1
|
He Z, Luo J, Zhu G, Tian Z, Sun S, Ma R. Enhanced activation of peroxymonosulfate with cobalt-doped manganese-iron oxides for contaminant degradation: Regulation of oxygen vacancy defects. J Colloid Interface Sci 2025; 678:186-200. [PMID: 39186898 DOI: 10.1016/j.jcis.2024.08.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Peroxymonosulfate (PMS) based on heterogeneous catalytic reaction was a promising advanced oxidation process (AOP) to remove refractory contaminants. However, the contaminant degradation efficiency was challenged by the limited number of catalytic active site and low capacity for durable electron transfer. In this study, cobalt-doped manganese-iron oxides (CoxMn1-xFe2O4) rich in oxygen vacancy (Ov) were synthesized using a microwaved hydrothermal method and applied to activate PMS for bisphenol A (BPA) degradation, which achieved the complete removal of BPA within 30 min. In all samples, Co0.5Mn0.5Fe2O4 exhibited good catalytic activity for PMS, which was approximately 21.10 times higher than that of MnFe2O4. The results of density functional theory calculations and in-situ characterization demonstrated that the enhanced performance was ascribed to the generation of Ov and the enrichment of active site, which significantly accelerated the cycling of redox pairs and improved the PMS adsorption, which was more favorable to the formation of active specie in the electron transport process. The oxidation process involved both free radical and non-radical mechanisms, with main reactive species of O2-, and 1O2 being responsible for BPA degradation. In addition, the effects of different aqueous matrices, the results of reusability experiments, and ecotoxicity assessment experiments demonstrated the viability of the Co0.5Mn0.5Fe2O4/PMS system for real sewage purification. This research revealed a structural regulation method to enhance the catalytic activity of the material and offered new perspectives on the engineering of rich Ov.
Collapse
Affiliation(s)
- Zixia He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guopeng Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhen Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Mamatali A, Wu D, Xie H, Xiao P. Mesoporous cobalt-manganese layered double hydroxides promote the activation of calcium sulfite for degradation and detoxification of metronidazole. J Colloid Interface Sci 2024; 666:512-528. [PMID: 38613974 DOI: 10.1016/j.jcis.2024.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Akbar Mamatali
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Dedong Wu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Yang SQ, Ye RQ, Cui YH, Liu ZQ, Sun K, Yu YZ. Transformation of metoprolol in UV/PDS process: Role and mechanisms of degradation and polymerization. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134498. [PMID: 38733782 DOI: 10.1016/j.jhazmat.2024.134498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Advanced oxidation processes for the treatment of organic pollutants in wastewater suffer from difficulties in mineralization, potential risks of dissolved residues, and high oxidant consumption. In this study, radical-initiated polymerization is dominated in an UV/peroxydisulfate (PDS) process to eliminate organic pollutant of pharmaceutical metoprolol (MTP). Compared with an ideal degradation-based UV/PDS process, the present process can save four fifths of PDS consumption at the same dissolved organic carbon removal of 47.3%. Simultaneously, organic carbon can be recovered from aqueous solution by separating solid polymers at a ratio of 50% of the initial chemical oxygen demand. The chemical structure of products was analyzed to infer the transformation pathways of MTP. Unlike previous studies on simple organic pollutants that the polymerization can occur independently, the polymerization of MTP is dependent on the partial degradation of MTP, and the main monomer in polymerization is a dominant degradation product (4-(2-methoxyethyl)-phenol, denoted as DP151). The separated solid polymers are formed by repeated oxidation and coupling of DP151 or its derivatives through a series of intermediate oligomers. This proof-of-concept study demonstrates the advantage of polymerization-dominated mechanism on dealing with large organic molecules with complex structures, as well as the potential of UV/PDS process for simultaneous organic pollution reduction and organic carbon recovery from aqueous solution.
Collapse
Affiliation(s)
- Sui-Qin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Rui-Qiu Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China.
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Kai Sun
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Yu-Ze Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| |
Collapse
|
4
|
Pan Y, Zhang F, Tan W, Feng X. New insight into wastewater treatment by activation of sulfite with humic acid under visible light irradiation. WATER RESEARCH 2024; 258:121773. [PMID: 38796910 DOI: 10.1016/j.watres.2024.121773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
Sulfite (S(IV)), as an alternative to persulfate, has demonstrated its cost-effectiveness and environmentally friendly nature, garnering increasing attention in Advanced Oxidation Processes (AOPs). Dissolved organic matter (DOM) commonly occurred in diverse environments and was often regarded as an interfering factor in sulfite-based AOPs. However, less attention has been paid to the promotion of the activation of sulfite by excited DOM, which could produce various reactive intermediates. The study focused on the activation of sulfite using visible light (VL) - excited humic acid (HA) to efficiently degrade many common organic pollutants, which was better than peroxydisulfate (PDS) and peroxymonosulfate (PMS) systems. Quenching experiments and electron paramagnetic resonance (EPR) analysis revealed that the triplet states of HA (3HA*) activated sulfite through energy transfer, resulting in the production of SO4·-, O2·-, and 1O2. The most significant active species found in the degradation of roxarsone (ROX) was 1O2, which was a non-radical pathway and exhibits high selectivity for pollutant degradation. This non-radical pathway was not commonly observed in traditional sulfite-based AOPs. Additionally, the coexistence of various inorganic anions, such as NO3-, Cl-, SO42-, CO32-, and PO43-, had little effect on the degradation of ROX. Furthermore, DOM from different natural water demonstrated efficient activation of S(IV) under light conditions, opening up new possibilities for applying sulfite-based advanced oxidation to the remediation of organic pollution in diverse sites and water bodies. In summary, this research offered promising insights into the potential application of sulfite-based AOPs, facilitated by photo-excited HA, as a new strategy for efficiently degrading organic pollutants in various environmental settings.
