1
|
Yang M, Shi Z, Sun S, Yang B, Cui J, Li J, Yun D, Lei N. Structure-phase transformation of bismuth oxide to BiOCl/Bi 24O 31Cl 10 shoulder-by-shoulder heterojunctions for efficient photocatalytic removal of antibiotic. J Environ Sci (China) 2025; 149:149-163. [PMID: 39181630 DOI: 10.1016/j.jes.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 08/27/2024]
Abstract
Developing heterojunction photocatalyst with well-matched interfaces and multiple charge transfer paths is vital to boost carrier separation efficiency for photocatalytic antibiotics removal, but still remains a great challenge. In present work, a new strategy of chloride anion intercalation in Bi2O3 via one-pot hydrothermal process is proposed. The as-prepared Ta-BiOCl/Bi24O31Cl10 (TBB) heterojunctions are featured with Ta-Bi24O31Cl10 and Ta-BiOCl lined shoulder-by-shouleder via semi-coherent interfaces. In this TBB heterojunctions, the well-matched semi-coherent interfaces and shoulder-by-shoulder structures provide fast electron transfer and multiple transfer paths, respectively, leading to enhanced visible light response and improved photogenerated charge separation. Meanwhile, a type-II heterojunction for photocharge separation has been obtained, in which photogenerated electrons are drove from the CB (conduction band) of Ta-Bi24O31Cl10 to the both of bilateral empty CB of Ta-BiOCl and gathered on the CB of Ta-BiOCl, while the photogenerated holes are left on the VB (valence band) of Ta-Bi24O31Cl10, effectively hindering the recombination of photogenerated electron-hole pairs. Furthermore, the separated electrons can effectively activate dissolved oxygen for the generation of reactive oxygen species (·O2-). Such TBB heterojunctions exhibit remarkably superior photocatalytic degradation activity for tetracycline hydrochloride (TCH) solution to Bi2O3, Ta-BiOCl and Ta-Bi24O31Cl10. This work not only proposes a Ta-BiOCl/Bi24O31Cl10 shoulder-by-shoulder micro-ribbon architectures with semi-coherent interfaces and successive type-II heterojunction for highly efficient photocatalytic activity, but offers a new insight into the design of highly efficient heterojunction through phase-structure synergistic transformation strategy.
Collapse
Affiliation(s)
- Man Yang
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Zhenzhen Shi
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Shaodong Sun
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Bian Yang
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jie Cui
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Jianing Li
- Engineering Research Center of Conducting Materials and Composite Technology, Ministry of Education; Shaanxi Engineering Research Center of Metal-Based Heterogeneous Materials and Advanced Manufacturing Technology; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology; School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Daqin Yun
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Nian Lei
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Liu M, Yang W, Xiao R, Qin Y, Tan R, Chen Y, Gu W, Hu L, Lin Y, Zhu C. Anisotropic Dual S-Scheme Heterojunctions Mimic Natural Photosynthetic System for Boosting Photoelectric Response. Angew Chem Int Ed Engl 2024; 63:e202407481. [PMID: 38840295 DOI: 10.1002/anie.202407481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
The design of heterojunctions that mimic natural photosynthetic systems holds great promise for enhancing photoelectric response. However, the limited interfacial space charge layer (SCL) often fails to provide sufficient driving force for the directional migration of inner charge carriers. Drawing inspiration from the electron transport chain (ETC) in natural photosynthesis system, we developed a novel anisotropic dual S-scheme heterojunction artificial photosynthetic system composed of Bi2O3-BiOBr-AgI for the first time, with Bi2O3 and AgI selectively distributed along the bicrystal facets of BiOBr. Compared to traditional semiconductors, the anisotropic carrier migration in BiOBr overcomes the recombination resulting from thermodynamic diffusion, thereby establishing a potential ETC for the directional migration of inner charge carriers. Importantly, this pioneering bioinspired design overcomes the limitations imposed by the limited distribution of SCL in heterojunctions, resulting in a remarkable 55-fold enhancement in photoelectric performance. Leveraging the etching of thiols on Ag-based materials, this dual S-scheme heterojunction is further employed in the construction of photoelectrochemical sensors for the detection of acetylcholinesterase and organophosphorus pesticides.
Collapse
Affiliation(s)
- Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Runshi Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Rong Tan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuanxing Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA99164, USA
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
3
|
Zhang Q, Wang C, Tian Y, Liu Y, You F, Wang K, Wei J, Long L, Qian J. Growth of AgI semiconductors on tailored 3D porous Ti 3C 2 MXene/graphene oxide aerogel to develop sensitive and selective "signal-on" photoelectrochemical sensor for H 2S determination. Anal Chim Acta 2023; 1245:340845. [PMID: 36737133 DOI: 10.1016/j.aca.2023.340845] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Long term exposure to hydrogen sulfide (H2S) even in low concentration poses a serious threat to human health and the ecosystem, pointing to the significance for its effective supervision. In this study, we report a sensitive and selective "signal-on" photoelectrochemical (PEC) sensor for the determination of toxic H2S in aqueous solution by in situ growth of AgI semiconductors on tailored three-dimensional (3D) porous Ti3C2 MXene/graphene oxide aerogel (MGA). Our research demonstrated that the resultant MGA with the starting feeding mass ratio of MXene and graphene oxide (GO) of 1:8 (MGA1:8) possessed the most excellent PEC performance after the growth of AgI semiconductors than their monomers (Ti3C2 MXene and GO) and the MGAs with other starting feeding mass ratio. Such designed PEC sensor based on MGA1:8/AgI heterojunction showed dramatically strengthened PEC responses with increasing concentrations of S2-. Correspondingly, a wide linear range of 5 nM-200 μM, a low limit of detection of 1.54 nM (S/N = 3), and exclusively unique selectivity have been achieved. Our research illustrates that the PEC sensor designed with tailored MGA constitutes is an effective pathway to enhance the overall sensing performance, which will envision to boost more efforts for advanced 3D porous aerogel using in PEC sensors.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yunmeng Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Fuheng You
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
4
|
Li Y, Chen L, Zhang J, Zhu C, Liu L. Synergistic photocatalytic degradation of TC-HCl by Mn3+/Co2+/Bi2O3 and PMS. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Goudarzi MD, Khosroshahi N, Safarifard V. Exploring novel heterojunctions based on the cerium metal-organic framework family and CAU-1, as dissimilar structures, for the sake of photocatalytic activity enhancement. RSC Adv 2022; 12:32237-32248. [PMID: 36425724 PMCID: PMC9647877 DOI: 10.1039/d2ra06034e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
Ce-based metal-organic frameworks (Ce-MOFs) are excellent photocatalysts due to their high efficiency in charge transportation. The integration of this family with CAU-1 (CAU standing for Christian-Albrechts-University), as a MOF benefiting from its ultra-high surface area, can remarkably enhance the properties of the structure. This research includes four new heterojunctions, namely CAU-1/Ce-BDC-NH2, CAU-1/Ce-UiO-66, CAU-1/Ce-MOF-808, and CAU-1/Ce-BDC, prepared by an innovative method, and several characterization techniques were employed to study the structural features of the frameworks. Their high surface area and low bandgap energy seemed appropriate for catalytic applications. Therefore, CAU-1/Ce-BDC was chosen for the photocatalytic removal of Cr(vi), a dangerous heavy metal, from aqueous systems. According to the results, a 96% reduction of Cr(vi) to Cr(iii) within 75 min was observed, and the catalyst retained its stability after four runs of reactions under acidic conditions.
