1
|
Hepditch SLJ, Ahad JME, Martel R, To TA, Gutierrez-Villagomez JM, Larocque È, Vander Meullen IJ, Headley JV, Xin Q, Langlois VS. Behavior and toxicological impact of spilled diluted bitumen and conventional heavy crude oil in the unsaturated zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124875. [PMID: 39233269 DOI: 10.1016/j.envpol.2024.124875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Demand for unconventional crude oils continues to drive the production of diluted bitumen (dilbit) within Western Canada, promoting increased transport volumes across the extensive 700,000 km pipeline system of Canada and the USA. Despite this vast extent of terrestrial transport, the current understanding of the behavior and fate of spilled dilbit within shallow groundwater systems is limited. To this end, oil spill experiments with a dilbit (Cold Lake Blend) and a physicochemically similar conventional heavy crude oil (Conventional Heavy Blend) were conducted for 104 days in large soil columns (1 m height × 0.6 m diameter) engineered to model contaminant transport in the unsaturated (vadose) zone. Around two-fold greater concentrations and 6-41 % faster rates of vadose zone transport of benzene, toluene, ethylbenzene and xylenes (BTEX) and polycyclic aromatic compounds (PACs) were observed in the dilbit- compared to conventional heavy crude-contaminated columns. As determined by Orbitrap mass spectrometry, the OxSx species abundances in the acid extractable organics (AEOs) fraction of column leachate from both oil types increased over time, ostensibly due to microbial degradation of petroleum. Bioaccumulation of petroleum constituents in fathead minnow (Pimephales promelas) larvae exposed to contaminated leachate was confirmed through the induction of developmental malformations lasting up to 34 days and increased abundance of cyp1a mRNA observed throughout the experiment. Toxicity was comparable between the two oils but could not be fully attributed to metals, BTEX, PACs or AEOs, implying the presence of uncharacterized teratogens capable of being transported within the vadose zone following terrestrial dilbit and conventional heavy crude oil surface spills.
Collapse
Affiliation(s)
- Scott L J Hepditch
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la lutte contre les changements climatiques, de la faune et des forêts (MELCCFP), Québec, QC, H7C 2M7, Canada
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada (NRCan), Québec, QC, G1K 9A9, Canada.
| | - Richard Martel
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Tuan Anh To
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | | | - Ève Larocque
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Ian J Vander Meullen
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - John V Headley
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada
| | - Qin Xin
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB, T9G 1A8, Canada
| | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
2
|
Zito P, Sihota N, Mohler RE, Podgorski DC. The formation, reactivity, and fate of oxygen-containing organic compounds in petroleum-contaminated groundwaters: A state of the science review and future research directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170619. [PMID: 38311075 DOI: 10.1016/j.scitotenv.2024.170619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Hydrocarbon (HC) contamination in groundwater (GW) is a widespread environmental issue. Dissolved hydrocarbons in water are commonly utilized as an energy source by natural microbial communities, which can produce water soluble intermediate metabolite compounds, herein referred to as oxygen containing organic compounds (OCOCs), before achieving complete mineralization. This review aims to provide a comprehensive assessment of the literature focused on the state of the science for OCOCs detected and measured in GW samples collected from petroleum contaminated aquifers. In this review, we discuss and evaluate two hypotheses investigating OCOC formation, which are major points of contention in the freshwater oil spill community that need to be addressed. We reviewed over 150 articles compiling studies investigating OCOC formation and persistence to uncover knowledge gaps in the literature and studies that recommend quantitative and qualitative measurements of OCOCs in petroleum-contaminated aquifers. This review is essential because no consensus exists regarding specific compounds and related concerns. We highlight the knowledge gaps to progressing the discussion of hydrocarbon conversion products.
Collapse
Affiliation(s)
- Phoebe Zito
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA; Department of Chemistry, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA.
| | - Natasha Sihota
- Chevron Technical Center, 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA
| | - Rachel E Mohler
- Chevron Technical Center, 100 Chevron Way, Richmond, CA 94801, USA
| | - David C Podgorski
- Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA; Pontchartrain Institute of Environmental Science, Shea Penland Coastal Education and Research Facility, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA; Department of Chemistry, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| |
Collapse
|
3
|
O'Reilly KT, Patterson TJ, Zemo DA, Mohler RE. Response to Podgorski and Bekins's comments on Zemo et al. (2022). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106758. [PMID: 37951747 DOI: 10.1016/j.aquatox.2023.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Affiliation(s)
| | - Timothy J Patterson
- Chevron Technical Center (A Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583 USA.