Collapse
Affiliation(s)
- Yanting Pan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Liu S, Liu C, Zhang H, Zhang W, Ding W, Zheng H, Li H. Sulfite induced degradation of sulfamethoxazole by a silica stabilized ZIF-67(Co) catalyst via non-radical pathways: Formation and role of high-valent Co(IV) and singlet oxygen. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133888. [PMID: 38412645 DOI: 10.1016/j.jhazmat.2024.133888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/27/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
The sulfite (S(IV))-based advanced oxidation process (AOP) has emerged as an appealing alternative to the traditional persulfate-based AOP for the elimination of organic contaminants from diverse water matrices. In this work, a silica reinforced ZIF-67(Co) catalyst (CZS) is fabricated, characterized and tested in the activation of S(IV) for the sulfamethoxazole (SMX) degradation. The prepared CZS demonstrates superior stability and catalytic ability for the degradation of SMX compared to ZIF-67(Co) across a broad pH range. Unlike the conventional radical-dominated oxidation systems, the CZS/S(IV) system for SMX degradation operates through a non-radical mechanism, featuring high-valent Co(IV) and singlet oxygen (1O2) as the predominated reactive species. The hydroxylated Co species exposed on the CZS surface is identified as the pivotal active site, realizing the S(IV) activation through a complexation-electron transfer process, resulting in the production of various reactive intermediates. Co(II) undergoes the conversion to Co(IV) by generated HSO5-, and 1O2 predominantly originates from the intermediate SO4•-. Profiting from the highly selective oxidation capacities of Co(IV) and 1O2, the established oxidative system demonstrates a remarkable interference resistance and exhibits an exceptional decontamination performance under real-world water conditions. In short, this work provides a sustainable S(IV)-based oxidation strategy for environmental remediation via non-radical mechanism.
Collapse
Affiliation(s)
- Shuang Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Chao Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Hejiao Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Weizhen Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Wei Ding
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Huaili Zheng
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Hong Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
6
|
Pang K, Yan J, Zhang N, Fang C, Fu F, Liu X. Spatial Confinement of Co Nanoparticles in N-Doped Carbon Nanorods for Wastewater Purification via CaSO 3 Activation. Inorg Chem 2024; 63:7071-7079. [PMID: 38561240 DOI: 10.1021/acs.inorgchem.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Spatial confinement of organic pollutants and reactive oxygen species (e.g., SO4•- and •OH) with ultrashort lifetime inside the scale of chemical theoretical diffusion could provide a greatly promising strategy to overcome the limitation of mass transfer in the heterogeneous Fenton-like oxidation process. Herein, we first reported spatial confinement of cobalt nanoparticles in N-doped carbon nanorods (Co-NCNRs), by encapsulating Co nanoparticles into N-doped carbon nanorods, in activating CaSO3 for antibiotic degradation. Compared to Na2SO3 and NaHSO3, CaSO3 could slowly and persistently discharge SO32- due to its low solubility, thus avoiding the depletion of the generated SO3•- and •OH under the high concentration of sulfite ions. Fully physical characterizations confirmed that the 3D hydrogel was mostly transformed into the nanorod structure of Co-NCNRs at 550 °C. Co atoms were successfully nanoconfined into N-doped carbon nanorods, which contributes to mass transfer and prevents the agglomeration of Co nanoparticles, thus enhancing its catalytic activity and stability in activating CaSO3 for water decontamination. The catalytic performance, kinetic research, influences of inorganic anions, pH, and degradation mechanism of chlortetracycline degradation catalyzed by the Co-NCNRs/CaSO3 system have been studied in detail. This work not only proposed a facile method for synthesis of nanoconfined catalyst but also provided an excellent Co-NCNRs/CaSO3 system for wastewater treatment.
Collapse
Affiliation(s)
- Kun Pang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Jiaying Yan
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Nuonuo Zhang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Chen Fang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Fangyu Fu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
- School of Sciences, Great Bay University, Dongguan 523000, China
| | - Xiang Liu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
7
|
Wei J, Sui Y, Zhou Z, Zhao X, Jing G. Monoethanolamine enhanced iohexol degradation in the Co(II)/sulfite system: Nonnegligible role of complexation in accelerating cobalt redox cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133705. [PMID: 38335618 DOI: 10.1016/j.jhazmat.2024.133705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Generation of sulfate radicals (SO4•-) from sulfite activation has emerged as a promising method for abatement of organic pollutants in the water and wastewater treatment. Co(II) has garnered attention due to its high catalytic activity in the sulfite activation, which is compromised by the slow Co(II)/Co(III) redox cycling. Regarding the regulation of Co(II) electronic structure via the complexation effect, monoethanolamine (MEA), a common chelator, is introduced into the Co(II)/sulfite system. MEA addition results in a significant improvement in iohexol abatement efficiency, increasing from 40% to 92%. The superior iohexol abatement relies on the involvement of SO4•-, hydroxyl radicals (HO•) and Co(IV). Hydrogen radical (•H) is unexpectedly detected, acting as a strong reducing agent, contributing to the reduction of Co(III). This enhancement of sulfite activation by MEA is due to the formation of the Co(II)-MEA complex, in which the complexation ratio of Co(II) and MEA is critical. Electrochemical characterization and theoretical calculations demonstrate that the complexation can facilitate the Co(II)/Co(III) redox cycling with the concomitant enhancement of sulfite activation. This work provides a new insight into the Co(II)/sulfite system in the presence of organic ligands.
