1
|
Pang C, Li Y, Wu H, Deng Z, Yuan S, Tan W. Microbial removal of uranyl from aqueous solution by Leifsonia sp. in the presence of different forms of iron oxides. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 272:107367. [PMID: 38171110 DOI: 10.1016/j.jenvrad.2023.107367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Immobilization of uranyl by indigenous microorganisms has been proposed as an economic and clean in-situ approach for removal of uranium, but the potential mechanisms of the process and the stability of precipitated uranium in the presence of widespread Fe(III) (hydr)oxides remain elusive. The potential of iron to serve as a reductant and/or an oxidant of uranium indicates that bioemediation strategies which mainly rely on the reduction of highly soluble U(VI) to poorly soluble U(IV) minerals to retard uranium transport in groundwater may be enhanced or hindered under different environmental conditions. This study purposes to determine the effect of ubiquitous Fe(III) (hydr)oxides (two-line ferrihydrite, hematite and goethite) on the removal of U(VI) by Leifsonia sp. isolated from an acidic tailings pond in China. The removal mechanism was elucidated via SEM-EDS, XPS and Mössbauer. The results show that the removal of U(VI) was retarded by Fe(III) (hydr)oxides when the initial concentration of U(VI) was 10 mg/L, pH was 6, temperature was 25 °C. Particularly, the retardatory effect of hematite on U(VI) removal was blindingly obvious. Also, it is worth noting that the U(VI) in the precipitate slow-released in the Fe(III) (hydrodr) oxide treatment groups, accompanied by an increase in Fe(II) concentration. SEM-EDS results demonstrated that the ferrihydrite converted to goethite may be the reason for U(VI) release in the process of 15 days culture. Mössbauer spectra fitting results further imply that the metastable iron oxides were transformed into stable Fe3O4 state. XPS measurements results showed that uranium product is most likely a mixture of Iron-U(IV) and Iron-U(VI), which indicated that the hexavalent uranium was converted into tetravalent uranium. These observations imply that the stability of the uranium in groundwater may be impacted on the prevailing environmental conditions, especially the solid-phase Fe(III) (hydr)oxide in groundwater or sediment.
Collapse
Affiliation(s)
- Chao Pang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Yuan Li
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Han Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Zhiwen Deng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Shanlin Yuan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Wenfa Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Ren X, Chen Y, Zhang M, Xu Y, Jia H, Wei T, Guo J. Effect of organic acids and soil particle size on heavy metal removal from bulk soil with washing. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3187-3198. [PMID: 36173504 DOI: 10.1007/s10653-022-01406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/20/2022] [Indexed: 06/01/2023]
Abstract
To evaluate the effect of soil particle size on heavy metals removal by washing, two soil samples were collected around a lead-zinc mining area (SM) and lead-zinc smelter (SS). The total content of Cd, Pb and Zn in SM and SS were determined. And the effect of soil particle size on Cd removal by low molecular organic acids was studied. The results showed that Cd was the main pollutant and the total content of Cd in SS can reach to 24.8 mg Kg-1. 68.4% of the total Cd in SM existed in the form of residual state, while 54.7% of the total Cd in SS was in weak acid extractable state. About 50.0% of the Cd distributed in < 2 μm soil size fraction. The washing results indicated that citric acid was a highly efficient eluent among the five low molecular weight organic acids (citric acid, malic acid, tartaric acid, oxalic acid and acetic acid). After washing, 40% and 69.6% of the total Cd in SS and SM can be removed by citric acid, respectively. While only 18.7-40.2% and 32.6-68.7% of Cd was removed from different size fractions of SM and SS, respectively. The species of Cd in soil size fractions affected the removal effect of citric acid. The citric acid can easily remove the weak acid extractable and reducible form of Cd in soil. After eluted by citric acid, the bioavailability of Cd in soil decreased markedly, and the highest decreasing rate reached 93%.
