1
|
Li Y, Jiang J, Chen Y, Qie W, Zhu W, Xu N, Zhao J. Effects of salinity on the performance, microbial community, and functional genes among 4-chlorophenol wastewater treatment. BIORESOURCE TECHNOLOGY 2023:129282. [PMID: 37277007 DOI: 10.1016/j.biortech.2023.129282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Chlorophenols frequently occur alongside salinity in industrial wastewater; thus, the effects of low concentrations of salinity (NaCl, 100 mg/L) on sludge performance, microbial community, and functional genes were deeply analyzed among 4-chlorophenol (4-CP, 2.4-4.0 mg/L) wastewater treatment. The influent 4-CP was effectively degraded, but the efficiencies for PO43--P, NH4+-N, and organics reduction were slightly inhibited by NaCl stress. Long-term NaCl and 4-CP stress significantly stimulated the secretion of extracellular polymeric substances (EPS). The abundances of predominant microbes at different taxonomic levels were affected by NaCl, and the increased relative abundances of functional genes encoding proteins contributed to resist NaCl and 4-CP stress. The functional genes associated with phosphorus metabolism and nitrogen metabolism in nitrification were unaffected, but the functional genes in denitrification increased in diversity under NaCl stress in 4-CP wastewater treatment. This finding acquires useful insight into the wastewater treatment with low chlorophenols and low salinity.
Collapse
Affiliation(s)
- Yahe Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China; Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo, China
| | - Jianan Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yili Chen
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wandi Qie
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wenrong Zhu
- Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo, China
| | - Nianjun Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jianguo Zhao
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Phenol Degradation Kinetics by Free and Immobilized Pseudomonas putida BCRC 14365 in Batch and Continuous-Flow Bioreactors. Processes (Basel) 2020. [DOI: 10.3390/pr8060721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phenol degradation by Pseudomonas putida BCRC 14365 was investigated at 30 °C and a pH of 5.0–9.0 in the batch tests. Experimental results for both free and immobilized cells demonstrated that a maximum phenol degradation rate occurred at an initial pH of 7. The peak value of phenol degradation rates by the free and immobilized cells were 2.84 and 2.64 mg/L-h, respectively. Considering the culture at 20 °C, there was a lag period of approximately 44 h prior to the start of the phenol degradation for both free and immobilized cells. At the temperatures ranging from 25 to 40 °C, the immobilized cells had a higher rate of phenol degradation compared to the free cells. Moreover, the removal efficiencies of phenol degradation at the final stage were 59.3–92% and 87.5–92%, for the free and immobilized cells, respectively. The optimal temperature was 30 °C for free and immobilized cells. In the batch experiments with various initial phenol concentrations of 68.3–563.4 mg/L, the lag phase was practically negligible, and a logarithmic growth phase of a particular duration was observed from the beginning of the culture. The specific growth rate (μ) in the exponential growth phase was 0.085–0.192 h−1 at various initial phenol concentrations between 68.3 and 563.4 mg/L. Comparing experimental data with the Haldane kinetics, the biokinetic parameters, namely, maximum specific growth rate (μmax), the phenol half-saturation constant (Ks) and the phenol inhibition constant (KI), were determined to equal 0.31 h−1, 26.2 mg/L and 255.0 mg/L, respectively. The growth yield and decay coefficient of P. putida cells were 0.592 ± 4.995 × 10−3 mg cell/mg phenol and 5.70 × 10−2 ± 1.122 × 10−3 day−1, respectively. A completely mixed and continuous-flow bioreactor with immobilized cells was set up to conduct the verification of the kinetic model system. The removal efficiency for phenol in the continuous-flow bioreactor was approximately 97.7% at a steady-state condition. The experimental and simulated methodology used in this work can be applied, in the design of an immobilized cell process, by various industries for phenol-containing wastewater treatment.
Collapse
|
3
|
Gómez-Basurto F, Vital-Jácome M, Gómez-Acata ES, Thalasso F, Luna-Guido M, Dendooven L. Microbial community dynamics during aerobic granulation in a sequencing batch reactor (SBR). PeerJ 2019; 7:e7152. [PMID: 31528503 PMCID: PMC6717656 DOI: 10.7717/peerj.7152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/20/2019] [Indexed: 11/20/2022] Open
Abstract
Microorganisms in aerobic granules formed in sequencing batch reactors (SBR) remove contaminants, such as xenobiotics or dyes, from wastewater. The granules, however, are not stable over time, decreasing the removal of the pollutant. A better understanding of the granule formation and the dynamics of the microorganisms involved will help to optimize the removal of contaminants from wastewater in a SBR. Sequencing the 16S rRNA gene and internal transcribed spacer PCR amplicons revealed that during the acclimation phase the relative abundance of Acinetobacter reached 70.8%. At the start of the granulation phase the relative abundance of Agrobacterium reached 35.9% and that of Dipodascus 89.7% during the mature granule phase. Fluffy granules were detected on day 43. The granules with filamentous overgrowth were not stable and they lysed on day 46 resulting in biomass wash-out. It was found that the reactor operation strategy resulted in stable aerobic granules for 46 days. As the reactor operations remained the same from the mature granule phase to the end of the experiment, the disintegration of the granules after day 46 was due to changes in the microbial community structure and not by the reactor operation.