| | - Dawn A Zemo
- Zemo & Associates, Inc., 986 Wander Way, Incline Village, NV 89451 USA
| | - Rachel E Mohler
- Chevron Technical Center (A Chevron USA, Inc. division), 100 Chevron Way 50-1271, Richmond, CA, 94801, USA
| |
Collapse
|
4
|
Podgorski DC, Bekins BA. Comment on "Complex mixture toxicology: Evaluation of toxicity to freshwater aquatic receptors from biodegradation metabolites in groundwater at a crude oil release site, recent analogous results from other authors, and implications for risk management". AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106744. [PMID: 37951746 DOI: 10.1016/j.aquatox.2023.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Affiliation(s)
- David C Podgorski
- Pontchartrain Institute for Environmental Sciences, Chemical Analysis & Mass Spectrometry Facility, Department of Chemistry, University of New Orleans, New Orleans, LA, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK, USA.
| | | |
Collapse
|
5
|
Yang Y, Wang Q, Xue J, Tian S, Du Y, Xie X, Gan Y, Deng Y, Wang Y. Organic matter degradation and arsenic enrichment in different floodplain aquifer systems along the middle reaches of Yangtze River: A thermodynamic analysis. WATER RESEARCH 2023; 239:120072. [PMID: 37207456 DOI: 10.1016/j.watres.2023.120072] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Geogenic arsenic (As) contaminated groundwater has been widely accepted associating with dissolved organic matter (DOM) in aquifers, but the underlying enrichment mechanism at molecular-level from a thermodynamic perspective is poorly evidenced. To fill this gap, we contrasted the optical properties and molecular compositions of DOM coupled with hydrochemical and isotopic data in two floodplain aquifer systems with significant As variations along the middle reaches of Yangtze River. Optical properties of DOM indicate that groundwater As concentration is mainly associated with terrestrial humic-like components rather than protein-like components. Molecular signatures show that high As groundwater has lower H/C ratios, but greater DBE, AImod, and NOSC values. With the increase of groundwater As concentration, the relative abundance of CHON3 formulas gradually decreased while that of CHON2 and CHON1 increased, indicating the importance of N-containing organics in As mobility, which is also evidenced by nitrogen isotope and groundwater chemistry. Thermodynamic calculation demonstrated that organic matter with higher NOSC values preferentially favored the reductive dissolution of As-bearing Fe(III) (hydro)oxides minerals and thus promoted As mobility. These findings could provide new insights to decipher organic matter bioavailability in As mobilization from a thermodynamical perspective and are applicable to similar geogenic As-affected floodplain aquifer systems.
Collapse
Affiliation(s)
- Yijun Yang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Qian Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Jiangkai Xue
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, PR China
| | - Shuhang Tian
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Yao Du
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Yiqun Gan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Yamin Deng
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China.
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| |
Collapse
|
6
|
Acter T, Lee S, Uddin N, Mow KM, Kim S. Characterization of petroleum‐related natural organic matter by ultrahigh‐resolution mass spectrometry. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thamina Acter
- Department of Mathematical and Physical Sciences East West University Dhaka Bangladesh
| | - Seulgidaun Lee
- Department of Chemistry Kyungpook National University Daegu Republic of Korea
| | - Nizam Uddin
- Department of Nutrition and Food Engineering, Faculty of Allied Health Science Daffodil International University Dhaka Bangladesh
| | - Kamarum Monira Mow
- Department of Computer Science and Engineering East West University Dhaka Bangladesh
| | - Sunghwan Kim
- Department of Chemistry Kyungpook National University Daegu Republic of Korea
- Mass Spectrometry Based Convergence Research Institute Kyungpook National University Daegu Republic of Korea
- Green‐Nano Materials Research Center, Kyungpook National University Daegu Republic of Korea
| |
Collapse
|
7
|
Brünjes J, Seidel M, Dittmar T, Niggemann J, Schubotz F. Natural Asphalt Seeps Are Potential Sources for Recalcitrant Oceanic Dissolved Organic Sulfur and Dissolved Black Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9092-9102. [PMID: 35584055 DOI: 10.1021/acs.est.2c01123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural oil seepages contribute about one-half of the annual petroleum input to marine systems. Yet, environmental implications and the persistence of water-soluble hydrocarbons from these seeps are vastly unknown. We investigated the release of oil-derived dissolved organic matter (DOM) from natural deep sea asphalt seeps using laboratory incubation experiments. Fresh asphalt samples collected at the Chapopote asphalt volcano in the Southern Gulf of Mexico were incubated aerobically in artificial seawater over 4 weeks. The compositional changes in the water-soluble fraction of asphalt-derived DOM were determined with ultrahigh-resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) and by excitation-emission matrix spectroscopy to characterize fluorescent DOM (FDOM) applying parallel factor (PARAFAC) analysis. Highly reduced aliphatic asphalt-derived DOM was readily biodegraded, while aromatic and sulfur-enriched DOM appeared to be less bioavailable and accumulated in the aqueous phase. A quantitative molecular tracer approach revealed the abundance of highly condensed aromatic molecules of thermogenic origin. Our results indicate that natural asphalt and potentially other petroleum seepages can be sources of recalcitrant dissolved organic sulfur and dissolved black carbon to the ocean.
