gu
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China
| | - Weilong Xing
- Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China.
| | - Yongming Ju
- School of Civil Engineering, Southeast University, Nanjing, 210096, PR China; Ecological Environment Monitoring Center of Eastern China, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, PR China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, PR China.
| |
Collapse
|
3
|
Xing W, Xu X, Zhang M, Zhang X, Shi Y, Nie P, Ju Y. Synthesis of Ag-Cu co-doping sponge iron-based trimetal for boosting simultaneous degradation of combined pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129413. [PMID: 35816804 DOI: 10.1016/j.jhazmat.2022.129413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
To date, zero-valent iron (ZVI)-based technique has encountered a baffle, challenging simultaneous detoxification of refractory rhodamine B (RhB) and p-nitrophenol (PNP) possessing strong electronwithdrawing nitro-group. In this study, we synthesized Ag-Cu decorated sponge iron (s-Fe0)-based trimetal for simultaneous degradation of RhB and PNP. The results show that Cu-Ag co-doping s-Fe0 (s-Fe0-(Cu-Ag)) achieves approx. 90.6 % of maximized removal of RhB; the preferred s-Fe0-(5 wt%Cu-1 wt%Ag) assisted with 6 L/min aeration rate simultaneously declines RhB and PNP within 10 recycling tests; non-aeration process obtains a complete reduction of PNP as well as merely approx. 23.9 % removal of RhB. Moreover, the Cu-Ag microstructure covering s-Fe0-(Cu-Ag) has been characterized in detail. Furthermore, the electron spin resonance (ESR) spectra have been applied to investigate simultaneous generation of reactive oxygen species (ROSs) and hydrogen radicals ([H]abs) over s-Fe0-(Cu-Ag). To our best knowledge, this is the first study reporting the enhanced bifunctional catalysis of s-Fe0-(Cu-Ag)/O2 for simultaneous degradation of RhB and PNP.
Collapse
Affiliation(s)
- Weilong Xing
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, PR China
| | - Xingyu Xu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, PR China
| | - Manwen Zhang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, PR China
| | - Xiaofei Zhang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, PR China
| | - Yongquan Shi
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, PR China
| | - Peng Nie
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, PR China
| | - Yongming Ju
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, PR China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, PR China.
| |
Collapse
|
4
|
Fu W, Yi J, Cheng M, Liu Y, Zhang G, Li L, Du L, Li B, Wang G, Yang X. When bimetallic oxides and their complexes meet Fenton-like process. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127419. [PMID: 34673389 DOI: 10.1016/j.jhazmat.2021.127419] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The heterogeneous Fenton-like reaction is an advanced oxidation process, which is widely recognized for its efficient removal of recalcitrant organic contaminants. In recent years, the construction of efficient and reusable heterogeneous Fenton-like catalysts has been extensively investigated. Recently, the use of bimetallic oxides and their complexes as catalysts for Fenton-like reaction has attracted intense attention due to their high catalytic performance and excellent stability over a wide pH range. In this article, the fundamental mechanisms of Fenton-like reactions were briefly introduced. The important reports on bimetallic oxides and their complexes are classified in detail, which are mainly divided into Fe-based and Fe-free bimetallic catalysts. We then focused in depth on the performance of their respective applications in Fenton-like reactions. Special consideration has been given to the respective contributions and synergistic mechanisms of the two metals in catalysts. Overall, it is concluded that synergistic effect of the two metals in the bimetallic catalyst can boost the utilization of hydrogen peroxide, provide adequate accessible active sites, which are all beneficial to improve catalytic performance. Finally, the current challenges in this field were proposed. Our review is expected to provide help for the application of bimetallic oxides and their complexes.
