1
|
Yahavi C, Pandey A, Bhateria M, Warkad BV, Trivedi RK, Singh SP. Identification of potential chemical biomarkers of hexaconazole using in vitro metabolite profiling in rat and human liver microsomes and in vivo confirmation through urinary excretion study in rats. CHEMOSPHERE 2024; 358:142123. [PMID: 38677618 DOI: 10.1016/j.chemosphere.2024.142123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Hexaconazole (HEX) is an azole fungicide widely used in agricultural practices across various countries and numerous studies have reported the toxic effects of HEX, such as endocrine disruption, immunotoxicity, neurotoxicity and carcinogenicity. Despite its widespread agricultural use and toxic effects, the metabolism of HEX is not completely understood, and information on urinary elimination of HEX or its metabolites is limited. Therefore, in the present study, we aimed to identify HEX metabolites in rat and human liver microsomes followed by their in vivo confirmation using a urinary excretion study in rats to identify potential candidate for exposure biomarkers for human biomonitoring studies. From the in vitro assay, a total of 12 metabolites were observed, where the single oxidation metabolites (M5 and M6) were the most abundant metabolites in both rat and human liver microsomes. The triple oxidation followed by dehydration metabolite, M8 (which could also be hexaconazole acid or hydroxy keto-hexaconazole), and the double oxidation metabolite (M9) were the major metabolites found in rat urine and were detectable in rat urine longer than the parent. These metabolites increased with decreasing concentrations of HEX in the rat urine samples. Therefore, metabolites M8, M9 and M5 could be pursued further as potential biomarkers for assessing and monitoring human exposure to HEX.
Collapse
Affiliation(s)
- C Yahavi
- Toxicokinetics Laboratory/ASSIST and REACT Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anushka Pandey
- Toxicokinetics Laboratory/ASSIST and REACT Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Manisha Bhateria
- Toxicokinetics Laboratory/ASSIST and REACT Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | | | - Ravi Kumar Trivedi
- Zydus Research Center, Zydus Life Sciences Limited, Changodar, Ahmedabad, India
| | - Sheelendra Pratap Singh
- Toxicokinetics Laboratory/ASSIST and REACT Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Lee H, Park W, An G, Park J, Lim W, Song G. Hexaconazole induces developmental toxicities via apoptosis, inflammation, and alterations of Akt and MAPK signaling cascades. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109872. [PMID: 38423198 DOI: 10.1016/j.cbpc.2024.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Hexaconazole is a highly effective triazole fungicide that is frequently applied in various countries to elevate crop productivity. Given its long half-life and high water solubility, this fungicide is frequently detected in the environment, including water sources. Moreover, hexaconazole exerts hazardous effects on nontarget organisms. However, little is known about the toxic effects of hexaconazole on animal development. Thus, this study aimed to investigate the developmental toxicity of hexaconazole to zebrafish, a valuable animal model for toxicological studies, and elucidate the underlying mechanisms. Results showed that hexaconazole affected the viability and hatching rate of zebrafish at 96 h postfertilization. Hexaconazole-treated zebrafish showed phenotypic defects, such as reduced size of head and eyes and enlarged pericardiac edema. Moreover, hexaconazole induced apoptosis, DNA fragmentation, and inflammation in developing zebrafish. Various organ defects, including neurotoxicity, cardiovascular toxicity, and hepatotoxicity, were observed in transgenic zebrafish models olig2:dsRed, fli1:eGFP, and l-fabp:dsRed. Furthermore, hexaconazole treatment altered the Akt and MAPK signaling pathways, which possibly triggered the organ defects and other toxic mechanisms. This study demonstrated the developmental toxicity of hexaconazole to zebrafish and elucidated the underlying mechanisms.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Kou J, Wu Q, Cui D, Geng Y, Zhang K, Zhang M, Zang H, Wang X, Su Z, Sun C. Selective Encapsulation and Chiral Induction of C 60 and C 70 Fullerenes by Axially Chiral Porous Aromatic Cages. Angew Chem Int Ed Engl 2023; 62:e202312733. [PMID: 37819157 DOI: 10.1002/anie.202312733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Chiral induction has been an important topic in chemistry, not only for its relevance in understanding the mysterious phenomenon of spontaneous symmetry breaking in nature but also due to its critical implications in medicine and the chiral industry. The induced chirality of fullerenes by host-guest interactions has been rarely reported, mainly attributed to their chiral resistance from high symmetry and challenges in their accessibility. Herein, we report two new pairs of chiral porous aromatic cages (PAC), R-PAC-2, S-PAC-2 (with Br substituents) and R-PAC-3, S-PAC-3 (with CH3 substituents) enantiomers. PAC-2, rather than PAC-3, achieves fullerene encapsulation and selective binding of C70 over C60 in fullerene carbon soot. More significantly, the occurrence of chiral induction between R-PAC-2, S-PAC-2 and fullerenes is confirmed by single-crystal X-ray diffraction and the intense CD signal within the absorption region of fullerenes. DFT calculations reveal the contribution of electrostatic effects originating from face-to-face arene-fullerene interactions dominate C70 selectivity and elucidate the substituent effect on fullerene encapsulation. The disturbance from the differential interactions between fullerene and surrounding chiral cages on the intrinsic highly symmetric electronic structure of fullerene could be the primary reason accounting for the induced chirality of fullerene.