Collapse
Affiliation(s)
- Moein Darabi Goudarzi
- Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Negin Khosroshahi
- Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
6
|
|
7
|
Liao J, He X, Zhang Y, Zhu W, Zhang L, He Z. Bismuth impregnated biochar for efficient uranium removal from solution: Adsorption behavior and interfacial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153145. [PMID: 35038520 DOI: 10.1016/j.scitotenv.2022.153145] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, Bi2O3 doped horse manure-derived biochar was obtained by carbonizing the H2O2-modified horse manure loaded with bismuth nitrate under nitrogen atmosphere at 500 °C. The results showed that there was a sharp response between the as-prepared bismuth impregnated biochar and uranium(VI) species in solution, which resulted in a short equilibrium time (<80 min), a fast adsorption rate (about 5.0 mg/(g·min)), a high removal efficiency (93.9%) and a large adsorption capacity (516.5 mg/g) (T = 298 K, pH = 4, Ci = 10 mg/L and m/V = 0.1 g/L). Besides, the removal behavior of the bismuth impregnated biochar for uranium(VI) did not depend on the interfering ions and ion strength, except Al3+, Ca2+, CO32- and PO43-. These results indicated that the modified biochar might possess the potential of remediating the actual uranium(VI)-containing wastewater. Moreover, the interaction mechanism between Bi2O3 doped biochar and uranium(VI) species was further explored. The results demonstrated that the enrichment of uranium(VI) on the surface of the as-prepared biochar was controlled by various factors, such as surface complexation, ion exchange, electrostatic attraction, precipitation and reduction, which facilitated the adsorption of uranium(VI) on the bismuth impregnated biochar.
Collapse
Affiliation(s)
- Jun Liao
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoshan He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Zhibing He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China.
| |
Collapse
|
8
|
Liu HZ, Han QF, Ding HW, Yu HM, Chiu TW. One-step route to α-Bi2O3/BiOX (X = Cl, Br) heterojunctions with Bi2O3 ultrafine nanotubes closely adhered to BiOX nanosheets. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Anthony ET, Oladoja NA. Process enhancing strategies for the reduction of Cr(VI) to Cr(III) via photocatalytic pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8026-8053. [PMID: 34837612 DOI: 10.1007/s11356-021-17614-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This discourse aimed at providing insight into the strategies that can be adopted to boost the process of photoreduction of Cr(VI) to Cr(III). Cr(VI) is amongst the highly detestable pollutants; thus, its removal or reduction to an innocuous and more tolerable Cr(III) has been the focus. The high promise of photocatalysis hinged on the sustainability, low cost, simplicity, and zero sludge generation. Consequently, the present dissertation provided a comprehensive review of the process enhancement procedures that have been reported for the photoreduction of Cr(VI) to Cr(III). Premised on the findings from experimental studies on Cr(VI) reductions, the factors that enhanced the process were identified, dilated, and interrogated. While the salient reaction conditions for the process optimization include the degree of ionization of reacting medium, available photogenerated electrons, reactor ambience, type of semiconductors, surface area of semiconductor, hole scavengers, quantum efficiency, and competing reactions, the relevant process variables are photocatalyst dosage, initial Cr(VI) concentration, interfering ion, and organic load. In addition, the practicability of photoreduction of Cr(VI) to Cr(III) was explored according to the potential for photocatalyst recovery, reactivation, and reuse reaction conditions and the process variables.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria.
| |
Collapse
|
10
|
Jin Z, Li J, Liu D, Sun Y, Li X, Cai Q, Ding H, Gui J. Effective promotion of spacial charge separation of dual S-scheme (1D/2D/0D) WO3@ZnIn2S4/Bi2S3 heterojunctions for enhanced photocatalytic performance under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Zhang T, Wang Y, Xie X, Shao Y, Zeng Y, Zhang S, Yan Q, Li Z. Dual Z-scheme 2D/3D carbon-bridging modified g-C3N4/BiOI-Bi2O3 composite photocatalysts for effective boosting visible-light-driven photocatalytic performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Wu Z, Liu X, Yu C, Li F, Zhou W, Wei L. Construct interesting CuS/TiO 2 architectures for effective removal of Cr(VI) in simulated wastewater via the strong synergistic adsorption and photocatalytic process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148941. [PMID: 34328876 DOI: 10.1016/j.scitotenv.2021.148941] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Most of the reduction processes for Cr (VI) removal tend to be available only at the acidic condition and the capable extent of pH is limited. Here, we developed a facile strategy for constructing CuS/TiO2 architectures via a facile precipitation process. The as-prepared urchin-like CuS microspheres possessed hierarchical/large porous structure and unique electrical structure, which provided a strong ability to capture the Cr(VI) ions in water. Once CuS microspheres were combined with TiO2 crystals (P25), a surprised high removal efficiency for Cr(VI) was obtained. With optimal molar ratio of CuS:TiO2 (0.72:1), 4.4 and 1.3 times in Cr(VI) removal rate were obtained with respect to pure TiO2 and CuS. The high removal efficiency was induced by the distinct synergistic role of strong adsorption and photocatalytic reduction originated from unique electrical structure in CuS/TiO2 hetero-structure. Moreover, these novel CuS/TiO2 architectures possess promising application for Cr6+ effluents remediation in a wide range of pH and with co-existing anions and cations.