Collapse
Affiliation(s)
- Jiahui Wei
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yang Sui
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Zuoming Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Key Laboratory of Terrigenous Environmental Pollution Treatment and Ecological Remediation, Xiamen 361021, China
| | - Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Key Laboratory of Terrigenous Environmental Pollution Treatment and Ecological Remediation, Xiamen 361021, China.
| | - Guohua Jing
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Key Laboratory of Terrigenous Environmental Pollution Treatment and Ecological Remediation, Xiamen 361021, China
| |
Collapse
|
8
|
Wang C, Zhou S, Wang X, Tan W, Feng X. Photocatalytic activation of sulfite by maghemite (γ-Fe 2O 3) for iohexol degradation and alleviation effect of HCO 3- on water acidification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123557. [PMID: 38355082 DOI: 10.1016/j.envpol.2024.123557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Photo-catalyzing sulfite (S(IV)) for the generation of sulfate radical (SO4•-) has emerged as a novel advanced oxidation process (AOP) recently. However, both the potential of soil minerals as effective photocatalysts and the process of water acidification due to S(IV) oxidation have been overlooked. Herein, maghemite (γ-Fe2O3), a typical soil iron oxide with excellent photocatalytic reactivity like hematite and magnetic-collectible property like magnetite, was successfully used to activate S(IV) for iohexol degradation under visible light irradiation. As a result, 91.3% of iohexol was eliminated within 15 min at 0.1 g/L maghemite and 0.5 mM S(IV) under neutral conditions. The influencing factors, including initial pH, catalyst dosage, S(IV) amount, co-existing substances and water matrix, were systematically investigated. The maghemite/S(IV)/vis system exhibited superior performance in iohexol degradation at a wide pH range (3-10). It was found that the released proton via S(IV) oxidation led to severe water acidification. Interestingly, a low dose of HCO3- could evidently resist water acidification with little influence on iohexol elimination. Radical quenching experiments and electron spin resonance (ESR) analysis confirmed that SO4•-, •OH and •O2- were involved in iohexol abatement with SO4•- being the dominant reactive species. Compared with hydrogen peroxide, persulfate and peroxymonosulfate, the established maghemite/S(IV)/vis system achieved much more remarkable degradation performance. Furthermore, the reactivity of the catalyst was not obviously reduced even after 10 runs of reaction. This study expands the application of soil iron oxide mineral in S(IV) activation in water treatment and proposes an approach to regulate water acidification in S(IV)-based AOP.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shuijing Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaoming Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
9
|
Liu M, Chen H, Xiao P, Ji H. Sulfite activation by Jahn-Teller-driven oxygen vacancies Cu-Mn composite oxide for chlortetracycline degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132658. [PMID: 37793256 DOI: 10.1016/j.jhazmat.2023.132658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Copper-manganese composite metal oxides (CuMnOy) were prepared by hydrolysis-driven oxidation-reduction method and used to activate sulfite to degrade chlortetracycline hydrochloride (CTC) for the first time. The Jahn-Teller ions Mn3+ and Cu2+ exist in CuMnOy, which form a solid electric charge transport redox system and ensure the continuous generation of reactive oxygen species (ROS). Through the systematic study of the experimental parameters such as sulfite concentration, catalyst metal molar ratio, catalyst amounts and initial pH, the optimal degradation rate of CTC could reach 91.74% within 10 min and 94.46% after 30 min. The major reactive radicals were determined by radical quenching experiments and electron paramagnetic resonance (EPR) trapping techniques, and it was confirmed that SO4•- and •O2- played a nonnegligible role in the process of degrading CTC. Density functional theory (DFT) calculations show that higher Fukui indices (f- and f0) of CTC sites are more vulnerable to free radical attack. CuMnOy has low CTC degradation intermediate toxicity, high catalytic performance, good anti-interference ability, reusability and stability, and possesses decent application potential in the actual water treatment field.
Collapse
Affiliation(s)
- Mingyi Liu
- College of Forestry, Northeast Forestry University, Harbin 150040, China; Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Hanchun Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Haodong Ji
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
10
|
Yue B, Liu S, Zhang W, Ding W, Zheng H, Li H. Cobalt(II) mediated calcium sulfite activation for efficient oxidative decontamination in waters: Performance, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132731. [PMID: 37813035 DOI: 10.1016/j.jhazmat.2023.132731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
To overcome the drawback that excess SO32- from soluble Na2SO3 captures the generated reactive intermediates in sulfite (S(IV))-based advanced oxidation processes (AOP), CaSO3 of the ability to slowly release SO32- is selected as an alternative S(IV) source to establish an enduring S(IV)-based AOP with Co(II). Herein, the Co(II)/CaSO3 process triggers a much better ofloxacin (OFL) degradation than the Co(II)/Na2SO3 process (degradation rate constant: 12.1 > 3.18 mM-1 min-1). The mechanism investigation corroborates that the Co(II) mediated CaSO3 activation follows a Fenton-like process (complexation followed by intramolecular electron transfer). Apart from the conventional sulfate radical (SO4•-), Co(IV) species and singlet oxygen (1O2) are also certifiably involved in Co(II)/CaSO3 process, and their role and formation mechanisms are elucidated comprehensively. Further, the proposed Co(II)/CaSO3 process exhibits an excellent tolerance to complex water matrices (e.g., background ions and humic acid), suggesting its practical application potential for various contaminants abatement in actual wastewater.