Collapse
Affiliation(s)
- Jonas Brünjes
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| | - Michael Seidel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg 26129, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen 28359, Germany
| |
Collapse
|
8
|
Phillips AL, Williams AJ, Sobus JR, Ulrich EM, Gundersen J, Langlois-Miller C, Newton SR. A Framework for Utilizing High-Resolution Mass Spectrometry and Nontargeted Analysis in Rapid Response and Emergency Situations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1117-1130. [PMID: 34416028 PMCID: PMC9280853 DOI: 10.1002/etc.5196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 05/03/2023]
Abstract
Unknown chemical releases constitute a large portion of the rapid response situations to which the US Environmental Protection Agency is called on to respond. Workflows used to address unknown chemical releases currently involve screening for a large array of known compounds using many different targeted methods. When matches are not found, expert analytical chemistry knowledge is used to propose possible candidates from the available data, which generally includes low-resolution mass spectra and situational clues such as the location of the release, nearby industrial operations, and other field-reported facts. The past decade has witnessed dramatic improvements in capabilities for identifying unknown compounds using high-resolution mass spectrometry (HRMS) and nontargeted analysis (NTA) approaches. Complementary developments in cheminformatics tools have further enabled an increase in NTA throughput and identification confidence. Together with the expanding availability of HRMS instrumentation in monitoring laboratories, these advancements make NTA highly relevant to rapid response scenarios. In this article, we introduce the concept of NTA as it relates to rapid response needs and describe how it can be applied to address unknown chemical releases. We advocate for the consideration of HRMS-based NTA approaches to support future rapid response scenarios. Environ Toxicol Chem 2022;41:1117-1130. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Allison L. Phillips
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC 27711
| | - Antony J. Williams
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27711
| | - Jon R. Sobus
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27711
| | - Elin M. Ulrich
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27711
| | - Jennifer Gundersen
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement and Modeling, Narragansett, RI 02882
| | - Christina Langlois-Miller
- U.S. Environmental Protection Agency, Office of Land and Emergency Management, Office of Emergency Management, Washington D.C. 20460
| | - Seth R. Newton
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC 27711
- Corresponding author contact information: Seth R. Newton, , Mail: 109 T.W. Alexander Drive E205-05, RTP, NC 27711
| |
Collapse
|
9
|
O'Reilly KT, Sihota N, Mohler RE, Zemo DA, Ahn S, Magaw RI, Devine CE. Orbitrap ESI-MS evaluation of solvent extractable organics from a crude oil release site. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103855. [PMID: 34265523 DOI: 10.1016/j.jconhyd.2021.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of oxygen-containing organic compounds (OCOC), measured as dissolved organic carbon (DOC), in groundwater exceeds those of dissolved hydrocarbons, measured as total petroleum hydrocarbons (TPH), at a crude oil release site. Orbitrap mass spectrometry was used to characterize OCOC in samples of the oil, water from upgradient of the release, source area, and downgradient wells, and a local lake. Chemical characterization factors included carbon number, oxygen number, formulae similarity, double bond equivalents (DBE) and radiocarbon dating. Oil samples were dominated by formulae with less than 30 carbons, four or fewer oxygens, and a DBE of less than four. In water samples, formulae were identified with more than 30 carbons, more than 10 oxygens, and a DBE exceeding 30. These characteristics are consistent with DOC found in unimpacted water. Between 65% and 92% of the formulae found in samples collected within the elevated OCOC plume were also found in the upgradient or surface water samples. Evidence suggests that many of the OCOC are not petroleum degradation intermediates, but microbial products generated as a result of de novo synthesis by organisms growing on carbon supplied by the oil. Implications of these results for understanding the fate and managing the risk of hydrocarbons in the subsurface are discussed.