Collapse
Affiliation(s)
- Junning Kou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Qi Wu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Dongxu Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yun Geng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kunhao Zhang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Min Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Hongying Zang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
4
|
Alquraini A. Potency of Hexaconazole to Disrupt Endocrine Function with Sex Hormone-Binding Globulin. Int J Mol Sci 2023; 24:ijms24043882. [PMID: 36835294 PMCID: PMC9964258 DOI: 10.3390/ijms24043882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Hexaconazole is widely used as a fungicide for agricultural purposes. However, the endocrine-disrupting potential of hexaconazole is still under investigation. In addition, an experimental study found that hexaconazole may disrupt the normal synthesis of steroidal hormones. The potency of hexaconazole to bind with sex hormone-binding globulin (SHBG), a plasma carrier protein that binds androgens and oestrogens, is unknown. In this study, we evaluated the efficacy of hexaconazole to bind with SHBG by molecular interaction, a molecular dynamics method. In addition, principal component analysis was performed to understand the dynamical behaviour of hexaconazole with SHBG in comparison with dihydrotestosterone and aminoglutethimide. The binding scores of hexaconazole, dihydrotestosterone, and aminoglutethimide with SHBG were found to be -7.12 kcal/mol, -11.41 kcal/mol, and -6.84 kcal/mol, respectively. With respect to stable molecular interaction, hexaconazole showed similar molecular dynamics patterns of root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), and hydrogen bonding. The solvent surface area (SASA) and principal component analysis (PCA) of hexaconazole exhibit similar patterns in comparison with dihydrotestosterone and aminoglutethimide. These results show that hexaconazole has a stable molecular interaction with SHBG, which may acquire the active site of the native ligand, resulting in significant endocrine disruption during agricultural work.
Collapse
Affiliation(s)
- Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| |
Collapse
|
5
|
Luo G, Pang J, Sun D, Zhang Q. Stereoselective Toxicokinetic and Distribution Study on the Hexaconazole Enantiomers in Mice. TOXICS 2023; 11:145. [PMID: 36851020 PMCID: PMC9966998 DOI: 10.3390/toxics11020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Hexaconazole (Hex) has been widely used in agricultural products, and its residues may pose a potential risk to human health. However, the metabolic behavior of Hex enantiomers in mammal organisms is still unknown, which is important for evaluating the differences in their toxicity. In this study, the distribution of S-(+)- and R-(-)-Hex in mice was detected by an ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), and the mechanism differences in the toxicokinetic behavior were analyzed by molecular docking. Good linearities, accuracies, and precisions were achieved for S-(+)- and R-(-)-Hex, with recoveries of 88.7~104.2% and RSDs less than 9.45% in nine tissues of mice. This established method was then used to detect the toxicokinetic of Hex enantiomers in mice after oral administration within 96 h. The results showed that the half-lives of S-(+)- and R-(-)-Hex were 3.07 and 3.71 h in plasma. Hex was mainly accumulated in the liver, followed by the kidneys, brain, lungs, spleen, and heart. The enantiomeric fraction (EF) values of Hex enantiomers in most of the samples were below 1, indicating that S-(+)-Hex decreased faster than its antipode. The molecular docking showed that the binding of S-(+)-Hex with P450arom was much more stable than R-(-)-Hex, which verified the fact that S-(+)-Hex was prefer to decrease in most of the tissues. The results of this study could be helpful for further evaluating the potential toxic risk of Hex enantiomers and for the development and usage of its pure monomer.