Collapse
Affiliation(s)
- Bangkang Yue
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Shuang Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Weizhen Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Wei Ding
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Huaili Zheng
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Hong Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
11
|
Lu X, Wang K, Wu D, Xiao P. Rapid degradation and detoxification of metronidazole using calcium sulfite activated by CoCu two-dimensional layered bimetallic hydroxides: Performance, mechanism, and degradation pathway. CHEMOSPHERE 2023; 341:140150. [PMID: 37709064 DOI: 10.1016/j.chemosphere.2023.140150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
In this study, cobalt copper-layered double hydroxides (CoCu-LDHs) were prepared by coprecipitation as catalysts to activate CaSO3 for metronidazole (MNZ) degradation. This is the first report on layered double hydroxides activating sulfite for the degradation of organic pollutants. Meanwhile, to address the issue of self-quenching reactions readily occurring in conventional sulfite advanced oxidation systems and resulting in low oxidant efficiency, CaSO3 with slightly soluble in water was used instead of commonly used Na2SO3, to improve the limitations of traditional systems. The results showed that in the CoCu-LDHs/CaSO3 system, the degradation rate of MNZ reached 98.7% within 5 min, representing a 23.0% increase compared to the CoCu-LDHs/Na2SO3 system. Owing to the excellent catalytic performance exhibited by CoCu-LDHs, characterizations including XRD, FTIR, SEM, TEM, BET and XPS were carried out to investigate this further. The results confirmed the successful synthesis of CoCu-LDH, and the activation mechanism study revealed that Co and Cu were considered to the main elements in activating CaSO3, demonstrating good synergistic effects. In addition, the oxygen vacancies on the catalyst surface also played a positive role in generating radicals and promoting electron transfer. Subsequently, the effects of Co/Cu ratio, catalyst dosage, oxidant concentration, pollutant concentration, pH and coexisting substances on MNZ degradation were investigated. Additionally, based on the LC-MS analysis of degradation products and toxicity tests, MNZ was transformed into different intermediates with low toxicity through four pathways, eventually mineralizing into inorganic small molecules. After six cycles, the MNZ degradation rate still reached 82.1%, exhibiting excellent stability and recyclability. In general, this study provides new ideas for activating sulfite, while providing theoretical support for subsequent research on sulfite advanced oxidation system.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Kai Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Dedong Wu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
12
|
Zhao X, Wei J, Wu Y, Zhou Z, Jing G. Modulating the >Co(II)/Co(III) redox cycling via confinement of cobalt with WS 2 for the ultrafast sulfite activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168175. [PMID: 39491186 DOI: 10.1016/j.scitotenv.2023.168175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Sulfite autoxidation in combination with the cobalt-based heterogeneous activators, has recently emerged as the efficient sulfate radical (SO4•-) generation process for organic micropollutant abatement in the water and wastewater treatment, yet the sluggish >Co(II)/Co(III) redox cycling currently compromises the efficacy of radical generation and the potential applications. Herein, regarding that the reductive W(IV) species in WS2 can modulate the >Co(II)/Co(III) redox cycling in the advanced oxidation processes, confinement of cobalt with WS2 (Co-WS2) is designed and characterized. The Co-WS2/sulfite process achieves an ultrafast tetracycline (TC) abatement (~100 % abatement of TC within 1 min) under circumneutral conditions with lower dosage of sulfite and activator, outperforming the current cobalt-based heterogeneous counterparts. The dominant reactive radicals are identified as SO4•- and hydroxyl radical (HO•), which are quantified to be 9.7 μM and 4.5 μM, respectively. The superior radical generation efficiency and the concomitant TC abatement rely on the excellent redox properties and electron transfer capability of Co-WS2. The inter-transformation of >Co(II)/>Co(III) can be accelerated via the involvement of the reductive W(IV) species with the redox-reversibility of the W(IV)/W(VI) couple in the presence of sulfite. The TC degradation intermediates and the corresponding pathways are also proposed according to the ultra-performance liquid chromatography and quadrupole-time of flight mass spectrometry (UPLC-QTOF-MS) analysis. In addition, the influences of the reactant dosage, coexisting anions (HCO3-, HPO42-, Cl- and NO3-), humic acid and the various real water matrices on TC abatement are thoroughly explored. Especially, the Co-WS2/sulfite process is advantageous owing to the negligible effect of the coexisting anions on the TC abatement. This study provides a novel heterogeneous activator for significantly improving sulfite activation efficacy to achieve the efficient organic micropollutant abatement.
Collapse
Affiliation(s)
- Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jiahui Wei
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ying Wu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Zuoming Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Guohua Jing
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
13
|
Li Y, Chen X, Tian X, Liang J, Zhao Z, Ye J, Liu Y, Tong M. Sulfite Poses a Risk of Hexavalent Chromium Rebound in Vadose Zone: A Challenge of the Stability of Cr xFe 1-x(OH) 3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15203-15212. [PMID: 37729390 DOI: 10.1021/acs.est.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Cr(VI) rebound is the primary risk associated with the reduction remediation of Cr(VI)-contaminated soil. The potential impact of sulfites, which can be produced by microbial activities or originate from sulfur-containing remediation agents, on the Cr(VI) rebound in the vadose zone has been overlooked. When sulfites are present, the stability of CrxFe1-x(OH)3 is compromised and significantly inferior to that of Cr(OH)3, as demonstrated in this paper. First, Fe acts as a catalyst for the conversion of adsorbed sulfite to SO4·-, which subsequently triggers the oxidation of Cr(III) and results in the rebound of Cr(VI). The heterogeneous catalysis by Fe on the surface of CrxFe1-x(OH)3 plays a predominant role, contributing to 78% of the actual oxidation of Cr(III) among all employed catalytic processes. The presence of ambient Cl- can exacerbate the rebound effect of Cr(VI) by promoting the generation of HOCl. Furthermore, a portion of released Cr(VI) was reduced to Cr(III) by dissolved sulfite in the presence of dissolved Fe as a catalyst, thereby increasing the dissolution and migration risk associated with CrxFe1-x(OH)3. Hence, the presence of sulfites results in a significant increase in the Cr(VI) rebound and Cr(III) release from CrxFe1-x(OH)3. This challenges the conventional understanding of the stability of CrxFe1-x(OH)3.