Collapse
Affiliation(s)
- Zhen Wu
- School of Chemical Engineering, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xingqiang Liu
- School of Environmental Science and Engineering, Key Laboratory of Estuarine Ecological Security and Environmental Health, Xiamen University Tan Kah Kee College, Zhangzhou 363105, Fujian, China
| | - Changlin Yu
- School of Chemical Engineering, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Fang Li
- School of Chemical Engineering, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Wanqin Zhou
- School of Chemical Engineering, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Longfu Wei
- School of Chemical Engineering, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| |
Collapse
|
13
|
Naya SI, Tada H. Photocatalysis of Ag Nanoparticle-incorporated AgI Formed in the Pores of Mesoporous TiO 2 Film. CHEM LETT 2021. [DOI: 10.1246/cl.210457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shin-ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hiroaki Tada
- Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
14
|
Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63769-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Chachvalvutikul A, Luangwanta T, Kaowphong S. Double Z-scheme FeVO 4/Bi 4O 5Br 2/BiOBr ternary heterojunction photocatalyst for simultaneous photocatalytic removal of hexavalent chromium and rhodamine B. J Colloid Interface Sci 2021; 603:738-757. [PMID: 34229117 DOI: 10.1016/j.jcis.2021.06.124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS Fabrication of the heterojunction photocatalyst with appropriate band potentials as a promising method of inhibiting electron-hole pair recombination leading to enhanced photocatalytic properties. EXPERIMENTS Herein, BiOBr, Bi4O5Br2, and binary BiOBr/Bi4O5Br2 composite were selectively synthesized by employing a one-step microwave irradiation method. Then, double Z-scheme FeVO4/Bi4O5Br2/BiOBr ternary composites with different weight percentages (%wt) of FeVO4 were fabricated and their photocatalytic applications were studied. The photodegradation of organic compounds (rhodamine B (RhB), methylene blue (MB) and salicylic acid (SA)), along with the photoreduction of hexavalent chromium (Cr(VI)) were investigated. FINDINGS Comparing with the single and binary photocatalysts, and a commercial TiO2, the 1 %wt-FeVO4/Bi4O5Br2/BiOBr photocatalyst demonstrated superior visible-light-driven photocatalytic performance. In a Cr(VI)/RhB combined system, Cr(VI) photoreduction was further improved and coexisting RhB molecules were simultaneously degraded. Removal of Cr(VI) and RhB were maximized by adjusting both pH values and catalyst dosages. Based on UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, electrochemical investigations, active-species trapping, nitrotetrazolium blue transformation, and silver photo-deposition experiments, a double Z-scheme charge transfer mechanism with an RhB-sensitized effect was proposed. This special mechanism has led to significant enhancement in charge segregation and migration, along with higher redox properties of the ternary composite, which were responsible for the excellent photocatalytic activity.
Collapse
Affiliation(s)
| | - Tawanwit Luangwanta
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sulawan Kaowphong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
16
|
Ifthikar J, Ibran Shahib I, Jawad A, Gendy EA, Wang S, Wu B, Chen Z, Chen Z. The excursion covered for the elimination of chromate by exploring the coordination mechanisms between chromium species and various functional groups. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Arumugam M, Yu Y, Jung HJ, Yeon S, Lee H, Theerthagiri J, Lee SJ, Choi MY. Solvent-mediated synthesis of BiOI with a tunable surface structure for effective visible light active photocatalytic removal of Cr(VI) from wastewater. ENVIRONMENTAL RESEARCH 2021; 197:111080. [PMID: 33775677 DOI: 10.1016/j.envres.2021.111080] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The present study investigated the effect of various solvents on the tunable surface morphology and photocatalytic activity (PCA) of bismuth oxyiodide (BiOI), which could be used for the reduction of Cr(VI) under visible light irradiation (VLI). BiOI samples exhibiting different morphologies, i.e., two-dimensional square-like nanosheet and three-dimensional hierarchical flower-like morphology, were synthesized by a hydro/solvothermal process using different solvents, namely H2O, MeOH, EtOH, and ethylene glycol (EG). The crystal structure, surface morphology, surface area, light-absorption capability, and recombination rate of the photogenerated charge carriers were examined by X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, UV-vis diffuse reflectance spectroscopy, photoluminescence, and transient photocurrent analyses, respectively. The BiOI sample fabricated in EG showed excellent photocatalytic efficiency (~99%) for the reduction of Cr(VI) after 90 min under VLI. The enhanced PCA demonstrated that the high surface area and well-structured surface characteristics of flower-like 3D BiOI microspheres played important roles in the photoreduction process. Moreover, a plausible mechanism for the reduction of Cr(VI) over the EG-BiOI photocatalyst was proposed. The results of the PCA evaluation and recycle test revealed that 3D EG-BiOI microspheres could serve as promising materials for the efficient removal of Cr(VI) from wastewater. Additionally, EG-BiOI could be utilized in other environmental remediation processes.
Collapse
Affiliation(s)
- Malathi Arumugam
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yiseul Yu
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyeon Jin Jung
- Nano Materials & Nano Technology Center, Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology, Jinju, 52851, Republic of Korea
| | - Sanghun Yeon
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyeyeon Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
18
|
Jatav N, Kuntail J, Khan D, Kumar De A, Sinha I. AgI/CuWO 4 Z-scheme photocatalyst for the degradation of organic pollutants: Experimental and molecular dynamics studies. J Colloid Interface Sci 2021; 599:717-729. [PMID: 33984764 DOI: 10.1016/j.jcis.2021.04.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
While the knowledge of the adsorption properties of components of a composite heterogeneous photocatalyst is critical to its applicability to a particular reaction, there has been little research in this direction. The present research is on the development of AgI/CuWO4 nanocomposites that photocatalytically degraded ciprofloxacin and rhodamine B in an aqueous medium under visible light irradiation. The nanocomposites were prepared by a step-wise precipitation protocol. XPS analysis and active species trapping experiments demonstrated that the photocatalysis proceeded by a Z-scheme mechanism. Large scale aqueous medium molecular dynamics simulations showed that oxygen and CIP adsorb on the AgI part, while water interacts intensely with the CuWO4 component. Information from experimental and molecular dynamics studies was combined to arrive at the photocatalysis mechanism.