Collapse
Affiliation(s)
- Guofei Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Junxiao Pang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, China
| | - Dali Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
6
|
Shao S, Cheng X, Zheng R, Zhang S, Yu Z, Wang H, Wang W, Ye Q. Sex-related deposition and metabolism of vanisulfane, a novel vanillin-derived pesticide, in rats and its hepatotoxic and gonadal effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152545. [PMID: 34952065 DOI: 10.1016/j.scitotenv.2021.152545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
A series of vanillin derivatives have recently been synthesized as effective candidate antiviral agents, with vanisulfane exhibiting pronounced curative and protective activities against cucumber mosaic virus and potato virus Y. However, research on some new pesticides usually ignores their various metabolites and sex-related toxicity. Assisted by 14C labeling, a trial was conducted to investigate the tissue distribution, excretion, and metabolism of vanisulfane in male and female rats for the first time. The results showed that 83.30-87.51% of applied 14C activity was excreted in urine and feces within 24 h of oral administration, and 14C was most abundant in the liver and kidney in both sexes. Interestingly, sex differences were observed in the experiment, with lower body clearance in males than in females 24 h after treatment and preferences for biliary and renal excretion of the pesticide in male and female rats, respectively. A high degradation rate was found for vanisulfane in the plasma; thus, the metabolites of vanisulfane were investigated using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with 14C labeling. One glucuronic acid conjugate and two oxidation metabolites were detected, supporting the monitoring of vanisulfane in vivo. Additionally, rats exposed to vanisulfane exhibited hepatic steatosis in both sexes, along with mild gonadal effects in males. This research offers an effective method for conducting environmental behavioral research and provides new insights for evaluating the potential risks of novel pesticides in mammals from a sex perspective.
Collapse
Affiliation(s)
- Siyao Shao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Xi Cheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Ruonan Zheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of the PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Mikrochim Acta 2021; 188:163. [PMID: 33839948 DOI: 10.1007/s00604-021-04818-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/27/2021] [Indexed: 02/03/2023]
Abstract
A facile chiral composite (3D-NGMWCNT@(S,S)-CIL) was prepared by integrating three-dimensional N-doped graphene oxide multi-walled carbon nanotubes (3D-NGMWCNT) and chiral ionic liquid ((S,S)-CIL) via electrodeposition. SEM, XRD, XPS, and electrochemical methods were used to characterize this composite and it revealed that the integrated 3D-NGMWCNT@(S,S)-CIL composite showed excellent electrochemical performance. Therefore, a 3D-NGMWCNT@(S,S)-CIL/GCE electrochemical sensor was constructed for enantioselective recognition of Trp enantiomers. The coefficient (IL/ID) of the 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor was 2.26 by differential pulse voltammograms (DPV), revealing that the synthesized 3D-NGMWCNT@(S,S)-CIL had a higher affinity for L-Trp than D-Trp. Moreover, UV-V is spectroscopy and a water contact angle test also proved this result. The 3D-NGMWCNT@(S,S)-CIL/GCE sensor had a detection limit of 0.024 μM and 0.055 μM, and sensitivity of 62.35 μA·mM-1·cm-2 and 30.40 μA·mM-1·cm-2 for L-Trp and D-Trp, respectively, with a linear response range of 0.01 to 5 mM. In addition, the 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor showed excellent stability, and good reproducibility and was applied to detect L-Trp or D-Trp in real samples. The novel 3D-NGMWCNT@(S,S)-CIL/GCE chiral sensor provides an efficient and convenient strategy for chiral enantioselective recognition. Schematic construction of the 3D-NGMWCNT@(S,S)-CIL/GCE chiral electrochemical sensors.
Collapse
|
8
|
Bielská L, Hale SE, Škulcová L. A review on the stereospecific fate and effects of chiral conazole fungicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141600. [PMID: 33182213 DOI: 10.1016/j.scitotenv.2020.141600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
The production and use of chiral pesticides are triggered by the need for more complex molecules capable of effectively combating a greater spectrum of pests and crop diseases, while sustaining high production yields. Currently, chiral pesticides comprise about 30% of all pesticides in use; however, some pesticide groups such as conazole fungicides (CFs) consist almost exclusively of chiral compounds. CFs are produced and field-applied as racemic (1:1) mixtures of two enantiomers (one chiral center in the molecule) or four diastereoisomers, i.e., two pairs of enantiomers (two chiral centers in the molecule). Research on the stereoselective environmental behavior and effects of chiral pesticides such as CFs has become increasingly important within the fields of environmental chemistry and ecotoxicology. This is motivated by the fact that currently, the fate and effects of chiral pesticides such as CFs that arise due to their stereoselectivity are not fully understood and integrated into risk assessment and regulatory decisions. In order to fill this gap, a summary of the state-of-the-art literature related to the stereospecific fate and effects of CFs is needed. This will also benefit the agrochemistry industry as they enhance their understanding of the environmental implications of CFs which will aid future research and development of chiral products. This review provides a collection of >80 stereoselective studies for CFs related to chiral analytical methods, fungicidal activity, non-target toxicity, and behavior of this broadly used pesticide class in the soil environment. In addition, the review sheds more light on mechanisms behind stereoselectivity, considers possible agricultural and environmental implications, and suggests future directions for the safe use of chiral CFs and the reduction of their environmental footprint.