Collapse
Affiliation(s)
- Wenhong Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jing Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Bo Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiaofeng Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
5
|
Wen H, Zhu H, Yan B, Bañuelos G, Shutes B, Wang X, Cao S, Cheng R, Tian L. High removal efficiencies of antibiotics and low accumulation of antibiotic resistant genes obtained in microbial fuel cell-constructed wetlands intensified by sponge iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150220. [PMID: 34560453 DOI: 10.1016/j.scitotenv.2021.150220] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 05/12/2023]
Abstract
Using microbial fuel cells with constructed wetlands (MFC-CWs) for eliminating antibiotics has recently attracted extensive attention. However, antibiotic removal efficiencies in MFC-CWs must be enhanced, and the accumulation of antibiotic resistant genes (ARGs) remains an unmanageable issue. This study tries to enhance the antibiotic removal in synthetic wastewater and reduce ARGs by adding sponge iron (s-Fe0) and calcium peroxide to the anode and cathode of MFC-CWs, respectively, and/or simultaneously. The results demonstrated that adding s-Fe0 and calcium peroxide to MFC-CWs could improve the removal efficiencies of sulfamethoxazole (SMX) and tetracycline (TC) by 0.8-1.3% and 6.0-8.7%. Therein, s-Fe0 also significantly reduced 84.10-94.11% and 49.61-60.63% of total sul and tet genes, respectively. Furthermore, s-Fe0 improved the voltage output, power density, columbic efficiency, and reduced the internal resistance of reactors. The intensification to the electrode layers posed a significant effect on the microbial community composition and functions, which motivated the shift of antibiotic removal, accumulation of ARGs and bioelectricity generation in MFC-CWs. Given the overall performance of MFC-CWs, adding s-Fe0 to the anode region of MFC-CWs was found to be an effective strategy for removing antibiotics and reducing the accumulation of ARGs.
Collapse
Affiliation(s)
- Huiyang Wen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China
| | - Gary Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT, UK
| | - Xinyi Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China
| | - Shujing Cao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China
| | - Rui Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping Tian
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
6
|
Wang Z, Dai L, Yao J, Guo T, Hrynsphan D, Tatsiana S, Chen J. Improvement of Alcaligenes sp.TB performance by Fe-Pd/multi-walled carbon nanotubes: Enriched denitrification pathways and accelerated electron transport. BIORESOURCE TECHNOLOGY 2021; 327:124785. [PMID: 33582520 DOI: 10.1016/j.biortech.2021.124785] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Aiming at the accumulation of NO2--N and N2O during denitrification process, this work focused to improve the denitrification performance by Pd-Fe embedded multi-walled carbon nanotubes (MWCNTs). The main conclusions were as follows: 30 mg/L Pd-Fe/MWCNTs have shown an excellent promotion on denitrification (completely TN removal at 36 h). Meanwhile, enzyme activity results indicated that the generation of NO2--N, NH4+-N by Pd-Fe/MWCNTs led the occur of short-cut denitrification by increasing 203.9% the nitrite reductase activity. Furthermore, electrochemical results and index correlation analysis confirmed that the electron exchange capacity (1.401 mmol eg-1) of Pd-Fe/MWCNTs was positively related to nitrite reductase activity, indicating its crucial role in electron transport activity (0.46 μg O2/(protein·min) at 24 h) during denitrification process by Pd-Fe/MWCNTs played a role of chemical reductant and redox mediator.
Collapse
Affiliation(s)
- Zeyu Wang
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Tianjiao Guo
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| |
Collapse
|
7
|
Si Z, Song X, Wang Y, Cao X, Wang Y, Zhao Y, Ge X, Sand W. Untangling the nitrate removal pathways for a constructed wetland- sponge iron coupled system and the impacts of sponge iron on a wetland ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122407. [PMID: 32135362 DOI: 10.1016/j.jhazmat.2020.122407] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Sponge iron (s-Fe0) is a potential alternative electron donor for nitrate reduction. To gain insight into the mechanism of denitrification in a constructed wetland- sponge iron coupled system (CW-Fe0 system), the removal performance and reduction characteristics of nitrate in constructed wetlands (CWs) with and without s-Fe0 application were compared. Results indicated that s-Fe0 intensified the removal of nitrate with a 6h-HRT. The nitrate removal efficiency was improved by 16-76 % with various influent NO3--N concentrations (10-30 mg L-1) and at a chemical oxygen demand(COD)/N ratio of 5. The rates of chemical denitrification were positively correlated with the dosage of s-Fe0 and negatively correlated with the influent COD concentration. 16S rDNA sequencing revealed that hydrogen-utilizing autotrophic denitrifier of Hydrogenophaga was highly enriched (accounting for 10 % of the total OTUs) only in CW-Fe0 system. The micro-environment created by s-Fe0 was suitable for heterotrophic denitrifiers of Thauera, Tessaracoccus and Simplicispira. The determination of physiological indicators for plants showed that the application of s-Fe0 causes abiotic stress to wetland plants (Canna indica L.). Nevertheless, s-Fe0 can be used as a substrate for CWs, since it allows a high-efficiency removal of nitrate by mediating chemical denitrification and hydrogen-driven autotrophic denitrification.