Collapse
Affiliation(s)
- Neha Jatav
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Jyoti Kuntail
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Danish Khan
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Arup Kumar De
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Indrajit Sinha
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
19
|
Hasan J, Ouyang G, Wang J, Li H, Tian G, Qin C. Efficient visible-light-driven photocatalysis of flower-like composites of AgI nanoparticle dotting BiOI nanosheet. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Yuan G, Li F, Li K, Liu J, Li J, Zhang S, Jia Q, Zhang H. Research Progress on Photocatalytic Reduction of Cr(VI) in Polluted Water. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200317] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gaoqian Yuan
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Faliang Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- Jiangxi Engineering Research Center of Industrial Ceramics, Pingxiang 337022, P. R. China
| | - Kezhuo Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jie Liu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Junyi Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Quanli Jia
- Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, P. R. China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
21
|
Synthesis of Bi2O3@BiOI@UiO-66 composites with enhanced photocatalytic activity under visible light. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Chen J, Qiu K. Oxygen vacancies and interfacial electric field co-induced photocatalytic performance of OVs-BiOI/α-Bi2O3 heterojunctions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Zhu M, Chen H, Dai Y, Wu X, Han Z, Zhu Y. Novel n‐p‐n heterojunction of AgI/BiOI/UiO‐66 composites with boosting visible light photocatalytic activities. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Min Zhu
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Huimin Chen
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Yu Dai
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Xuanyu Wu
- Hanlin College Nanjing University of Chinese Medicine Taizhou China
| | - Zhiguo Han
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Chiral Pharmaceuticals Biomanufacturing Taizhou University Taizhou China
| | - Yu Zhu
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Key Laboratory of Chiral Pharmaceuticals Biomanufacturing Taizhou University Taizhou China
| |
Collapse
|
24
|
Mesoporous Composite Networks of Linked MnFe2O4 and ZnFe2O4 Nanoparticles as Efficient Photocatalysts for the Reduction of Cr(VI). Catalysts 2021. [DOI: 10.3390/catal11020199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Semiconductor photocatalysis has recently emerged as an effective and eco-friendly approach that could meet the stringent requirements for sustainable environmental remediation. To this end, the fabrication of novel photocatalysts with unique electrochemical properties and high catalytic efficiency is of utmost importance and requires adequate attention. In this work, dual component mesoporous frameworks of spinel ferrite ZnFe2O4 (ZFO) and MnFe2O4 (MFO) nanoparticles are reported as efficient photocatalysts for detoxification of hexavalent chromium (Cr(VI)) and organic pollutants. The as-prepared materials, which are synthesized via a polymer-templated aggregating self-assembly method, consist of a continuous network of linked nanoparticles (ca. 6–7 nm) and exhibit large surface area (up to 91 m2 g−1) arising from interstitial voids between the nanoparticles, according to electron microscopy and N2 physisorption measurements. By tuning the composition, MFO-ZFO composite catalyst containing 6 wt.% MFO attains excellent photocatalytic Cr(VI) reduction activity in the presence of phenol. In-depth studies with UV-visible absorption, electrochemical and photoelectrochemical measurements show that the performance enhancement of this catalyst predominantly arises from the suitable band edge positions of constituent nanoparticles that efficiently separates and transports the charge carriers through the interface of the ZFO/MFO junctions. Besides, the open pore structure and large surface area of these ensembled networks also boost the reaction kinetics. The remarkable activity and durability of the MFO-ZFO heterostructures implies the great possibility of implementing these new nanocomposite catalysts into a realistic Cr(VI) detoxification of contaminated wastewater.
Collapse
|
25
|
Turning waste into treasure: Reuse of contaminant-laden adsorbents (Cr(vi)-Fe 3O 4/C) as anodes with high potassium-storage capacity. J Colloid Interface Sci 2021; 582:1107-1115. [PMID: 32942066 DOI: 10.1016/j.jcis.2020.08.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 11/23/2022]
Abstract
In this study, we try to find possible solutions to synchronously solving energy and environmental problems. In our design, orange peel is used as a carbon source to synthesize low-cost Fe3O4/C composites, which are employed as adsorbents to purify Cr(vi)-contaminated water. After that, these Cr(vi)-laden Fe3O4/C composites are used and tested as anodes in potassium-ion batteries. It is found that their K-storage capacity is more than 300 mAh g-1 at a current density of 0.1 A g-1, depending on the mass content of Fe3O4. The more Fe3O4 component in composite, the more adsorbed Cr(vi) species through chemisorption, and the larger K-storage capacity. The good electrical conductivity of cabon-based anodes endows them with superior rate performance. At current densities of 0.1, 0.5, 1 and 2 A g-1, K-storage capacity amounts to 357.8, 316.3, 276.3 and 236.8 mAh g-1, respectively. The reuse of contaminant-laden adsorbents as anodes will shed new light on the disposal of exhausted adsorbents after water treatment and development of anode materials for secondary batteries.
Collapse
|
26
|
Xie X, Wang S, Zhang Y, Ding J, Liu Y, Yan Q, Lu S, Li B, Liu Y, Cai Q. Facile construction for new core-shell Z-scheme photocatalyst GO/AgI/Bi2O3 with enhanced visible-light photocatalytic activity. J Colloid Interface Sci 2021; 581:148-158. [DOI: 10.1016/j.jcis.2020.07.128] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022]
|
27
|
Ma X, Wang Z, Yang H, Zhang Y, Zhang Z, Lin H, Long J, Wang X, Lin Q. Enhanced bacterial disinfection by CuI–BiOI/rGO hydrogel under visible light irradiation. RSC Adv 2021; 11:20446-20456. [PMID: 35479900 PMCID: PMC9034002 DOI: 10.1039/d1ra02966e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity. In this work, CuI–BiOI/rGO hydrogel with excellent photocatalytic antibacterial activity was prepared and its activity against Escherichia coli and Staphylococcus aureus was evaluated. The result indicates that CuI–BiOI/rGO hydrogel exhibits superior sterilization performance and higher stability than CuI–BiOI and BiOI/rGO, and could completely kill Escherichia coli and Staphylococcus aureus within 40 min. However, only a small amount of Escherichia coli and Staphylococcus aureus can be inactivated by CuI–BiOI and BiOI/rGO hydrogels. Graphene hydrogel plays a significant part in enhancing the disinfection activity of CuI–BiOI/rGO hydrogel. Furthermore, the synergistic effect between CuI of p-type semiconductors, as a hole transport layer, and graphene hydrogel greatly increases the separation and transfer efficiency of photogenerated electron holes excited by BiOI, and further improves the disinfection activity of CuI–BiOI/rGO hydrogel. Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.![]()
Collapse
Affiliation(s)
- Xi Ma
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Ziwei Wang
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Haoguo Yang
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Yiqiu Zhang
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Zizhong Zhang
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Huaxiang Lin
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Jinlin Long
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Xuxu Wang
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Qun Lin
- Department of Anesthesia
- The First Affiliated Hospital
- Fujian Medical University
- Fuzhou
- China
| |
Collapse
|
28
|
Wei Z, Zheng N, Dong X, Zhang X, Ma H, Zhang X, Xue M. Green and controllable synthesis of one-dimensional Bi 2O 3/BiOI heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(VI). CHEMOSPHERE 2020; 257:127210. [PMID: 32502738 DOI: 10.1016/j.chemosphere.2020.127210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
BiOI nanosheets have been successfully deposited on the porous Bi2O3 nanorobs via a one-pot precipitation method. The physicochemical features of the as-prepared materials were characterized in detail by a series of techniques, and the results revealed that BiOI nanosheets were evenly distributed on the porous Bi2O3 nanorobs. Because of higher photogenerated electron-hole pairs separation efficiency and the larger specific surface area compared to the pristine Bi2O3 and BiOI, the 50%Bi2O3/BiOI composite exhibited significantly enhanced photocatalytic activity for Cr(VI) reduction under visible light irradiation, and the reduction rate constant was 0.02002 min-1, which was about 27.4 and 2.6 times higher than that of pure Bi2O3 (0.00073 min-1) and BiOI (0.00769 min-1), respectively. Moreover, the 50%Bi2O3/BiOI composite also possessed the excellent photochemical stability and recyclability, thereby facilitating its wastewater treatment application.