Collapse
|
10
|
Qiao W, Guo H, He C, Shi Q, Zhao B. Unraveling roles of dissolved organic matter in high arsenic groundwater based on molecular and optical signatures. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124702. [PMID: 33296763 DOI: 10.1016/j.jhazmat.2020.124702] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is a crucial controlling factor in mobilizing arsenic. However, direct delineations of DOM regarding both optical properties and molecular signatures were rarely conducted in high-arsenic groundwater. Here, both groundwater and surface water were taken from the Hetao Basin, China, to decipher DOM properties with both optical spectrophotometer and Fourier transform ion cyclotron resonance mass spectrometry. The tryptophan-like component (C4) was averagely less than 30% in groundwater DOM, being positively associated with high H/C-ratio molecules (H/C > 1.2) and mainly grouped as highly unsaturated and phenolic compounds and aliphatic compounds. Other three humic-like components (C1, C2, C3) had positive associations with low H/C-ratio molecules (H/C < 1.2), which mainly consisted of highly unsaturated and phenolic compounds, polyphenols, and polycyclic aromatics. Groundwater arsenic concentrations were positively correlated with humic-like, low H/C-ratio, and recalcitrant organic compounds, which may be the consequence of labile organic matter degradation. The degradation caused Fe(III) oxide reduction and mobilized the solid arsenic. In addition, high abundances of these recalcitrant organic compounds in high-arsenic groundwater may contribute to arsenic enrichment via electron shuttling, competition for surface sites, and complexation process. It suggested that groundwater proxies would be either the result or the cause of biogeochemical processes in aquifers.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Bo Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
11
|
Podgorski DC, Zito P, Kellerman AM, Bekins BA, Cozzarelli IM, Smith DF, Cao X, Schmidt-Rohr K, Wagner S, Stubbins A, Spencer RGM. Hydrocarbons to carboxyl-rich alicyclic molecules: A continuum model to describe biodegradation of petroleum-derived dissolved organic matter in contaminated groundwater plumes. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123998. [PMID: 33254831 DOI: 10.1016/j.jhazmat.2020.123998] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/17/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Relationships between dissolved organic matter (DOM) reactivity and chemical composition in a groundwater plume containing petroleum-derived DOM (DOMHC) were examined by quantitative and qualitative measurements to determine the source and chemical composition of the compounds that persist downgradient. Samples were collected from a transect down the core of the plume in the direction of groundwater flow. An exponential decrease in dissolved organic carbon concentration resulting from biodegradation along the transect correlated with a continuous shift in fluorescent DOMHC from shorter to longer wavelengths. Moreover, ultrahigh resolution mass spectrometry showed a shift from low molecular weight (MW) aliphatic, reduced compounds to high MW, unsaturated (alicyclic/aromatic), high oxygen compounds that are consistent with carboxyl-rich alicyclic molecules. The degree of condensed aromaticity increased downgradient, indicating that compounds with larger, conjugated aromatic core structures were less susceptible to biodegradation. Nuclear magnetic resonance spectroscopy showed a decrease in alkyl (particularly methyl) and an increase in aromatic/olefinic structural motifs. Collectively, data obtained from the combination of these complementary analytical techniques indicated that changes in the DOMHC composition of a groundwater plume are gradual, as relatively low molecular weight (MW), reduced, aliphatic compounds from the oil source were selectively degraded and high MW, alicyclic/aromatic, oxidized compounds persisted.
Collapse
Affiliation(s)
- David C Podgorski
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA.