Collapse
Affiliation(s)
- Zhihao Si
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China.
| | - Yuhui Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yifei Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yufeng Zhao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xiaoyan Ge
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Wolfgang Sand
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|
8
|
Xu L, Sun P, Meng X, Shen H, Li W, Wang J, Yang J. Enhanced heterogeneous Fenton-like degradation of nuclear-grade cationic exchange resin by nanoscale zero-valent iron: experiments and DFT calculations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13773-13789. [PMID: 32034596 DOI: 10.1007/s11356-019-07566-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Nanoscale zero-valent iron (nZVI) was prepared and used as a heterogeneous Fenton-like catalyst for the degradation of nuclear-grade cationic exchange resin. The properties of nZVI before and after reaction were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface area analysis. The results showed that nZVI-H2O2 system exhibited the enhanced degradation of cationic resins, compared with Fe2+-H2O2, Cu0-H2O2, and Fe0/Cu0-H2O2 systems. The effects of initial temperature, nZVI dose, and H2O2 concentration were studied, and the higher temperature and nZVI dose with relatively low H2O2 concentration brought faster degradation rate. The degradation of cationic resins followed the pseudo-first-order kinetics with the apparent activation energy of 53.29 kJ/mol. According to the experimental and calculated infrared and UV-visible spectra, the carbon skeleton of cationic resins was broken with the detachment of benzene ring and the desulfonation of resin polymer by hydroxyl radicals (•OH), generating long-chain alkenes. These intermediates were further oxidized through the hydroxyl substitution, hydrogen abstraction, ring cleavage, or carbonylation reactions, finally forming carboxylic acids remained in solution.
Collapse
Affiliation(s)
- Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Peijie Sun
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiang Meng
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Huiyi Shen
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Wuyang Li
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing, 100084, People's Republic of China
- Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jun Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
9
|
Deng H, Zhang C, Jiang Y, Ma Z, Mao Z. Reductive performance of ZVI/Cu polyscale particle to decolorize reactive black 5. Microsc Res Tech 2018; 82:134-143. [DOI: 10.1002/jemt.23152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Hui Deng
- Key Lab of Science and Technology of Eco‐textileMinistry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHUDonghua University Shanghai China
| | - Congcong Zhang
- Key Lab of Science and Technology of Eco‐textileMinistry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHUDonghua University Shanghai China
| | - Yang Jiang
- Key Lab of Science and Technology of Eco‐textileMinistry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHUDonghua University Shanghai China
| | - Zengqiang Ma
- Key Lab of Science and Technology of Eco‐textileMinistry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHUDonghua University Shanghai China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco‐textileMinistry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai China
- Innovation Center for Textile Science and Technology of DHUDonghua University Shanghai China
| |
Collapse
|
10
|
Ju Y, Yu Y, Wang X, Xiang M, Li L, Deng D, Dionysiou DD. Environmental application of millimetre-scale sponge iron (s-Fe 0) particles (IV): New insights into visible light photo-Fenton-like process with optimum dosage of H 2O 2 and RhB photosensitizers. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:611-620. [PMID: 27836407 DOI: 10.1016/j.jhazmat.2016.09.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