Collapse
Affiliation(s)
- Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Xinlei Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Xiaoyu Tian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Zhiwei Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiangyu Ye
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
14
|
Xie J, Yang C, Li X, Wu S, Lin Y. Generation and engineering applications of sulfate radicals in environmental remediation. CHEMOSPHERE 2023; 339:139659. [PMID: 37506891 DOI: 10.1016/j.chemosphere.2023.139659] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Sulfate radical (SO4•-)-based advanced oxidation processes (AOPs) have become promising alternatives in environmental remediation due to the higher redox potential (2.6-3.1 V) and longer half-life period (30-40 μs) of sulfate radicals compared with many other radicals such as hydroxyl radicals (•OH). The generation and mechanisms of SO4•- and the applications of SO4•--AOPs have been examined extensively, while those using sulfite as activation precursor and their comparisons among various activation precursors have rarely reviewed comprehensively. In this article, the latest progresses in SO4•--AOPs were comprehensively reviewed and commented on. First of all, the generation of SO4•- was summarized via the two activation methods using various oxidant precursors, and the generation mechanisms were also presented, which provides a reference for guiding researchers to better select two precursors. Secondly, the reaction mechanisms of SO4•- were reviewed for organic pollutant degradation, and the reactivity was systematically compared between SO4•- and •OH. Thirdly, methods for SO4•- detection were reviewed which include quantitative and qualitative ones, over which current controversies were discussed. Fourthly, the applications of SO4•--AOPs in various environmental remediation were summarized, and the advantages, challenges, and prospects were also commented. At last, future research needs for SO4•--AOPs were also proposed consequently. This review could lead to better understanding and applications of SO4•--AOPs in environmental remediations.
Collapse
Affiliation(s)
- Jun Xie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China.
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
15
|
Dai L, Cui C, Yang M, Jiang S, Lan J, Guo R. Bamboo charcoal fiber bundles loaded MOF-derived magnetic Co/CoO porous polyhedron for efficiently catalytic degradation of tetracyclines hydrochloride. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2033-2053. [PMID: 37906457 PMCID: wst_2023_323 DOI: 10.2166/wst.2023.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The health of living things and the ecosystem of the planet have both been negatively impacted by antibiotic residue in the water environment. There has been a lot of interest in the catalyst made of metal-carbon compounds from MOFs as a potential solution for activating peroxymonosulfate (PMS) to produce reactive oxygen species to catalyze the degradation of residual antibiotics. In this study, zeolitic imidazolate frameworks (ZIF-67) on bamboo fiber bundles (BFB) were pyrolyzed to produce magnetic Co/CoO nanoparticles with porous polyhedrons mounted on bamboo charcoal fiber bundles (BCFB)(BCFB@PCo/CoO). Specific surface area of obtained BCFB@PCo/CoO with abundant active sites arrives at 302.41 m2/g. The catalytic degradation efficiency of Tetracycline hydrochloride (TCH), a target contaminant, could reach up to 99.94% within 15 minutes (PMS = 0.4g/L, Cat. = 0.2g/L). The effects of potential factors, including PMS dosage, interference ions, and temperature, on catalytic degradation efficiencies were investigated. Magnetic recovery and antimicrobial properties of the BCFB@PCo/CoO were also evaluated and the possible degradation pathways were explored. Catalytic mechanism explorations of BCFB@PCo/CoO/PMS system reveal MOF-derived magnetic Co/CoO nanoparticles embedded in BCFB promote the synergistic interaction of both radicals and non-radical pathways for catalytic degradation of TCH. The novel BCFB@PCo/CoO provides an alternative to deal with wastewater containing antibiotics.
Collapse
Affiliation(s)
- Lanling Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China E-mail:
| | - Ce Cui
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Mengyuan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Shan Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Jiangxi, China
| |
Collapse
|
16
|
Liu Z, Luo Y, Yang P, Yang H, Chen Y, Shao Q, Wu F, Xie P, Ma J. Cobalt-doped molybdenum disulfide for efficient sulfite activation to remove As(III): Preparation, efficacy, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131311. [PMID: 37030224 DOI: 10.1016/j.jhazmat.2023.131311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The sulfite(S(IV))-based advanced oxidation process has attracted significant attention in removing As(III) in the water matrix for its low-cost and environmental-friendly. In this study, a cobalt-doped molybdenum disulfide (Co-MoS2) nanocatalyst was first applied to activate S(IV) for As(III) oxidation. Some parameters including initial pH, S(IV) dosage, catalyst dosage, and dissolved oxygen were investigated. The experiment results show that >Co(II) and >Mo(VI) on the catalyst surface promptly activated S(IV) in the Co-MoS2/S(IV) system, and the electron transfer between Mo, S, and Co atoms accelerated the activation. SO4•- was identified as the main active species for As(III) oxidation. Furthermore, DFT calculations confirmed that Co doping improved the MoS2 catalytic capacity. This study has proven that the material has broad application prospects through reutilization test and actual water experiments. It also provides a new idea for developing bimetallic catalysts for S(IV) activation.