Collapse
Affiliation(s)
- Lucie Bielská
- Recetox, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Lucia Škulcová
- Recetox, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| |
Collapse
|
9
|
Simultaneous enantiomeric determination of multiple triazole fungicides in fruits and vegetables by chiral liquid chromatography/tandem mass spectrometry on a bridged bis(β-cyclodextrin)-bonded chiral stationary phase. Food Chem 2020; 345:128842. [PMID: 33340898 DOI: 10.1016/j.foodchem.2020.128842] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/08/2020] [Accepted: 12/05/2020] [Indexed: 01/27/2023]
Abstract
A LC-MS/MS method for simultaneous determination of twelve triazole enantiomers (hexaconazole, tebuconazole, triticonazole, flutriafol, diniconazole, paclobutrazol) in six fruits and vegetables was established based on a stable and self-made bridged bis(β-cyclodextrin)-bonded chiral stationary phase. Simultaneous enantio-separation of multiple analytes was achieved with resolution ca. 1.67-2.14. Magnetically assisted QuECHERS was used to simplify and optimize sample pre-treatment. The new method was validated (accuracy, precision, matrix effect, etc.). Good linearity (0.5-20 μg/L, R2 > 0.99) and high recoveries (76.1-103.4%) based on intra- and inter-day relative standard deviation (RSDs) (2.6-11.9%), were obtained. Furthermore, a total of 90 samples were analyzed using this method and enantiomeric fractions (EF) for tebuconazole in strawberry and cucumber (0.63 and 0.43, respectively) were determined as well as 0.57 for flutriafol in tomato. This high-throughput detection method supported a convenient enantiomeric monitoring for chiral pesticides in fruits and vegetables.
Collapse
|
10
|
Zhang P, Wang S, Shi D, Xu Y, Yang F, Deng X, He Y, He L. Direct Enantiomeric Separation and Determination of Hexythiazox Enantiomers in Environment and Vegetable by Reverse-Phase High-Performance Liquid Chromatography. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3453. [PMID: 32429166 PMCID: PMC7277754 DOI: 10.3390/ijerph17103453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/02/2022]
Abstract
In the present study, the direct enantiomeric separation of hexythiazox enantiomers on Lux cellulose-1, Lux cellulose-2, Lux cellulose-3, Lux cellulose-4, Lux amylose-1 and Chirapak IC chiral columns were carefully investigated by reverse-phase high-performance liquid chromatography (RP-HPLC). Acetonitrile/water and methanol/water were used as mobile phase at a flow rate of 0.8 mL·min-1. The effects of chiral stationary phase, temperature, thermodynamic parameters, mobile phase component and mobile phase ratio on hexythiazox enantiomers separation were fully evaluated. Hexythiazox enantiomers received a baseline separation on the Lux cellulose-3 column with a maximum resolution of Rs = 2.09 (methanol/water) and Rs = 2.74 (acetonitrile/water), respectively. Partial separations were achieved on other five chiral columns. Furthermore, Lux amylose-1 and Chirapak IC had no separation ability for hexythiazox enantiomers when methanol/water was used as mobile phase. Temperature study indicated that the capacity factor (k) and resolution factor (Rs) decreased with column temperature increasing from 10 °C to 40 °C. The enthalpy (ΔH) and entropy (ΔS) involved in hexythiazox separation were also calculated and demonstrated the lower temperature contributed to better separation resolution. Moreover, the residue analytical method for hexythiazox enantiomers in the environment (soil and water) and vegetable (cucumber, cabbage and tomato) were also established with reliable accuracy and precision under reverse-phase HPLC condition. Such results provided a baseline separation method for hexythiazox enantiomers under reverse-phase conditions and contributed to an environmental and health risk assessment of hexythiazox at enantiomer level.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (S.W.); (D.S.); (Y.X.); (F.Y.); (Y.H.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China
| | - Sheng Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (S.W.); (D.S.); (Y.X.); (F.Y.); (Y.H.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Dongmei Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (S.W.); (D.S.); (Y.X.); (F.Y.); (Y.H.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yangyang Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (S.W.); (D.S.); (Y.X.); (F.Y.); (Y.H.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Furong Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (S.W.); (D.S.); (Y.X.); (F.Y.); (Y.H.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xile Deng