Collapse
Affiliation(s)
- Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Yu Chen
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Ming Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Yuenan Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
3
|
Tian Z, Pan Y, Chen M, Zhang S, Chen Y. The relationships between fractal parameters of soil particle size and heavy-metal content on alluvial-proluvial fan. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 254:104140. [PMID: 36642009 DOI: 10.1016/j.jconhyd.2023.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/10/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The particle size distribution (PSD) of soil is an important factor in determining heavy-metal content, mobility, and transformation. One method of describing the soil PSD is applying fractal theory. This study explored the use of fractal theory to characterize soil PSD in the alluvial-proluvial fan located downstream of the Yangshuo lead‑zinc mine. The relationships between fractal parameters of soil PSD and heavy-metal content were analyzed. The results showed that soil in front of the mountain (FM) had higher clay content than soil on the mountain slope (MS) or in the middle of the alluvial-proluvial fan (MF). Among the different sections of the alluvial-proluvial fan, MS had the largest capacity dimension D(0), information dimension D(1), correlation dimension D(2), single fractal dimension D, spectral width Δα, and D(1)/D(0), whereas MF had the greatest symmetry degree Δf. Soil of MS had the highest ω (Cr) and ω (Fe), while FM had the highest ω (Zn), ω (Mn), ω (Pb), ω (Cu), ω (As), ω (Sb), and ω (Cd). Fractal parameters of soil PSD and soil mechanical composition were significantly correlated, while both variables were correlated with heavy-metal content. Fractal parameters can be used to indicate heavy-metal content when heavy metals migrate due to migration of particle size. This study thus introduces an empirical method for evaluating heavy-metal content in soil and analyzing the mechanisms of their migration, making a strong contribution to developing strategies that limit heavy-metal pollution.
Collapse
Affiliation(s)
- Zhuo Tian
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China
| | - Yongxing Pan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China
| | - Meng Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China.
| | - Shuaipu Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China
| | - Yudao Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541004, China
| |
Collapse
|
4
|
Sorption of U(VI) on farming and natural soils from northwest China. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Fu H, Wang S, Zhang H, Dai Z, He G, Li G, Ding D. Remediation of uranium-contaminated acidic red soil by rice husk biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77839-77850. [PMID: 35688975 DOI: 10.1007/s11356-022-20704-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Uranium (U) in the U-contaminated acidic red soil exhibits high mobility. In the present study, rice husk was used to produce biochar to remediate U-contaminated red soil under acid precipitation. Firstly, batch adsorption experiments showed that the dissolution of alkaline substance in biochar could buffer the pH value of acidic solution. The equilibrium pH value had a crucial influence on biochar adsorption capacity of U, and the neutral equilibrium pH value was favorable for adsorption. Then, the incubation experiments of red soil with biochar were performed, and the Synthetic Precipitation Leaching Procedure (SPLP) extraction of amended red soil showed that the short-term leachability of U was decreased from 26.53% in control group (without biochar) to 1.40% in 10% biochar-amended red soil. Subsequently, the sequential extraction showed that the fraction of U was mainly transformed from exchangeable and Fe/Mn oxide fraction to carbonate fraction after biochar amendment, and the total amount of exchangeable U and carbonate fraction U in soil was increased slightly. Finally, simulated acid rain leaching experiments showed that the capability of amended red soil to resist acid rain acidification was enhanced. And the long-term leachability of U in amended red soil was decreased from 26.37% in control group to 3.18% in the 10% biochar-amended red soil under the simulated acid rain leaching conditions. In conclusion, biochar has passivation effect on U in U-contaminated red soil, which can reduce the long-term and short-term mobility of U in acidic environments. This study provided an experimental basis for the application of biochar in remediation and improvement of U-contaminated acidic red soil.
Collapse
Affiliation(s)
- Haiying Fu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuai Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Zhongran Dai
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Guicheng He
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China.