Collapse
Affiliation(s)
- Zizheng Liu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yingxi Luo
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Pan Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Haike Yang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Qing Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Feng Wu
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Pengchao Xie
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
17
|
Gong S, Yang J, Pan Q, Liu X, Zhang Q, Wang D. Simultaneous oxidation of roxarsone and adsorption of released arsenic by FeS-activated sulfite. WATER RESEARCH 2023; 237:119979. [PMID: 37098286 DOI: 10.1016/j.watres.2023.119979] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
The conventional oxidation-adsorption methods are effective for the removal of roxarsone (ROX) but are limited by complicated operation, toxic residual oxidant and leaching of toxic metal ions. Herein, we proposed a new approach to improve ROX removal, i.e., using the FeS/sulfite system. Experimental results showed that approximately 100% of ROX (20 mg/L) was removed and more than 90% of the released inorganic arsenic (As(V) dominated) was adsorbed on FeS within 40 min. This FeS/sulfite system was a non-homogeneous activation process, and SO4·-, ·OH and 1O2 were identified as reactive oxidizing species with their contributions to ROX degradation being 48.36%, 27.97% and 2.64%, respectively. Based on density functional theory calculations and HPLC-MS results, the degradation of ROX was achieved by C-As breaking, electrophilic addition, hydroxylation and denitrification. It was also found that the released inorganic arsenic was adsorbed through a combination of outer-sphere complexation and surface co-precipitation, and the generated arsenopyrite (FeAsS), a precursor to ecologically secure scorodite (FeAsO4·2H2O), was served as the foundation for further inorganic arsenic mineralization. This is the first attempt to use the FeS/sulfite system for organic heavy metal removal, which proposes a prospective technique for the removal of ROX.
Collapse
Affiliation(s)
- Sheng Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jingnan Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qinyi Pan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Quan Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
18
|
Xu W, Zhang Y, Zhang X, Xu X, Wang Q. One stone, two birds: A Cu-S cluster as a laccase-mimicking nanozyme and sulfite activator for phenol remediation in marine environments. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131776. [PMID: 37285787 DOI: 10.1016/j.jhazmat.2023.131776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Phenols are infamous pollutants in marine environments and present a grave danger to human health, which makes their efficient detection and removal serious issues. Colorimetry is a simple method for detecting phenols in water because phenols can be oxidized by natural laccase and generate a brown product. However, high cost and poor stability impede the wide-spread implementation of natural laccase in phenol detection. To reverse this adverse situation, a nanoscale Cu-S cluster, Cu4(MPPM)4 (Cu4S4, MPPM = 2-mercapto-5-n-propylpyrimidine), is synthesized. As a stable and inexpensive nanozyme, Cu4S4 shows excellent laccase-mimicking activity and prompts the oxidation of phenols. This characteristic makes Cu4S4 a perfect option for phenol detection with colorimetry. In addition, Cu4S4 also exhibits sulfite activation properties. It can degrade phenols and other pollutants with advanced oxidation processes (AOPs). Theoretical calculations show good laccase-mimicking and sulfite activation properties originating from appropriate interactions between Cu4S4 and substrates. We anticipate that the phenol detection and degradation characteristics of Cu4S4 make it a promising material to be used for practical phenol remediation in water environments.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819 Liaoning, China
| | - Yifei Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819 Liaoning, China
| | - Xia Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819 Liaoning, China
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819 Liaoning, China.
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang 110819 Liaoning, China.
| |
Collapse
|
19
|
Azizollahi N, Taheri E, Mehdi Amin M, Rahimi A, Fatehizadeh A, Sun X, Manickam S. Hydrodynamic cavitation coupled with zero-valent iron produces radical sulfate radicals by sulfite activation to degrade direct red 83. ULTRASONICS SONOCHEMISTRY 2023; 95:106350. [PMID: 36907101 PMCID: PMC10014301 DOI: 10.1016/j.ultsonch.2023.106350] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
In the present research, hydrodynamic cavitation (HC) and zero-valent iron (ZVI) were used to generate sulfate radicals through sulfite activation as a new source of sulfate for the efficient degradation of Direct Red 83 (DR83). A systematic analysis was carried out to examine the effects of operational parameters, including the pH of the solution, the doses of ZVI and sulfite salts, and the composition of the mixed media. Based on the results, the degradation efficiency of HC/ZVI/sulfite is highly dependent upon the pH of the solution and the dosage of both ZVI and sulfite. Degradation efficiency decreased significantly with increasing solution pH due to a lower corrosion rate for ZVI at high pH. The corrosion rate of ZVI can be accelerated by releasing Fe2+ ions in an acid medium, reducing the concentration of radicals generated even though ZVI is solid/originally non-soluble in water. The degradation efficiency of the HC/ZVI/sulfite process (95.54 % + 2.87%) was found to be significantly higher under optimal conditions than either of the individual processes (<6% for ZVI and sulfite and 68.21±3.41% for HC). Based on the first-order kinetic model, the HC/ZVI/sulfite process has the highest degradation constant of 0.035±0.002 min-1. The contribution of radicals to the degradation of DR83 by the HC/ZVI/sulfite process was 78.92%, while the contribution of SO4•- and •OH radicals was 51.57% and 48.43%, respectively. In the presence of HCO3- and CO32- ions, DR83 degradation is retarded, whereas SO42- and Cl- ions promote degradation. To summarise, the HC/ZVI/sulfite treatment can be viewed as an innovative and promising method of treating recalcitrant textile wastewater.
Collapse
Affiliation(s)
- Nastaran Azizollahi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arvin Rahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan BE1410, Brunei Darussalam.