In this study, we firstly develop the photo-Fenton-like system with millimetric sponge iron (s-Fe0), H2O2, visible light (vis, λ≥420nm) and rhodamine B (RhB), and present a comprehensive study concerning the mechanism. Thus, we investigate (1) the adsorption of RhB onto s-Fe0, (2) the photo-Fenton-like removal of RhB over iron oxides generated from the corrosion of s-Fe0, (3) the homogeneous photo-Fenton removal of RhB over Fe2+ or Fe3+, (4) the Fe3+-RhB complexes, and (5) the photo-Fenton-like removal of tetrabromobisphenol A (TBBPA). The results show that neither the adsorption process over s-Fe0 nor the photo-Fenton-like process over FeOOH, Fe3O4 and Fe2O3, achieved efficient removal of RhB. For comparison, in homogeneous photo-Fenton process, the presence of Fe3+ ions, rather than Fe2+ ions, effectively eliminated RhB. Furthermore, the UV-vis spectra showing new absorbance at∼285nm indicate the complexes of RhB and Fe3+ ions, adopting vis photons to form excited state and further eject one electron via ligand-to-metal charge-transfer to activate H2O2. Additionally, efficient TBBPA removal was obtained only in the presence of RhB. Accordingly, the s-Fe0- based photo-Fenton-like process assisted with dyestuff wastewater is promising for removing a series of persistent organic pollutants.
Collapse
Affiliation(s)
- Yongming Ju
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China; Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655, PR China; Guangdong Key Laboratory of Agro-Environment Integrated Control, South China Institute of Environmental Sciences, Guangzhou 510655, PR China.
| | - Yunjiang Yu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China.
| | - Xiaoyan Wang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China
| | - Mingdeng Xiang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China
| | - Liangzhong Li
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China
| | - Dongyang Deng
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China; Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655, PR China; Guangdong Key Laboratory of Agro-Environment Integrated Control, South China Institute of Environmental Sciences, Guangzhou 510655, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, Ohio, 45221-0012, USA.
| |
Collapse
|
11
|
Ju Y, Yu Y, Wang X, Zhang S, Liu R, Fu J, Han J, Fang J, Dionysiou DD. Environmental application of millimetre-scale sponge iron (s-Fe(0)) particles (III): The effect of surface silver. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:618-629. [PMID: 26276702 DOI: 10.1016/j.jhazmat.2015.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/05/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
To enhance the dechlorination reactivity of millimetric sponge iron (s-Fe(0)), a facile one-pot method was used to decorate s-Fe(0) with Ag(+) ions under ambient conditions. The results recorded by X-ray diffraction patterns, X-ray photoelectron spectra and high-resolution transmission electron microscopy demonstrated that the growth of Ag(0) was dominated primarily by (111) plane with a mean length of ∼20 nm. The roles of Ag(0) loading, catalyst dosage, particle size, initial pH and contaminant concentration were assessed during the removal of pentachlorophenol (PCP). Catalyst recyclability was also studied. The results revealed that 3-5mm s-Fe(0) particles with 5 wt% Ag(0) loading exhibited the best performance with a dose of 3.0 g per 60 mL PCP solution. In addition, the dechlorination of PCP followed two-step, pseudo-first-order reaction kinetics, and Ag(0)-s-Fe(0) was advantageous compared with bimetals of nanoscale zero-valent iron, iron power and iron flakes. The dechlorination mechanism of PCP over Ag(0)-s-Fe(0) was attributed to the surface Ag(0) decoration, which catalyzed the formation of reactive hydrogen atoms for indirect reaction, and the direct electron transfer via Fe-Ag(0) galvanic cells for direct reaction. This suggests that Ag-based bimetals of s-Fe(0) have great potential in the pretreatment of organic halogen compounds in aqueous solution.
Collapse
Affiliation(s)
- Yongming Ju
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China; South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655, PR China; Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655, PR China
| | - Yunjiang Yu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China.
| | - Xiaoyan Wang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China; Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655, PR China
| | - Sukun Zhang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China
| | - Runlong Liu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China; Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655, PR China
| | - Jianping Fu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China
| | - Jinglei Han
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China
| | - Jiande Fang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA.
| |
Collapse
|