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
6
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
7
|
Kazery JA, Proctor G, Larson SL, Ballard JH, Knotek-Smith HM, Zhang Q, Celik A, Dasari S, Islam SM, Tchounwou PB, Han FX. Distribution and Fractionation of Uranium in Weapon Tested Range Soils. ACS EARTH & SPACE CHEMISTRY 2021; 5:356-364. [PMID: 34337281 PMCID: PMC8320602 DOI: 10.1021/acsearthspacechem.0c00326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Uranium is a chemically toxic and radioactive heavy metal. Depleted uranium (DU) is the byproduct of the uranium enrichment process, with a majority of U as uranium-238, and a lower content of the fissile isotope uranium-235 than natural uranium. Uranium-235 is mainly used in nuclear reactors and in the manufacture of nuclear weapons. Exposure is likely to have an impact on humans or the ecosystem where military operations have used DU. Yuma Proving Ground in Arizona, USA has been using depleted uranium ballistics for 36 years. At a contaminated site in the Proving Grounds, soil samples were collected from the flat, open field and lower elevated trenches that typically collect summer runoff. Spatial distribution and fractionation of uranium in the fields were analyzed with total acid digestion and selective sequential dissolution with eight operationally defined solid-phase fractions. In addition to uranium, other trace elements (As, Ba, Co, Cr, Cu, Hg, Mo, Nb, Pd, Pb, V, Zn, Zr) were also assessed. Results show that the trench area in the testing site had a higher accumulation of total U (12.4%) compared to the open-field soil with 279 mg/kg U. Among the eight solid-phase components in the open-field samples, U demonstrated stronger affinities for the amorphous iron-oxide bound, followed by the carbonate bound, and the residual fractions. However, U in the trench area had a stronger binding to the easily reducible oxide bound fraction, followed by the carbonate-bound and amorphous iron-oxide-bound fractions. Among other trace elements, Nb, As, and Zr exhibited the strongest correlations with U distribution among solid-phase components. This study indicates a significant spatial variation of U distribution in the shooting range site. Fe/Mn oxides and carbonate were the major solid-phase components for binding U in the weapon test site.
Collapse
Affiliation(s)
- Joseph A Kazery
- Department of Environmental Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Georgio Proctor
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Steve L Larson
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi 39180-6199, United States
| | - John H Ballard
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi 39180-6199, United States
| | - Heather M Knotek-Smith
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi 39180-6199, United States
| | - Qinku Zhang
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Ahmet Celik
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Shaloam Dasari
- Department of Environmental Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Saiful M Islam
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paul B Tchounwou
- Department of Environmental Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Fengxiang X Han
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
8
|
He W, Zhang X, Wu X, Li M, Zhang J, Peng Y, Wang H. Effects of ageing on the occurrence form of uranium in vertical soil layers near an uranium tailing reservoir. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-020-07552-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Izquierdo M, Young SD, Bailey EH, Crout NMJ, Lofts S, Chenery SR, Shaw G. Kinetics of uranium(VI) lability and solubility in aerobic soils. CHEMOSPHERE 2020; 258:127246. [PMID: 32535442 DOI: 10.1016/j.chemosphere.2020.127246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Uranium may pose a hazard to ecosystems and human health due to its chemotoxic and radiotoxic properties. The long half-life of many U isotopes and their ability to migrate raise concerns over disposal of radioactive wastes. This work examines the long-term U bioavailability in aerobic soils following direct deposition or transport to the surface and addresses two questions: (i) to what extent do soil properties control the kinetics of U speciation changes in soils and (ii) over what experimental timescales must U reaction kinetics be measured to reliably predict long-term of impact in the terrestrial environment? Soil microcosms spiked with soluble uranyl were incubated for 1.7 years. Changes in UVI fractionation were periodically monitored by soil extractions and isotopic dilution techniques, shedding light on the binding strength of uranyl onto the solid phase. Uranyl sorption was rapid and strongly buffered by soil Fe oxides, but UVI remained reversibly held and geochemically reactive. The pool of uranyl species able to replenish the soil solution through several equilibrium reactions is substantially larger than might be anticipated from typical chemical extractions and remarkably similar across different soils despite contrasting soil properties. Modelled kinetic parameters indicate that labile UVI declines very slowly, suggesting that the processes and transformations transferring uranyl to an intractable sink progress at a slow rate regardless of soil characteristics. This is of relevance in the context of radioecological assessments, given that soil solution is the key reservoir for plant uptake.
Collapse
Affiliation(s)
- M Izquierdo
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom; Institute of Environmental Assessment and Water Research, 18-26 Jordi Girona, Barcelona, 08034, Spain.