Collapse
Affiliation(s)
- Zhiping Wei
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Nan Zheng
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Xiaoli Dong
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China.
| | - Xiufang Zhang
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Hongchao Ma
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Xinxin Zhang
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| | - Mang Xue
- Schoolof Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian, 116034, PR China
| |
Collapse
|
29
|
Cheng C, Chen D, Li N, Xu Q, Li H, He J, Lu J. ZnIn 2S 4 grown on nitrogen-doped hollow carbon spheres: An advanced catalyst for Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122205. [PMID: 32045805 DOI: 10.1016/j.jhazmat.2020.122205] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/19/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Up to now, the environmental damage by heavy metal is getting worse and worse as the development of industry. Meanwhile, hexavalent chromium (Cr(VI)) in wastewater get special attention as its acute toxicity and potential carcinogencity. To solve this problem, we introduce a simple and efficient way to prepare a photocatalyst, ZnIn2S4 grown on nitrogen-doped hollow carbon spheres (ZIS-NHC), which is an effective catalyst that can used to reduce aqueous Cr(VI). This photocatalyst prepared by a three-step strategy. Benefiting from the excellent electrical conductivity and high specific surface area of the NHC which is superior to other carbon material and the favorable band gap of ZnIn2S4 makes ZIS-NHC has superior light-driven photocatalytic efficiency. The ZIS-NHC exhibits an excellent rate of degradation of aqueous Cr(VI) at a concentration of 50 mg/L within 50 min. Moreover, the ZIS-NHC retained excellent stability after five rounds of cycling experiments which was also discussed.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Chemistry, Chemical Engineering and Materials Science,Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science,Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science,Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science,Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science,Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science,Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science,Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
30
|
Chachvalvutikul A, Kaowphong S. Direct Z-scheme FeVO 4/BiOCl heterojunction as a highly efficient visible-light-driven photocatalyst for photocatalytic dye degradation and Cr(VI) reduction. NANOTECHNOLOGY 2020; 31:145704. [PMID: 31835259 DOI: 10.1088/1361-6528/ab61d1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, potential applications of a direct Z-scheme FeVO4/BiOCl heterojunction for photocatalytic degradation of organic dyes (methylene blue, MB and rhodamine B, RhB) and reduction of hexavalent chromium (Cr(VI)) ion under visible light irradiation were reported. Firstly, FeVO4 and BiOCl were synthesized by using a microwave heating method. Then, the FeVO4/BiOCl nanocomposites with different weight percentages of FeVO4 (1, 3, 6.25, 12.5 and 25%wt) were fabricated by a method of modified wet impregnation. The photocatalytic degradation activities of the nanocomposites were investigated in parallel with pure BiOCl and FeVO4. Among the as-prepared nanocomposites, the FeVO4/BiOCl nanocomposite with 6.25%wt of FeVO4 exhibited the highest photocatalytic dye degradation efficiency; 99.8% of RhB was degraded after being irradiated for 360 min, while 87.2% of MB was degraded. Similarly, this nanocomposite photocatalytically reduced 97.8% of Cr(VI) at a pH value of 3. The superior photocatalytic activity can be ascribed to the effective visible light absorption of the FeVO4/BiOCl heterojunction and the suppression of the recombination process of photogenerated electron-hole pairs. Additionally, the improved charge migration and separation efficiencies between FeVO4 and BiOCl through the direct Z-scheme charge transfer pathway are involved, as evidenced by the trapping experiments, and the UV-visible diffuse reflectance (UV-vis DRS), photoluminescence spectroscopy (PL) and electrochemical impedance spectroscopy analyses. Photocatalytic mechanisms of the direct Z-scheme FeVO4/BiOCl heterojunction for the photodegradation of RhB and photoreduction of Cr(VI) have been proposed and discussed in greater detail.