- Key Laboratory for Biology and Control of Weeds, Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Yuhan He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (S.W.); (D.S.); (Y.X.); (F.Y.); (Y.H.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; (S.W.); (D.S.); (Y.X.); (F.Y.); (Y.H.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Liu H, Li P, Wang P, Liu D, Zhou Z. Toxicity risk assessment of pyriproxyfen and metabolites in the rat liver: A vitro study. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121835. [PMID: 31843398 DOI: 10.1016/j.jhazmat.2019.121835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/09/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Pyriproxyfen (PYR) is a type of aromatic juvenile hormone analog and a hygienic insecticide used in agriculture to control insect species. Therefore, assessing the metabolic behavior and toxic effects of PYR in mammals is the best means of evaluating its risks to human health. Previous studies have reported conflicting results regarding the toxicity risks of PYR and its metabolites in rat hepatocytes. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to perform a chiral analysis of PYR and its metabolites investigating the enantioselective metabolism of PYR in rat liver microsomes. Our results concluded that the recoveries of PYR, metabolites A and B ranged from 81.13%-111.54 %, with RSD values of 0.01 %-6.52 %. The method limits of detection (LODs) and limits of quantification (LOQs) for PYR, metabolites A and B were in accordance with the analysis requirements. Previous studies have demonstrated the enantioselective metabolism of PYR and the generation of metabolites. Measurements of cell proliferation toxicity to rat hepatocytes, apoptosis and DNA damage induced by PYR and its metabolites in rat hepatocytes indicated that the metabolites reflected higher toxicity potential than PYR in rat hepatocytes. More studies about the molecular mechanism of PYR-induced toxicity are urgently needed in future work.
Collapse
Affiliation(s)
- Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|
12
|
In vitro assessment of hepatotoxicity by metabolomics: a review. Arch Toxicol 2018; 92:3007-3029. [DOI: 10.1007/s00204-018-2286-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/13/2018] [Indexed: 02/08/2023]
|
13
|
Metabolism studies of chiral pesticides: A critical review. J Pharm Biomed Anal 2018; 147:89-109. [DOI: 10.1016/j.jpba.2017.08.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 01/24/2023]
|
14
|
Zhang P, Yu Q, He X, Qian K, Xiao W, Xu Z, Li T, He L. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography. Chirality 2017; 30:420-431. [PMID: 29274232 DOI: 10.1002/chir.22801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/24/2017] [Accepted: 11/22/2017] [Indexed: 01/07/2023]
Abstract
The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum Rs were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level.
Collapse
Affiliation(s)
- Ping Zhang
- College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qian Yu
- College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiulong He
- College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Xiao
- College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhifeng Xu
- College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian Li
- College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Li J, Guo J, Shang E, Zhu Z, Zhu KY, Li S, Zhao B, Jia L, Zhao J, Tang Z, Duan J. A metabolomics strategy to explore urinary biomarkers and metabolic pathways for assessment of interaction between Danhong injection and low-dose aspirin during their synergistic treatment. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:168-175. [DOI: 10.1016/j.jchromb.2015.07.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/26/2015] [Accepted: 07/22/2015] [Indexed: 01/01/2023]
|
16
|
Applicability of the Rayleigh equation for enantioselective metabolism of chiral xenobiotics by microsomes, hepatocytes and in-vivo retention in rabbit tissues. Sci Rep 2016; 6:23715. [PMID: 27021918 PMCID: PMC4810358 DOI: 10.1038/srep23715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 01/22/2023] Open
Abstract
In this study we propose a new approach for analyzing the enantioselective biodegradation of some antidepressant drugs mediated by human and rat liver microsomes by using the Rayleigh equation to describe the enantiomeric enrichment−conversion dependencies. Analysis of reported degradation data of additional six pesticides, an alpha blocker and a flame retardant by microsomes or hepatocytes in vitro reaffirmed the universality of the approach. In all the in vitro studied cases that involved enantioselective degradation, a Rayleigh dependence of the enantiomeric enrichment was observed. Published data regarding in vivo retention of myclobutanil in liver, kidney, muscle and brain tissues of rabbits following injection of the racemate were remodeled showing prevalence of the Rayleigh law for the chiral enrichment of the fungicide in the various tissues. This approach will revolutionize data organization in metabolic pathway research of target xenobiotics by either liver microsomes, hepatocytes or their organ-specific in vivo retention. The fact that the enantiomeric enrichment as a function of the conversion can be described by a single quantifier, will pave the road for the use of structure activity predictors of the enantiomeric enrichment and for mechanistic discrimination based on parametric dependence of the quantifier.
Collapse
|