Collapse
Affiliation(s)
| | | | | | | | | | - Luc Dendooven
- Laboratory of Soil Ecology, Cinvestav, Mexico City, Mexico
| |
Collapse
|
4
|
Characterization of kinetic parameters and mass transfer resistance in an aerobic fixed-bed reactor by in-situ respirometry. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Hernandez-Martinez GR, Ortiz-Alvarez D, Perez-Roa M, Urbina-Suarez NA, Thalasso F. Multiparameter analysis of activated sludge inhibition by nickel, cadmium, and cobalt. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:63-70. [PMID: 29510328 DOI: 10.1016/j.jhazmat.2018.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Activated sludge processes are often inhibited by nickel, cadmium, and cobalt. The inhibitory effect of these heavy metals on a synthetic wastewater treatment process was tested through pulse microrespirometry; i.e., pulse of substrate injected in a microreactor system. The inhibitory effect was tested under different conditions including the heavy metals, substrate and biomass concentrations, and exposure time. The inhibitory effect was quantified by the percentage of inhibition, half saturation constant (KS), inhibition constant (KI), and maximum oxygen uptake rate (OURmax). The results indicated that, in a range of concentration from 0 to 40 mg L-1, the three heavy metals exerted an uncompetitive and incomplete inhibitory effect, with a maximum inhibition of 67, 57, and 53% for Ni, Co, and Cd, respectively. An increase of the biomass concentration by 620% resulted in a decrease of the inhibition by 47 and 69% for Co and Cd, respectively, while no effect was observed on Ni inhibition. An increase of the substrate concentration by 87% resulted in an increase of the inhibition by 24, 70, and 47% for Ni, Co and Cd, respectively. In the case of nickel and cadmium, an increase in the exposure time to the heavy metals also increased the inhibition.
Collapse
Affiliation(s)
- Gabriel R Hernandez-Martinez
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Departamento de Biotecnología y Bioingeniería, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Daniela Ortiz-Alvarez
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Departamento de Biotecnología y Bioingeniería, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico; Universidad Francisco de Paula Santander, Av. Gran Colombia 12E-96, San José de Cúcuta, Colombia
| | - Michael Perez-Roa
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Departamento de Biotecnología y Bioingeniería, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico; Universidad Francisco de Paula Santander, Av. Gran Colombia 12E-96, San José de Cúcuta, Colombia
| | | | - Frederic Thalasso
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Departamento de Biotecnología y Bioingeniería, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
6
|
Dong H, Wei D, Wei J, Han F, Yan T, Khan MS, Du B, Wei Q. Qualitative and quantitative spectrometric evaluation of soluble microbial products formation in aerobic granular sludge system treating nitrate wastewater. Bioprocess Biosyst Eng 2018. [PMID: 29523965 DOI: 10.1007/s00449-018-1918-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In present study, the characteristics of soluble microbial products (SMP) were evaluated in aerobic granular sludge system during denitrification process under different chemical oxygen demand/nitrogen (C/N) ratios. Batch experiment showed that the effluent nitrate (NO3--N) concentration were 15.24 ± 1.83 and 1.72 ± 1.53 mg/L at C/N ratio of 1 and 6, respectively. For the release of SMP, the protein (PN) and polysaccharide contents increased from 1.23 ± 0.38 and 7.46 ± 1.13 mg/L to 1.80 ± 0.76 and 10.53 ± 1.24 mg/L with increasing C/N ratios, respectively. Excitation-emission matrix identified four peaks in SMP, including aromatic PN-like, tryptophan PN-like, fulvic acid-like and humic acid-like substances. Fluorescence regional integration suggested that biodegradable PN-like substances occupied the percentage between 53.0 and 61.7% in SMP. Synchronous fluorescence spectra coupled with two-dimensional correlation spectroscopy indicated that the release of SMP fractions in the early stage (0-150 min) changed in the following sequences: PN-like fraction > fulvic acid-like fraction.
Collapse
Affiliation(s)
- Heng Dong
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Jinglin Wei
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Fei Han
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Tao Yan
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Malik Saddam Khan
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
7
|
Gómez-Acata S, Vital-Jácome M, Pérez-Sandoval MV, Navarro-Noya YE, Thalasso F, Luna-Guido M, Conde-Barajas E, Dendooven L. Microbial community structure in aerobic and fluffy granules formed in a sequencing batch reactor supplied with 4-chlorophenol at different settling times. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:606-616. [PMID: 28898858 DOI: 10.1016/j.jhazmat.2017.08.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Toxic compounds, such as 4-chlorophenol (4-CP), which is a common pollutant in wastewater, are removed efficiently from sequencing batch reactors (SBRs) by microorganisms. The bacterial community in aerobic granules formed during the removal of 4-CP in a SBR was monitored for 63days. The SBR reactor was operated with a constant filling and withdrawal time of 7 and 8min and decreasing settling time (30, 5, 3 and 2min) to induce the formation of aerobic granules. During the acclimation period lasting 15days (30min settling time) had a strong effect on the bacterial community. From day 18 onwards, Sphingobium and Comamonadaceae were detected. Rhizobiaceae were dominant from day 24 to day 28 when stable aerobic granules were formed. At day 35, fluffy granules were formed, but the bacterial community structure did not change, despite the changes in the reactor operation to inhibit filamentous bacteria growth. This is the first report on changes in the bacterial community structure of aerobic and fluffy granules during granulation process in a reactor fed with 4-CP and the prediction of its metabolic pathways.