| | - S D Young
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - E H Bailey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - N M J Crout
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - S Lofts
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, United Kingdom
| | - S R Chenery
- British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, United Kingdom
| | - G Shaw
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| |
Collapse
|
10
|
Tan WF, Li Y, Guo F, Wang YC, Ding L, Mumford K, Lv JW, Deng QW, Fang Q, Zhang XW. Effect of Leifsonia sp. on retardation of uranium in natural soil and its potential mechanisms. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 217:106202. [PMID: 32063554 DOI: 10.1016/j.jenvrad.2020.106202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/01/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Uranium mining and milling activities for many years resulted in release of uranium into the adjoining soil in varying degrees. Bioremediation approaches (i.e., immobilization via the action of bacteria) resulting in uranium bearing solid is supposed as an economic and clean in-situ approach for the treatment of uranium contaminated sites. This study purposes to determine the immobilization efficiency of uranium in soil by Leifsonia sp. The results demonstrated that cells have a good proliferation ability under the stress of uranium and play a role in retaining uranium in soil. Residual uranium in active Leifsonia-medium group (66%) was higher than that in the controls, which was 31% in the deionised water control, 46% in the Leifsonia group, and 47% in the medium group, respectively. This indicated that Leifsonia sp. facilitates the immobilization efficiency of uranium in soil by converting part of the reducible and oxidizable fraction of uranium into the residual fraction. X-ray photoelectron fitting results showed that tetravalent states uranium existed in the soil samples, which indicated that the hexavalent uranium was converted into tetravalent by cells. This is the first report of effect of Leifsonia sp. on uranium immobilization in soil. The findings implied that Leifsonia sp. could, to some extent, prevent the migration and diffusion of uranium in soil by changing the chemical states into less toxicity and less risky forms.
Collapse
Affiliation(s)
- Wen-Fa Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China.
| | - Yuan Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Feng Guo
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Ya-Chao Wang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Lei Ding
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Kathryn Mumford
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Australia
| | - Jun-Wen Lv
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Qin-Wen Deng
- Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang, 421001, China
| | - Qi Fang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Xiao-Wen Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
11
|
Yang S, Zhang X, Wu X, Li M, Zhang L, Peng Y, Huang Q, Tan W. Understanding the solid phase chemical fractionation of uranium in soil profile near a hydrometallurgical factory. CHEMOSPHERE 2019; 236:124392. [PMID: 31545195 DOI: 10.1016/j.chemosphere.2019.124392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Uranium (U) contamination of soil has become a major concern with respect to its toxicity, accumulation in the food chain, and persistence in the environment. Anthropogenic activities like mining and processing of U ores has become pressing issues throughout the world. The aim of the work is to understand the chemical fractionation of U in polluted soil and the mechanism involved. U-free soils samples of eluvial (E), illuvial (B), and parent-material (C) horizons from a hydrometallurgical factory area were used. The experimental results showed that the U adsorption capacity decreased with depth, and its mobility in the upper soil is better than the lower. It was closely related to distribution coefficient (Kd), pH, organic-matter (OM), and carbonate content of soil horizons. The chemical fractionation of U was studied using the BCR sequential extraction scheme for soils after saturated adsorption. It was noted that the U reducible and oxidizable fraction in the E and B horizons can vertically transfer to the C horizon and occurs a significant rearrangement of U in different horizons. BET, SEM, XRD, and FT-IR analyses showed that different U distribution and migration in soil profile is mainly affected by specific surface area, soil particle size, mineral composition, and active groups. The XPS data further indicated that U (VI) is gradually converted to U (IV) with decreased depth and fixed in deeper soil becoming insoluble and immobile. It is the first step to investigate potential migration and plan U mining and milling area long-term management.
Collapse
Affiliation(s)
- Sheng Yang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Xiaowen Zhang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Key Laboratory of Radioactive Waste Treatment and Disposal, University of South China, Hengyang, 421001, China.
| | - Xiaoyan Wu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Key Laboratory of Radioactive Waste Treatment and Disposal, University of South China, Hengyang, 421001, China
| | - Mi Li
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Key Laboratory of Radioactive Waste Treatment and Disposal, University of South China, Hengyang, 421001, China
| | - Lijiang Zhang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Ying Peng
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Qianwen Huang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Wenfa Tan
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, 421001, China; Key Laboratory of Radioactive Waste Treatment and Disposal, University of South China, Hengyang, 421001, China
| |
Collapse
|
12
|
Maji S, Kumar S, Kalyanasundaram S. Luminescence studies of uranyl-aliphatic dicarboxylic acid complexes in acetonitrile medium. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The uranyl (UO2
2+)-aliphatic dicarboxylic acid complexes are studied by luminescence and UV-Vis spectroscopy in acetonitrile (MeCN) medium. The ligands used are malonic acid (MA), succinic acid (SA), glutaric acid (GA), adipic acid (AA) and pimelic acid (PA). The complexes of UO2
2+ with the above ligands showed well resolved luminescence spectra at pH 4.0 with M/L = 5. Both luminescence and UV-Vis spectra indicated the formation of 1:2 and 1:3 complexes of UO2
2+ with MA and GA, AA, PA, respectively. DFT computations indicated the formation of 1:2 chelate complex of UO2
2+ with MA and two types of 1:3 complexes of UO2
2+ with SA, GA, AA and PA. Furthermore, the effect of solvent (water and acetonitrile) on the UO2
2+-ligand complexes has been performed using COSMO model. The present study demonstrates, for the first time, the formation of tris complexes of uranyl with these ligands in acetonitrile medium.