| | - Phoebe Zito
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Anne M Kellerman
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA; National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | | | | | - Donald F Smith
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Xiaoyan Cao
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | | | - Sasha Wagner
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemistry and Chemical Biology, Department of Marine and Environmental Sciences, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Aron Stubbins
- Department of Chemistry and Chemical Biology, Department of Marine and Environmental Sciences, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Robert G M Spencer
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA; National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
12
|
Bekins BA, Brennan JC, Tillitt DE, Cozzarelli IM, Illig JM, Martinović-Weigelt D. Biological Effects of Hydrocarbon Degradation Intermediates: Is the Total Petroleum Hydrocarbon Analytical Method Adequate for Risk Assessment? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11396-11404. [PMID: 32790354 DOI: 10.1021/acs.est.0c02220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In crude oil contaminant plumes, the dissolved organic carbon (DOC) is mainly hydrocarbon degradation intermediates only partly quantified by the diesel range total petroleum hydrocarbon (TPHd) method. To understand potential biological effects of degradation intermediates, we tested three fractions of DOC: (1) solid-phase extract (HLB); (2) dichloromethane (DCM-total) extract used in TPHd; and (3) DCM extract with hydrocarbons isolated by silica gel cleanup (DCM-SGC). Bioactivity of extracts from five wells spanning a range of DOC was tested using an in vitro multiplex reporter system that evaluates modulation of the activity of 46 transcription factors; extracts were evaluated at concentrations equivalent to the well water samples. The aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) transcription factors showed the greatest upregulation, with HLB exceeding DCM-total, and no upregulation in the hydrocarbon fraction (DCM-SGC). The HLB extracts were further studied with HepG2 chemically activated luciferase expression (CALUX) in vitro assays at nine concentrations ranging from 40 to 0.01 times the well water concentrations. Responses decreased with distance from the source but were still present at two wells without detectable hydrocarbons. Thus, our in vitro assay results indicate that risks associated with degradation intermediates of hydrocarbons in groundwater will be underestimated when protocols that remove these chemicals are employed.
Collapse
|
13
|
Mohler RE, Ahn S, O'Reilly K, Zemo DA, Espino Devine C, Magaw R, Sihota N. Towards comprehensive analysis of oxygen containing organic compounds in groundwater at a crude oil spill site using GC×GC-TOFMS and Orbitrap ESI-MS. CHEMOSPHERE 2020; 244:125504. [PMID: 31837566 DOI: 10.1016/j.chemosphere.2019.125504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
In this study, both GC × GC-TOFMS and Orbitrap ESI-MS were used to characterize the oxygen containing organic compounds, OCOCs, present in groundwater at a site where a crude oil pipeline ruptured decades ago. This is the only side-by-side comparison of results from these two methods analyzed by the same laboratory. GC × GC-TOFMS analysis shows OCOCs identified at the crude oil-release site are consistent with, and structurally similar to, those identified at previously studied fuel release sites. Molecular structures close to the release point differ from those found downgradient, becoming less complex and with different compound classes dominating. As with the GC × GC-TOFMS, the Orbitrap revealed that the composition of OCOCs present in groundwater close to the source area was distinctly different from that seen downgradient; however, the chemical structures increased significantly in size and complexity from wells near the source to the farthest downgradient well. Investigation into this finding suggests that the presence and structures of these non-GC-able OCOCs are consistent with organic matter resulting from biosynthesis or other processes found in natural water systems and are unlikely to be intermediates (metabolites) along petroleum biodegradation pathways.
Collapse
Affiliation(s)
- Rachel E Mohler
- Chevron Energy Technology Company, 100 Chevron Way, Richmond, CA, 94801, USA.
| | - Sungwoo Ahn
- Exponent Inc., 157375, SE 30th Place, Suite 250, Bellevue, WA, USA
| | - Kirk O'Reilly
- Exponent Inc., 157375, SE 30th Place, Suite 250, Bellevue, WA, USA
| | - Dawn A Zemo
- Zemo & Associates, 986 Wander Way, Incline Village, NV, 89451, USA
| | - Catalina Espino Devine
- Chevron Energy Technology Company, 6001 Bollinger Canyon Road, San Ramon, CA, 94583, USA
| | - Renae Magaw
- Chevron Energy Technology Company, 6001 Bollinger Canyon Road, San Ramon, CA, 94583, USA
| | - Natasha Sihota
- Chevron Energy Technology Company, 6001 Bollinger Canyon Road, San Ramon, CA, 94583, USA
| |
Collapse
|
14
|
Qiu J, Lü F, Zhang H, Liu W, Chen J, Deng Y, Shao L, He P. UPLC Orbitrap MS/MS-based fingerprints of dissolved organic matter in waste leachate driven by waste age. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121205. [PMID: 31627183 DOI: 10.1016/j.jhazmat.2019.121205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/25/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Waste leachate is a pool of complicated metabolites from waste treatment and disposal as a global environmental problem. The recognition of dissolved organic matter (DOM) in leachate is crucial to improve leachate treatment efficiency and comprehend waste stabilization process. The present study acquired the molecular information for DOM in 22 waste leachate samples using ultra-performance liquid chromatography coupled with hybrid quadrupole Orbitrap mass spectrometry (UPLC Orbitrap MS/MS) based on two dimensions of retention time and mass-to-charge ratio. Unique mass peaks occupied more than 20% of the detected mass peaks in each leachate, implying that the molecular information for DOM could be the fingerprint of waste landfills and storage pits. Waste age and composition predominately accounted for this unique DOM. The double-bond equivalent increased and the H/C decreased with waste age. We further found that 57 precursor ion peaks and artificial matter (confirmed as N-butylbenzenesulfonamide) were significantly correlated with waste age by multiple test and non-target screening. These molecular characteristics of raw leachate were first determined to compensate for the evolution of leachate with waste age. The fingerprints of waste leachate can be further applied in environmental monitoring scenarios, e.g., tracing landfill leakage.