Collapse
|
31
|
Cen Q, Gao Q, Zhang C, Liu Y, Wang Q, Wang Q. Photocatalytic reduction of Cr(VI) by iron tungstosilicate under visible light. J Colloid Interface Sci 2020; 562:12-20. [DOI: 10.1016/j.jcis.2019.11.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 10/25/2022]
|
32
|
Liang H, Li T, Zhang J, Zhou D, Hu C, An X, Liu R, Liu H. 3-D hierarchical Ag/ZnO@CF for synergistically removing phenol and Cr(VI): Heterogeneous vs. homogeneous photocatalysis. J Colloid Interface Sci 2020; 558:85-94. [DOI: 10.1016/j.jcis.2019.09.105] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022]
|
33
|
Carbon Quantum Dots (CQDs) Decorated Bi2O3-x Hybrid Photocatalysts with Promising NIR-Light-Driven Photodegradation Activity for AO7. Catalysts 2019. [DOI: 10.3390/catal9121031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this work, Bi2O3-x with surface oxygen vacancies was prepared through the NaBH4 reduction of Bi2O3. After that, carbon quantum dots (CQDs) were deposited onto the surface of the Bi2O3-x to obtain a series of the CQDs/Bi2O3-x composites. The HRTEM and XPS characterizations of the CQDs/Bi2O3-x composites suggest that the thickness of surface oxygen vacancies could be adjusted by changing the concentration of NaBH4 solution, and the intimate contact between CQDs and the Bi2O3-x is achieved. Acid orange 7 (AO7) was adopted as the target reactant for investigating the photocatalytic degradation activities of the CQDs/Bi2O3-x composites under simulated sunlight and NIR light irradiation. It is found that the photocatalytic activities of the samples are closely related to the concentration of NaBH4 and content of CQDs. The Bi2O3-x samples exhibit enhanced simulated-sunlight-driven photocatalytic activity compared with Bi2O3. Specifically, the optimal degradation efficiency of AO7 is achieved over the 3R-Bi2O3-x (concentration of NaBH4: 3 mmol/L), which is 1.38 times higher than the degradation AO7 efficiency over Bi2O3. After the decoration of the 3R-Bi2O3-x surface with CQDs, the simulated-sunlight-driven photocatalytic activity of the CQDs/Bi2O3-x composite could be further enhanced. Among the samples, the 15C/3R-Bi2O3-x sample reveals the highest photocatalytic activity, leading to an AO7 degradation percentage of ~97% after 60 min irradiation. Different from Bi2O3 and the 3R-Bi2O3-x, the 15C/3R-Bi2O3-x sample also exhibits near-infrared (NIR)-light-driven photocatalytic degradation activity. In addition, the intrinsic photocatalytic activity of CQDs/Bi2O3-x composite was further confirmed by the degradation of phenol under simulated sunlight and NIR light irradiation. The photocurrent response and electrochemical impedance spectroscopy (EIS) measurements confirm the efficient migration and separation of photogenerated charges in the CQDs/Bi2O3-x samples. The •OH and h+ are proved to be the main reactive species in the simulated sunlight and NIR light photocatalytic processes over the CQDs/Bi2O3-x composites. According to the above experiments, the photocatalytic degradation mechanisms of the CQDs/Bi2O3-x composites under simulated sunlight and NIR light illumination were proposed.
Collapse
|
34
|
Wang Q, Gao Q, Wu H, Fan Y, Lin D, He Q, Zhang Y, Cong Y. In situ construction of semimetal Bi modified BiOI-Bi2O3 film with highly enhanced photoelectrocatalytic performance. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Wu HH, Chang CW, Lu D, Maeda K, Hu C. Synergistic Effect of Hydrochloric Acid and Phytic Acid Doping on Polyaniline-Coupled g-C 3N 4 Nanosheets for Photocatalytic Cr(VI) Reduction and Dye Degradation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35702-35712. [PMID: 31532604 DOI: 10.1021/acsami.9b10555] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, graphitic carbon nitride (g-C3N4) nanosheets (CNns) were modified using polyaniline (PANI) codoped with an inorganic (hydrochloric acid, HCl) and an organic (phytic acid, PA) acid. Our results revealed that these samples exhibited extended visible-light absorption and a three-dimensional (3D) hierarchical structure with a large specific surface area. They also inhibited photoluminescence emission, reduced electrical resistance, and provided abundant free radicals, resulting in high photocatalytic performance. The PANI/g-C3N4 sample demonstrated outstanding photocatalytic activity of a Cr(VI) removal capacity of 4.76 mg·min-1·gc-1, which is the best record for the reduction of a 100 ppm K2Cr2O7 solution. Moreover, g-C3N4 coupled with PANI monotonically doped with HCl or PA did not demonstrate increased activity, suggesting that the codoping of HCl and PA plays a significant role in enhancing the performance. The improved photocatalytic activity of PANI/g-C3N4 can be attributed to the interchain and intrachain doping of PA and HCl over PANI, respectively, to create a 3D connected network and synergistically increase the electrical conductivity. Therefore, new insights into g-C3N4 coupled with PANI and codoped by HCl and PA may have excellent potential for the design of g-C3N4-based compounds for efficient photocatalytic reactions.
Collapse
Affiliation(s)
- Hsiao-Han Wu
- Department of Chemical Engineering, R&D Center for Membrane Technology and Luh Hwa Research Center for Circular Economy , Chung Yuan Christian University , Chungli District, Taoyuan City 32023 , Taiwan
| | - Chien-Wei Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology and Luh Hwa Research Center for Circular Economy , Chung Yuan Christian University , Chungli District, Taoyuan City 32023 , Taiwan
| | - Daling Lu
- Suzukakedai Materials Analysis Division, Technical Department , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama 226-8503 , Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science , Tokyo Institute of Technology , 2-12-1-NE-2 Ookayama , Meguro-ku, Tokyo 152-8550 , Japan
| | - Chechia Hu
- Department of Chemical Engineering, R&D Center for Membrane Technology and Luh Hwa Research Center for Circular Economy , Chung Yuan Christian University , Chungli District, Taoyuan City 32023 , Taiwan
| |
Collapse
|
36
|
Wan M, Zhang Y, Wei W, Cui S, Hou H, Chen W, Mi L. One‐Step Transformation from Cu
2
S Nanocrystal to CuS Nanocrystal with Photocatalytic Properties. ChemistrySelect 2019. [DOI: 10.1002/slct.201901387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mengli Wan
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Yingying Zhang
- Center for Advanced Materials ResearchZhongyuan University of Technology Zhengzhou 450007 China
| | - Wutao Wei
- Center for Advanced Materials ResearchZhongyuan University of Technology Zhengzhou 450007 China
| | - Shizhong Cui
- Center for Advanced Materials ResearchZhongyuan University of Technology Zhengzhou 450007 China
| | - Hongwei Hou
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Weihua Chen
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Liwei Mi
- Center for Advanced Materials ResearchZhongyuan University of Technology Zhengzhou 450007 China
| |
Collapse
|
37
|
Wang Q, Wu H, Gao Q, Lin D, Fan Y, Duan R, Cong Y, Zhang Y. Fabrication of visible-light-active Bi/BiOI-Bi2O3 composite with enhanced photocatalytic activity. J Colloid Interface Sci 2019; 548:255-264. [DOI: 10.1016/j.jcis.2019.04.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 12/19/2022]
|
38
|
Fabrication of β-phase AgI and Bi2O3 co-decorated Bi2O2CO3 heterojunctions with enhanced photocatalytic performance. J Colloid Interface Sci 2019; 547:1-13. [DOI: 10.1016/j.jcis.2019.03.088] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 11/19/2022]
|
39
|
Yan Q, Xie X, Liu Y, Wang S, Zhang M, Chen Y, Si Y. Constructing a new Z-scheme multi-heterojunction photocataslyts Ag-AgI/BiOI-Bi 2O 3 with enhanced photocatalytic activity. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:304-315. [PMID: 30856441 DOI: 10.1016/j.jhazmat.2019.03.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 05/07/2023]
Abstract
The series Ag-AgI/BiOI-Bi2O3 visible-light-driven photocataslyts were successfully synthesized by solvothermal method. The as-synthesized samples were systematically characterized by XRD, SEM, TEM, EDS, BET, XPS, FR-IR, UV-vis DRS, photoelectrochemical measurements and EPR. The formation mechanism of the new composite photocataslyts was investigated and the simulate formation process had been illustrated. The photocatalytic properties of the samples were evaluated by degradation of methyl orange under visible-light irradiation. The results shown that the 30% Ag-AgI/BiOI-Bi2O3 photocataslyts possessed the best photocatalytic activity and the kinetics reaction models were followed pseudo-first-order kinetics. The enhanced photocatalytic performance could be attributed to the effective separation and transfer of electron-hole pairs resulting by the deposing of Ag-AgI nanoparticles and Bi2O3. The photocatalytic mechanism was deduced by trapping experiments and EPR, and the results demonstrated that h+, OH, O2- radicals played different roles in the degradation. Furthermore, a new Z-scheme multi-heterojunction mechanism was proposed basing on the results of trapping experiments and EPR.