Collapse
Affiliation(s)
- Siuli Maji
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603102 , India
| | - Satendra Kumar
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603102 , India
| | - Sundararajan Kalyanasundaram
- Materials Chemistry & Metal Fuel Cycle Group, Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research , Kalpakkam 603102 , India
| |
Collapse
|
13
|
Fu H, Zhang H, Sui Y, Hu N, Ding D, Ye Y, Li G, Wang Y, Dai Z. Transformation of uranium species in soil during redox oscillations. CHEMOSPHERE 2018; 208:846-853. [PMID: 30068027 DOI: 10.1016/j.chemosphere.2018.06.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/19/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Redox oscillation is commonly found in near-surface environment, where soils are often polluted with many redox active contaminants, including uranium (U). In order to investigate the transformation of U species in near-surface soil under redox oscillations conditions, redox oscillations and reduction experiments were performed, biogeochemical parameters and native microbial community composition were monitored, main elements on the surface of solid-phase were analyzed by XPS, and labile U(IV) species and stable U(IV) species in solid-phase were provisionally defined using an anoxic 1 M sodium bicarbonate extraction. It was found that redox oscillations slightly increased the water-soluble U but significantly increased the stable U(IV) species (P < 0.05) in soil. In reduction experiment, there was upper limit value for percentage of stable U(IV) species, and the labile U(IV) species could not transform to stable U(IV) species in a short period of time under reduction conditions. The redox transition of Fe enriched on the surface of soil and the conversion of microbial community composition played a major role in speciation transformation of U under redox oscillations conditions. In addition, sequential extraction revealed that the increase of stable U(IV) species content reflected the U speciation transition from acetate extract to more recalcitrant hydroxylamine extract. The finding provides a potential method for improving the stability of U when bio-reduction is used to remediate the U-contaminated soils.
Collapse
Affiliation(s)
- Haiying Fu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China; School of Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Yang Sui
- School of Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China; Hunan Taohuajiang Nuclear Power Co., Ltd, Yiyang, 413000, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China; School of Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China.
| | - Yongjun Ye
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China; School of Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, China
| | - Guangyue Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Yongdong Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Zhongran Dai
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| |
Collapse
|
14
|
Yang Z, Li Y, Ning Y, Yang S, Tang Y, Zhang Y, Wang X. Effects of oxidant and particle size on uranium leaching from coal ash. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5963-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Spectroscopic investigation of uranium sorption on soil surface using X-ray photoelectron spectroscopy. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5336-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Liu B, Peng T, Sun H. Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15804-15815. [PMID: 28534266 DOI: 10.1007/s11356-017-8921-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.
Collapse
Affiliation(s)
- Bo Liu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China
| | - Tongjiang Peng
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China.
| | - Hongjuan Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Ministry of Education, Mianyang, 621010, Sichuan, People's Republic of China
| |
Collapse
|
17
|
Liu B, Peng T, Sun H, Yue H. Release behavior of uranium in uranium mill tailings under environmental conditions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 171:160-168. [PMID: 28254525 DOI: 10.1016/j.jenvrad.2017.02.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines.
Collapse
Affiliation(s)
- Bo Liu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China; Institute of Mineral Materials and Application, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Ministry of Education, Mianyang 621010, Sichuan, PR China
| | - Tongjiang Peng
- Institute of Mineral Materials and Application, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Ministry of Education, Mianyang 621010, Sichuan, PR China.
| | - Hongjuan Sun
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Ministry of Education, Mianyang 621010, Sichuan, PR China
| | - Huanjuan Yue
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Ministry of Education, Mianyang 621010, Sichuan, PR China
| |
Collapse
|