| |
Collapse
|
20
|
Azizollahi N, Fatehizadeh A, Pourzamani H, Taheri E, Aminabhavi TM. Degradation of 2,4-diclorophenol via coupling zero valent iron and hydrodynamic cavitation for sulfite activation: A turbulence modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117295. [PMID: 36738716 DOI: 10.1016/j.jenvman.2023.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
The 2,4-dichlorophenol (2,4-DCP) is an important chemical precursor that can affect human endocrine system and induce pathological symptoms. This research reports the degradation of 2,4-DCP using lab-scale hydrodynamic cavitation (HC) approach, which is considered a green and effective method. To promote the degradation efficiency, the zero-valent iron (Fe0) as the catalyst for sulfate radical (SO4•-) generation via activation of sulfite (SO32-) salts was simultaneously used. Degradation efficiency was favorable in acidic pH than the alkaline pH due to higher production of active radicals and was dependent on the dose of Fe0 and SO32-. Under optimal condition, degradation efficiency by Fe0/HC/sulfite (96.67 ± 2.90%) was considerably enhanced compared to HC alone (45.37 ± 2.26%). Quenching experiments suggested that SO4•-, •OH, 1O2, and O2•- radicals were involved in the degradation of 2,4-DCP by Fe0/HC/sulfite process, but the dominant role was related to •OH (70.09% contribution) and SO4•- (29.91% contribution) radicals. From the turbulence model, turbulent pressure at venturi throat decreased from -0.42 MPa to -2.02 MPa by increasing the inlet pressure from 1.0 to 4.0 bar and increase in pressure gradient has intensified bubble collapse due to higher turbulence tension.
Collapse
Affiliation(s)
- Nastaran Azizollahi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Pourzamani
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India; School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India; Center for Energy and Environment,School of Advanced Sciences,KLE Technological University,Hubballi 580031 India.
| |
Collapse
|
21
|
Feng L, Yuan Y, He X, Wu M, Zhang L, Gong J. Efficient degradation of atrazine through in-situ anchoring NiCo 2O 4 nanosheets on biochar to activate sulfite under neutral condition. J Environ Sci (China) 2023; 126:81-94. [PMID: 36503806 DOI: 10.1016/j.jes.2022.04.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 06/17/2023]
Abstract
Sulfite (S(IV)) is a promising substitute for sulfate radical-based advanced oxidation processes. Here, a composite of in-situ anchoring NiCo2O4 nanosheets on biochar (BC) was firstly employed as a heterogeneous activator for sulfite (NiCo2O4@BC-sulfite) to degrade atrazine (ATZ) in the neutral environment. The synergistic coupling of BC and NiCo2O4 endows the resulting composite excellent catalytic activity. 82% of the degradation ratio of ATZ (1 mg/L) could be achieved within 10 min at initial concentrations of 0.6 g/L NiCo2O4@BC, 3.0 mmol/L sulfite in neutral environment. When further supplementing sulfite into the system at 20 min (considering the depletion of sulfite), outstanding degradation efficiency (∼ 100%) were achieved in the next 10 min without any other energy input by the NiCo2O4@BC-sulfite system. The features of the prepared catalysts and the effects of some key parameters on ATZ degradation were systematically examined. A strong inner-sphere complexation (Co2+/Ni2+-SO32-) was explored between sulfite and the metal sites on the NiCo2O4@BC surface. The redox cycle of the surface metal efficiently mediated sulfite activation and triggered the series radical chain reactions. The generated radicals, in particular the surface-bound radicals were involved in ATZ degradation. High performance liquid chromatography-tandem mass spectrometry (LC-MS) technique was used to detect the degradation intermediates. Density functional theory (DFT) calculations were performed to illustrate the possible degradation pathways of ATZ. Finally, an underlying mechanism for ATZ removal was proposed. The present study offered a low-cost and sustainable catalyst for sulfite activation to remove ATZ in an environmentally friendly manner from wastewater.
Collapse
Affiliation(s)
- Lizhen Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yijin Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xianqin He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengsi Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
22
|
Xu W, Zhang X, Xu X, Chen J, Wang Q. Guest Molecule Insertion-Optimized d-Band Center Position in MoS 2 with Improved Sulfite Activation Ability Inspired by Sulfite Oxidase. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13042-13051. [PMID: 36867742 DOI: 10.1021/acsami.2c22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a prospective member in the family of advanced oxidation processes (AOPs), heterogeneous sulfite activation shows low cost and high safety for poisonous organic pollutants' degradation. To obtain an efficient sulfite activator, sulfite oxidase (SuOx), a molybdenum-based enzyme that can prompt oxidation and activation of sulfite, inspired us greatly. Based on the structure of SuOx, MoS2/BPE (BPE = 1, 2-bis-(4-pyridyl)-ethylene) is synthesized successfully. In MoS2/BPE, the BPE molecule is inserted between the MoS2 layers as a pillar and the N atom links with Mo4+ directly. MoS2/BPE shows excellent SuOx mimic activity. Theoretical calculation implies that BPE insertion optimizes the d-band center position of MoS2/BPE, which regulates the interaction between MoS2 and *SO42-. This prompts •SO4- generation and organic pollutants' degradation. At pH 7.0, its tetracycline degradation efficiency achieved is 93.9% in 30 min. Furthermore, its sulfite activation ability also endows MoS2/BPE with excellent antibiofouling performance because •SO4- can kill the microorganisms in water effectively. This work develops a new sulfite activator based on SuOx. The connection between structure and SuOx mimic activity and sulfite activation ability is clarified in detail.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xia Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, Liaoning, China
- Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jin Chen
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang 110819, Liaoning, China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials, MOE, Northeastern University, Shenyang 110819, Liaoning, China
| |
Collapse
|
23
|
Jing Q, Cai J, Feng K, Li H. Remove humic acid from water quickly using only oxygen and sulfite at nickel cobalt spinel catalyst. ENVIRONMENTAL RESEARCH 2023; 220:115209. [PMID: 36603660 DOI: 10.1016/j.envres.2023.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The typical refractory organic pollutant, humic acid (HA), causes many water and wastewater treatment obstacles. In this study, a novel method was proposed to degrade HA based on the low-temperature (<100 °C) catalytic air oxidation technology (LTCAO) using the NiCo-spinel (NCO) as a catalyst and the sulfite as a promoter. Sulfite enhanced the quantity of mineralized HA to 2.4 times that without sulfite assistance, and the removal rate of total organic carbon reached 93.1% within 60 min at 90 °C. HA gradually degrades into small organic molecules and is mineralized through interfacial reactions and radical paths. Sulfite plays a triple role in these reactions. Sulfite sulfonated HA destroyed its pseudomicellar structure, making HA easily oxidized. Sulfite also coordinated with NCO and promoted the internal electronic hopping conduction of NCO because of the fast electron transfer between SO32- and the h+sites, thus accelerating the electron transfer between HA and O2 mediated by NCO. In addition, the coordinated SO32- was activated to form the radical ∙SO3-, which strengthened the oxidation of HA. This study supports a simple and green method for efficiently cleaning water and wastewater rich in HA.