Collapse
Affiliation(s)
- Junjie Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Wanying Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Junlan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Yingtao Deng
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
15
|
Kim D, Jung JH, Ha SY, An JG, Shankar R, Kwon JH, Yim UH, Kim SH. Molecular level determination of water accommodated fraction with embryonic developmental toxicity generated by photooxidation of spilled oil. CHEMOSPHERE 2019; 237:124346. [PMID: 31376702 DOI: 10.1016/j.chemosphere.2019.124346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, developmental toxicity was increased as the oil was further degraded under natural sunlight. Detailed chemical composition of the degraded oils was examined by use of gas chromatography (GC) and (-) electrospray ionization ultrahigh resolution mass spectrometry (UHR-MS). Baseline toxicities were estimated based on chemical activities of polycyclic aromatic hydrocarbons, and it was obvious that the predicted chemical activities can not explain increased toxicity alone. However, the ultrahigh resolution mass spectral abundance of polar compounds including O3 and O4 class compounds was significantly increased as the photodegradation proceeded. Further examination of double bond equivalence values of the compounds showed that polar compounds with both non-aromatic and aromatic polar structures were increased. Statistical analysis indicates that the increased toxicity can be well explained by the increased polar compounds. Therefore, the oxygenated compounds identified in this study can play an important role in toxicity of degraded oils.
Collapse
Affiliation(s)
- Donghwi Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Analytical Research Center, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jee-Hyun Jung
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea; Marine Environmental Science Major, Korea University of Science and Technology, Geoje, 53201, Republic of Korea
| | - Sung Yong Ha
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Joon Geon An
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Ravi Shankar
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea; Marine Environmental Science Major, Korea University of Science and Technology, Geoje, 53201, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea; Marine Environmental Science Major, Korea University of Science and Technology, Geoje, 53201, Republic of Korea.
| | - Sung Hwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea.
| |
Collapse
|
16
|
Lim D, Park Y, Chang R, Ahmed A, Kim S. Application of molecular dynamics simulation to improve the theoretical prediction for collisional cross section of aromatic compounds with long alkyl chains in crude oils. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:650-656. [PMID: 30710409 DOI: 10.1002/rcm.8400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Molecular dynamics (MD) simulations with finite temperature were performed to improve the theoretical prediction of collisional cross section (CCS) values, especially for aromatic compounds containing long alkyl chains. METHODS In this study, the CCS values of 11 aromatic compounds with long alkyl chains were calculated by MD simulations while considering internal energy at 300, 500, and 700 K, and the results were compared with experimentally determined values. RESULTS The CCS values calculated at higher energies showed better agreement with the experimental values. Polycyclic aromatic hydrocarbons (PAHs) such as pentacene and benz[b]anthracene were also investigated, and better agreement between the theoretical and experimental results was observed when higher temperature (or higher internal energy) was considered. CONCLUSIONS The data presented in this study show that the internal degrees of freedom of ions must be considered to accurately predict the CCS values of aromatic compounds with a flexible structure measured by ion mobility mass spectrometry.