Collapse
Affiliation(s)
- Selene Gómez-Acata
- Department of Environmental Engineering, Instituto Tecnológico de Celaya, Guanajuato, Mexico
| | | | | | | | | | - Marco Luna-Guido
- Laboratory of Soil Ecology, ABACUS, Cinvestav, México, D.F., Mexico
| | - Eloy Conde-Barajas
- Department of Environmental Engineering, Instituto Tecnológico de Celaya, Guanajuato, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, ABACUS, Cinvestav, México, D.F., Mexico.
| |
Collapse
|
8
|
Fall C, Silva-Hernández BC. Bacterial inactivation and regrowth in ozonated activated sludges. CHEMOSPHERE 2017; 189:357-364. [PMID: 28946069 DOI: 10.1016/j.chemosphere.2017.09.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/29/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Ozonation of the return activated sludge (AS) flow is an emerging option for excess-sludge reduction. This study aimed to evaluate the potential changes suffered by some kinetic parameters of the activated sludge models (ASMs) in the combined ozone-AS process. The heterotrophic maximum specific growth rate (μHmax) was determined by respirometry in three model-sludges (S1 to S3) treated in batch with different O3 doses. S1 was a fresh synthetic biosolid composed by only two particulate fractions. S2 was a digestate of S1 almost made by the endogenous residues. S3 was from a municipal wastewater treatment plant. μHmax increased significantly from 3.5 d-1 originally, to more than 10 d-1 in the ozonated sludges. Ozonation promoted the selection of fast-growing bacteria in the activated sludges, after transitory inactivation and long lag times. Some microorganisms survived to 3 months of digestion and subsequent ozonation, and then regrow faster than before, once fed again with acetate. The research is of interest from the point of view of the application of the ASM models to the ozone-AS process, but also for wastewater disinfection in general.
Collapse
Affiliation(s)
- C Fall
- Universidad Autónoma del Estado de México (UAEM, CIRA), col. Centro, C.P. 50000, Toluca, Mexico.
| | - B C Silva-Hernández
- Universidad Autónoma del Estado de México (UAEM, CIRA), col. Centro, C.P. 50000, Toluca, Mexico
| |
Collapse
|
9
|
Vital-Jacome M, Dochain D, Thalasso F. Microrespirometric model calibration applied to wastewater processes. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Sánchez-Vázquez V, Shirai K, González I, Gutiérrez-Rojas M. Fungal biocatalyst activated by an electric field: Improved mass transfer and non-specificity for hydrocarbon degradation in an airlift bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2017; 337:62-71. [PMID: 28505509 DOI: 10.1016/j.jhazmat.2017.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
The combination of biological and electrochemical techniques enhances the bioremediation efficiency of treating oil-contaminated water. In this study a non-growing fungal whole cell biocatalyst (BC; Aspergillus brasiliensis attached to perlite) pretreated with an electric field (EF), was used to degrade a hydrocarbon blend (hexadecane-phenanthrene-pyrene; 100:1:1w/w) in an airlift bioreactor (ALB). During hydrocarbon degradation, all mass transfer resistances (internal and external) and sorption capacity were experimentally quantified. Internal mass transfer resistances were evaluated through BC effectiveness factor analysis as a function of the Thiele modulus (using first order reaction kinetics, assuming a spherical BC, five particle diameters). External (interfacial) mass transfer resistances were evaluated by kLa determination. EF pretreatment during BC production promoted surface changes in BC and production of an emulsifier protein in the ALB. The BC surface modifications enhanced the affinity for hydrocarbons, improving hydrocarbon uptake by direct contact. The resulting emulsion was associated with decreased internal and external mass transfer resistances. EF pretreatment effects can be summarized as: a combined uptake mechanism (direct contact dominant followed by emulsified form dominant) diminishing mass transfer limitations, resulting in a non-specific hydrocarbon degradation in blend. The pretreated BC is a good applicant for oil-contaminated water remediation.
Collapse
Affiliation(s)
- Victor Sánchez-Vázquez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, México, D.F. C.P. 09340, Mexico
| | - Keiko Shirai
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, México, D.F. C.P. 09340, Mexico
| | - Ignacio González
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, México, D.F. C.P. 09340, Mexico
| | - Mariano Gutiérrez-Rojas
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, México, D.F. C.P. 09340, Mexico.
| |
Collapse
|