Collapse
Affiliation(s)
- Qishe Yan
- Institute of Chemistry and Molecular Engineering, Zhengzhou University, No.100 Science Avenue, High-Tech Zone, Zhengzhou, Henan, 450001, China.
| | - Xin Xie
- Institute of Chemistry and Molecular Engineering, Zhengzhou University, No.100 Science Avenue, High-Tech Zone, Zhengzhou, Henan, 450001, China.
| | - Yonggang Liu
- Institute of Chemistry and Molecular Engineering, Zhengzhou University, No.100 Science Avenue, High-Tech Zone, Zhengzhou, Henan, 450001, China.
| | - Shenbo Wang
- Institute of Chemistry and Molecular Engineering, Zhengzhou University, No.100 Science Avenue, High-Tech Zone, Zhengzhou, Henan, 450001, China.
| | - Menghan Zhang
- Institute of Chemistry and Molecular Engineering, Zhengzhou University, No.100 Science Avenue, High-Tech Zone, Zhengzhou, Henan, 450001, China.
| | - Yongyang Chen
- Institute of Chemistry and Molecular Engineering, Zhengzhou University, No.100 Science Avenue, High-Tech Zone, Zhengzhou, Henan, 450001, China.
| | - Yushan Si
- Institute of Chemistry and Molecular Engineering, Zhengzhou University, No.100 Science Avenue, High-Tech Zone, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
40
|
Zeleke MA, Kuo DH. Synthesis of oxy-sulfide based nanocomposite catalyst for visible light-driven reduction of Cr(VI). ENVIRONMENTAL RESEARCH 2019; 172:279-288. [PMID: 30822561 DOI: 10.1016/j.envres.2019.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
The oxy-sulfide based V2O5@(In,Ga)2(O,S)3 nanocomposite catalyst, at different weight percentages of V2O5, was successfully synthesized via a simplistic procedural route for the detoxification of hazardous Cr(VI). The two pure catalysts were intimately allied and used for visible light-driven reduction of hazardous Cr(VI). The nanocomposite catalysts were characterized to observe the effects of V2O5 on crystal phase, morphology, light absorption, catalytic activity, and electrical properties. Compared to all, 40% V2O5 loaded nanocomposite catalyst, designated as VOS-2, exhibited the best-reducing capability. It completely reduced toxic Cr(VI) at 2 min under visible light illumination. From the kinetics, it was found that the rate constant of the nanocomposite catalyst was improved by a factor of 3.6 compared to the host nanoflower catalyst. The plausible mechanism of charge transfer process across the interfacial region indicates the diminished recombination probability of photogenerated charge carriers. Therefore, the nanocomposite catalyst is promising for enhanced reduction of Cr(VI) in the Cr-based industrial activities, which is significantly relevant for environmental remediation.
Collapse
Affiliation(s)
- Misganaw Alemu Zeleke
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10607, Taiwan.
| |
Collapse
|
41
|
Ikram M, Liu L, Lv H, Liu Y, Ur Rehman A, Kan K, Zhang W, He L, Wang Y, Wang R, Shi K. Intercalation of Bi 2O 3/Bi 2S 3 nanoparticles into highly expanded MoS 2 nanosheets for greatly enhanced gas sensing performance at room temperature. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:335-345. [PMID: 30321838 DOI: 10.1016/j.jhazmat.2018.09.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Synthesizing a gas sensor based on heterostructured nanomaterials (NMs) via a controllable morphology by a facile hydrothermal method is an area of frontier research. In the present work, we designed a facile strategy to synthesize a controllable morphology and composition for three component heterojunctions (MoS2-Bi2O3-Bi2S3) NMs using different hydrothermal reaction times. The Bi2S3 easily form as an intermediate phase due to the strong interaction of the Bi2O3 with MoS2 nanosheets (NSs). The as fabricated heterojunctions MB-5 NMs exhibited a sensitive response to NOx gas (Ra/Rg = 10.7 at 50 ppm), with an ultra-fast response time of only 1 s (s) at room temperature (RT) in air. The detection limit was predicted to be as low as 50 ppb. This sensational behaviour of the sensor reveals the outstanding morphological structure and synergistic effect of the MoS2 NSs with Bi2O3 nanoparticles (NPs), which was realized by the flow of electrons across MoS2-Bi2O3-Bi2S3 interfaces through band energy alignment.
Collapse
Affiliation(s)
- Muhammad Ikram
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Lujia Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - He Lv
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Yang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Afrasiab Ur Rehman
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Kan Kan
- Daqing Branch, Heilongjiang Academy of Sciences, Daqing, 163319, PR China
| | - WeiJun Zhang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020, PR China
| | - Lang He
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Yang Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Ruihong Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Keying Shi
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China.
| |
Collapse
|
42
|
Chen X, Kuo DH, Zhang J, Lu Q, Lin J. Nanosheet bimetal oxysulfide CuSbOS catalyst for highly efficient catalytic reduction of heavy metal ions and organic dyes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Chen X, Kuo DH, Saragih AD, Wu ZY, Abdullah H, Lin J. The effect of the Cu+/Cu2+ ratio on the redox reactions by nanoflower CuNiOS catalysts. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Zhang Q, Bai J, Li G, Li C. Synthesis and enhanced photocatalytic activity of AgI-BiOI/CNFs for tetracycline hydrochloride degradation under visible light irradiation. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Hao W, Li X, Qin L, Han S, Kang SZ. Facile preparation of Ti3+ self-doped TiO2 nanoparticles and their dramatic visible photocatalytic activity for the fast treatment of highly concentrated Cr(vi) effluent. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00161a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient visible photocatalyst which is suitable for the rapid removal of highly concentrated Cr(vi) for environmental therapy.