Collapse
Affiliation(s)
- Dongwan Lim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yunjae Park
- Department of Chemistry, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Arif Ahmed
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
- Green Nano Center, Department of Chemistry, Daegu, 41566, Republic of Korea
| |
Collapse
|
17
|
McGuire JT, Cozzarelli IM, Bekins BA, Link H, Martinović-Weigelt D. Toxicity Assessment of Groundwater Contaminated by Petroleum Hydrocarbons at a Well-Characterized, Aged, Crude Oil Release Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12172-12178. [PMID: 30272965 DOI: 10.1021/acs.est.8b03657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Management of petroleum-impacted waters by monitored natural attenuation requires an understanding of the toxicology of both the original compounds released and the transformation products formed during natural breakdown. Here, we report data from a groundwater plume consisting of a mixture of crude oil compounds and transformation products in an effort to bridge the gap between groundwater quality information and potential biological effects of human exposures. Groundwater samples were characterized for redox processes, concentrations of nonvolatile dissolved organic carbon (NVDOC) and total petroleum hydrocarbons in the diesel range, as well as for activation of human nuclear receptors (hNR) and toxicologically relevant transcriptional pathways. Results show upregulation of several biological pathways, including peroxisome proliferator-activated receptor gamma and alpha, estrogen receptor alpha, and pregnane X receptor (PXR) with higher levels of hNR activity observed in more contaminated samples. Our study of affected groundwater contaminated by a crude-oil release 39 years ago shows these types of waters may have the potential to cause adverse impacts on development, endocrine, and liver functioning in exposed populations. Additionally, positive trends in activation of some of the molecular targets (e.g., PXR) with increasing NVDOC concentrations (including polar transformation products) demonstrate the importance of improving our understanding of the toxicity associated with the unknown transformation products present in hydrocarbon-impacted waters. Our results begin to provide insight into the potential toxicity of petroleum-impacted waters, which is particularly timely given the ubiquitous nature of waters impacted by petroleum contamination not only recently but also in the past and the need to protect drinking-water quality.
Collapse
Affiliation(s)
- Jennifer T McGuire
- Department of Biology , University of St. Thomas , St. Paul , Minnesota 55105 , United States
| | | | - Barbara A Bekins
- U.S. Geological Survey , Menlo Park , California 94025 , United States
| | - Hannah Link
- Department of Biology , University of St. Thomas , St. Paul , Minnesota 55105 , United States
| | | |
Collapse
|
18
|
O'Reilly KT. Comment on "Examining Natural Attenuation and Acute Toxicity of Petroleum-Derived Dissolved Organic Matter with Optical Spectroscopy". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11960-11961. [PMID: 30252452 DOI: 10.1021/acs.est.8b03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Kirk T O'Reilly
- Exponent , 15375 SE 30th Pl. , Bellevue , Washington 98006 , United States
| |
Collapse
|
19
|
Podgorski DC, Zito P, McGuire JT, Martinovic-Weigelt D, Cozzarelli IM, Bekins BA, Spencer RGM. Rebuttal to Comment on "Examining Natural Attenuation and Acute Toxicity of Petroleum-Derived Dissolved Organic Matter with Optical Spectroscopy". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11962-11963. [PMID: 30260633 DOI: 10.1021/acs.est.8b04976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- David C Podgorski
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry , University of New Orleans , New Orleans , Louisiana United States
| | - Phoebe Zito
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry , University of New Orleans , New Orleans , Louisiana United States
| | - Jennifer T McGuire
- Department of Biology , University of St. Thomas , St. Paul , Minnesota United States
| | | | | | | | - Robert G M Spencer
- Department of Earth, Ocean and Atmospheric Science , Florida State University , Tallahassee , Florida United States
| |
Collapse
|
20
|
Kim D, Ha SY, An JG, Cha S, Yim UH, Kim S. Estimating degree of degradation of spilled oils based on relative abundance of aromatic compounds observed by paper spray ionization mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:421-428. [PMID: 30056364 DOI: 10.1016/j.jhazmat.2018.07.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/19/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Paper spray ionization mass spectrometry (PSI-MS) was applied for the first time to study temporal change of photo-oxidized and weathered oils subjected to degradation. PSI is chosen in this study because it is an optimal ionization technique for the analysis of degraded oils with limited sample quantity and prone to salt and particulate contamination. With PSI-MS, quantitative analysis of oils can be successfully performed with as little as 2 μg of oil sample. In addition, oil solutions containing up to 0.05% sodium chloride were successfully analyzed with PSI-MS. In the PSI-MS spectra of photo-degraded oils, the relative abundance of compounds having double equivalence value (DBE) ≥ 5 increased but those with DBE < 5 decreased in number. The summed abundance ratio of compounds having DBE < 5 and DBE ≥ 5 showed a negative exponential correlation with the duration of UV exposure in laboratory experiments. The same trend was observed from spilled oils obtained from the environment. Therefore, this ratio serves as an effective means to estimate the degree of weathering in spilled oils.
Collapse
Affiliation(s)
- Donghwi Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Yong Ha
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Joon Geon An
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Sangwon Cha
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea.
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; Green-Nano Materials Research Center, Daegu 41566, Republic of Korea.
| |
Collapse
|
21
|
Podgorski DC, Zito P, McGuire JT, Martinovic-Weigelt D, Cozzarelli IM, Bekins BA, Spencer RGM. Examining Natural Attenuation and Acute Toxicity of Petroleum-Derived Dissolved Organic Matter with Optical Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6157-6166. [PMID: 29715014 DOI: 10.1021/acs.est.8b00016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Groundwater samples containing petroleum-derived dissolved organic matter (DOMHC) originating from the north oil body within the National Crude Oil Spill Fate and Natural Attenuation Research Site near Bemidji, MN, USA were analyzed by optical spectroscopic techniques (i.e., absorbance and fluorescence) to assess relationships that can be used to examine natural attenuation and toxicity of DOMHC in contaminated groundwater. A strong correlation between the concentration of dissolved organic carbon (DOC) and absorbance at 254 nm ( a254) along a transect of the DOMHC plume indicates that a254 can be used to quantitatively assess natural attenuation of DOMHC. Fluorescence components, identified by parallel factor (PARAFAC) analysis, show that the composition of the DOMHC beneath and adjacent to the oil body is dominated by aliphatic, low O/C compounds ("protein-like" fluorescence) and that the composition gradually evolves to aromatic, high O/C compounds ("humic-/fulvic-like" fluorescence) as a function of distance downgradient from the oil body. Finally, a direct, positive correlation between optical properties and Microtox acute toxicity assays demonstrates the utility of these combined techniques in assessing the spatial and temporal natural attenuation and toxicity of the DOMHC in petroleum-impacted groundwater systems.
Collapse
Affiliation(s)
- David C Podgorski
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry , University of New Orleans , New Orleans , Louisiana 70148 , United States
| | - Phoebe Zito
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry , University of New Orleans , New Orleans , Louisiana 70148 , United States
| | - Jennifer T McGuire
- Department of Biology , University of St. Thomas , St. Paul , Minnesota 55105 , United States
| | | | | | - Barbara A Bekins
- U.S. Geological Survey , Menlo Park , California 94025 , United States
| | - Robert G M Spencer
- Department of Earth, Ocean and Atmospheric Science , Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
22
|
Kim D, Yim UH, Kim B, Cha S, Kim S. Paper Spray Chemical Ionization: Highly Sensitive Ambient Ionization Method for Low- and Nonpolar Aromatic Compounds. Anal Chem 2017; 89:9056-9061. [DOI: 10.1021/acs.analchem.7b01733] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Donghwi Kim
- Department
of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Hyuk Yim
- Oil
and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Byungjoo Kim
- Center
for Organic Analysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Sangwon Cha
- Department
of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Sunghwan Kim
- Department
of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
23
|
Li J, Lu H, Fan X, Chen Y. Human health risk constrained naphthalene-contaminated groundwater remediation management through an improved credibility method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16120-16136. [PMID: 28537032 DOI: 10.1007/s11356-017-9085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, a human health risk constrained groundwater remediation management program based on the improved credibility is developed for naphthalene contamination. The program integrates simulation, multivariate regression analysis, health risk assessment, uncertainty analysis, and nonlinear optimization into a general framework. The improved credibility-based optimization model for groundwater remediation management with consideration of human health risk (ICOM-HHR) is capable of not only effectively addressing parameter uncertainties and risk-exceeding possibility in human health risk but also providing a credibility level that indicates the satisfaction of the optimal groundwater remediation strategies with multiple contributions of possibility and necessity. The capabilities and effectiveness of ICOM-HHR are illustrated through a real-world case study in Anhui Province, China. Results indicate that the ICOM-HHR would generate double remediation cost yet reduce approximately 10 times of the naphthalene concentrations at monitoring wells, i.e., mostly less than 1 μg/L, which implies that the ICOM-HHR usually results in better environmental and health risk benefits. And it is acceptable to obtain a better environmental quality and a lower health risk level with sacrificing a certain economic benefit.
Collapse
Affiliation(s)
- Jing Li
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| | - Hongwei Lu
- State Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Xing Fan
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| | - Yizhong Chen
- School of Renewable Energy, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|