Collapse
Affiliation(s)
- Weiming Hao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Lixia Qin
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Sheng Han
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| |
Collapse
|
46
|
Li D, Li J, Jin Q, Ren Z, Sun Y, Zhang R, Zhai Y, Liu Y. Photocatalytic reduction of Cr (VI) on nano-sized red phosphorus under visible light irradiation. J Colloid Interface Sci 2018; 537:256-261. [PMID: 30448646 DOI: 10.1016/j.jcis.2018.11.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022]
Abstract
Red phosphorus as a novel visible-light-responsive and metal-free photocatalyst has attracted extensive attention in the area of energy conversion and environmental remediation. Herein, nano-sized red phosphorus photocatalyst was synthesized via a hydrothermal and ultrasonic method and used for reduction of Cr (VI) for the first time. The as-prepared photocatalysts were characterized by XRD, UV-Vis-DRS, XPS, SEM, TEM and photoelectrochemical measurements. Compared to bulk red phosphorus, nano-sized red phosphorus exhibit a significantly enhanced photocatalytic activity for reduction of Cr (VI) due to the greatly reduced charge transfer resistance and enhanced adsorption capability of Cr (VI).
Collapse
Affiliation(s)
- Donghui Li
- College of Chemistry and Molecular Engineering, Key Laboratory of Environmental Chemistry and Low Carbon Technologies of Henan Province, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jiaojiao Li
- College of Chemistry and Molecular Engineering, Key Laboratory of Environmental Chemistry and Low Carbon Technologies of Henan Province, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Qianwei Jin
- College of Chemistry and Molecular Engineering, Key Laboratory of Environmental Chemistry and Low Carbon Technologies of Henan Province, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Zhenpeng Ren
- College of Chemistry and Molecular Engineering, Key Laboratory of Environmental Chemistry and Low Carbon Technologies of Henan Province, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yuewei Sun
- College of Chemistry and Molecular Engineering, Key Laboratory of Environmental Chemistry and Low Carbon Technologies of Henan Province, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Ruiqin Zhang
- College of Chemistry and Molecular Engineering, Key Laboratory of Environmental Chemistry and Low Carbon Technologies of Henan Province, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yunpu Zhai
- College of Chemistry and Molecular Engineering, Key Laboratory of Environmental Chemistry and Low Carbon Technologies of Henan Province, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Yonggang Liu
- College of Chemistry and Molecular Engineering, Key Laboratory of Environmental Chemistry and Low Carbon Technologies of Henan Province, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
47
|
He R, Xu D, Cheng B, Yu J, Ho W. Review on nanoscale Bi-based photocatalysts. NANOSCALE HORIZONS 2018; 3:464-504. [PMID: 32254135 DOI: 10.1039/c8nh00062j] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoscale Bi-based photocatalysts are promising candidates for visible-light-driven photocatalytic environmental remediation and energy conversion. However, the performance of bulk bismuthal semiconductors is unsatisfactory. Increasing efforts have been focused on enhancing the performance of this photocatalyst family. Many studies have reported on component adjustment, morphology control, heterojunction construction, and surface modification. Herein, recent topics in these fields, including doping, changing stoichiometry, solid solutions, ultrathin nanosheets, hierarchical and hollow architectures, conventional heterojunctions, direct Z-scheme junctions, and surface modification of conductive materials and semiconductors, are reviewed. The progress in the enhancement mechanism involving light absorption, band structure tailoring, and separation and utilization of excited carriers, is also introduced. The challenges and tendencies in the studies of nanoscale Bi-based photocatalysts are discussed and summarized.
Collapse
Affiliation(s)
- Rongan He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | | | | | | | | |
Collapse
|
48
|
Chen DM, Sun CX, Liu CS, Du M. Stable Layered Semiconductive Cu(I)–Organic Framework for Efficient Visible-Light-Driven Cr(VI) Reduction and H2 Evolution. Inorg Chem 2018; 57:7975-7981. [DOI: 10.1021/acs.inorgchem.8b01137] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Di-Ming Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Chun-Xiao Sun
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Chun-Sen Liu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| |
Collapse
|
49
|
Wu Z, Zeng D, Liu X, Yu C, Yang K, Liu M. Hierarchical δ-Bi2O3/Bi2O2CO3 composite microspheres: phase transformation fabrication, characterization and high photocatalytic performance. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3471-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Yang Y, Zhang C, Lai C, Zeng G, Huang D, Cheng M, Wang J, Chen F, Zhou C, Xiong W. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management. Adv Colloid Interface Sci 2018; 254:76-93. [PMID: 29602415 DOI: 10.1016/j.cis.2018.03.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Energy and environmental issues are the major concerns in our contemporary "risk society". As a green technique, photocatalysis has been identified as a promising solution for above-mentioned problems. In recent decade, BiOX (X = Cl, Br, I) photocatalytic nanomaterials have sparked numerous interest as economical and efficient photocatalysts for energy conversion and environmental management. The distinctive physicochemical properties of BiOX nanomaterials, especially their energy band structures and levels as well as relaxed layered nanostructures, should be responsible for the visible-light-driven photocatalytic performance improvement, which could be utilized in dealing with the global energy and environmental challenges. In this review, recent advances for the enhancement of BiOX photocatalytic activity are detailedly summarized. Furthermore, the applications of BiOX photocatalysts in water splitting and refractory organic pollutants removal are highlighted to offer guidelines for better development in photocatalysis. Particularly, no relative reports in previous studies were documented in CO2 reduction as well as heavy metals and air pollutants removal, thus this review presented as a considerable research value. Challenges in the construction of high-performance BiOX-based photocatalytic systems are also discussed. With the exponential growth of studies on BiOX photocatalytic nanomaterials, this review provides unique and comprehensive perspectives to design BiOX-based photocatalytic systems with superior visible light photocatalytic activity. The knowledge of both the merits and demerits of BiOX photocatalysts are updated and provided as a reference.
Collapse
Affiliation(s)
- Yang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|