Collapse
Affiliation(s)
- Qi Jing
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiabai Cai
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Kai Feng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
24
|
Liu S, Zhou A, Fan Y, Duan Y, Liu Z, He Z, Liu W, Yue X. Using heat-activated persulfate to accelerate short-chain fatty acids production from waste activated sludge fermentation triggered by sulfate-reducing microbial consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160795. [PMID: 36493824 DOI: 10.1016/j.scitotenv.2022.160795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Persulfate has been applied extensively for waste activated sludge (WAS) decomposition due to the strong oxidizing sulfate radical generated as a product. However, the efficiency is not improved without activation to produce free radicals. In this study, a novel coupling strategy of heat-activated persulfate (Heat_PS) pretreatment and sulfate-reducing bacteria (SRB) triggering was explored to enhance short-chain fatty acids (SCFAs) produced by WAS fermentation. The remaining sulfate acts as an essential acceptor of electrons for the metabolism of synergistic SRB, thereby boosting WAS acidification by energetic cooperation with anaerobic fermenters. The results showed that SCFAs yield in the Heat_PS + SRB group peaked at 431.89 mg COD/gVSS, with the proportion of acetate reaching 57.8 %. This was 6.33 and 1.75 times higher than that in raw and single Heat_PS treated WAS, respectively. Carbon balance revealed a conversion rate of 26.1 % of carbon content in WAS to SCFAs, with 4.5 % lower CO2 equivalents emitted than that in raw WAS fermentation by the assessments of environmental impacts. This was partially attributed to the strong decomposition of WAS by SO4•- and •OH oxidation from heat-activated PS and the SRB trigger. In addition, the synergistic relationship among acidogenic/fermentative bacteria and SRB consortia was further verified by the positive correlation among Desulfovibrio, the hydrolytic Escherichia-Shigella, Morganella and the fermetative Macellibacteroides and Bacteroides, as revealed by molecular ecological networks (MENs) analysis. The results of this study may highlight the cooperation of the synergistic micribial consortia as an additional perspective for the recovery of value-added biological metabolites from complex biotransformation.
Collapse
Affiliation(s)
- Shuli Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yaxin Fan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanqing Duan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Department of Environmental and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China.
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhangwei He
- School of Environment and Municipal Engineering, Xi'An University of Architecture and Technology, Xi'An 710055, China
| | - Wenzong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 51805, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
25
|
Li X, Wang J, Xia L, Cheng R, Chen J, Shang J. Peroxymonosulfate activation by nitrogen-doped herb residue biochar for the degradation of tetracycline. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:117028. [PMID: 36525737 DOI: 10.1016/j.jenvman.2022.117028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Biochar is an environmentally friendly material with potential applications in water purification. In this study, herb residue nitrogen-doped biochar (N-BC) was fabricated and used to activate peroxymonosulfate (PMS). Characterization and density-functional theory (DFT) studies were conducted to explore the influence of nitrogen doping. Radical scavenging activity and electron paramagnetic resonance (EPR) spectroscopy revealed that non-radical singlet oxygen (1O2) is the main reactive oxidative species. Additionally, pyridinic-N was shown to play a pivotal role in the 1O2-dominated pathway. Three possible degradation pathways were proposed based on the identified degradation intermediates. Batch experiments confirmed that N-BC showed excellent catalytic performance and reusability. The best condition for tetracycline (TC) degradation efficiency (>99%) in 60 min was obtained when the dosage of N-BC was 1 g/L and the concentration of PMS was 5 mM. Furthermore, N-BC showed approximately 65.5% degradation efficiency within 4 cycles. Furthermore, the toxicity of degradation intermediates was examined using ECOSAR and T.E.S.T procedures. This study brings forth a feasible strategy to synthesize biochar. Furthermore, the proposed approach will facilitate the use of biochar in water purification.
Collapse
Affiliation(s)
- Xin Li
- China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Jiayue Wang
- China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Lu Xia
- China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Rujun Cheng
- China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Jianqiu Chen
- China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| | - Jingge Shang
- China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Feng X, Wu D, Shen X, Guo Y, Lv Y, Xu A, Li X. Activation of sulfite by metal-organic framework-derived cobalt nanoparticles for organic pollutants removal. J Environ Sci (China) 2023; 124:350-359. [PMID: 36182144 DOI: 10.1016/j.jes.2021.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 06/16/2023]
Abstract
Sulfite (SO32-) activation is one of the most potential sulfate-radical-based advanced oxidation processes, and the catalysts with high efficiency and low-cost are greatly desired. In this study, the cobalt nanoparticles embedded in nitrogen-doped graphite layers (Co@NC), were used to activate SO32- for removal of Methyl Orange in aqueous solution. The Co@NC catalysts were synthesized via pyrolysis of Co2+-based metal-organic framework (Co-MOF), where CoO was firstly formed at 400℃ and then partially reduced to Co nanoparticles embedded in carbon layers at 800℃. The Co@NC catalysts were more active than other cobalt-based catalysts such as Co2+, Co3O4 and CoFe2O4, due to the synergistic effect of metallic Co and CoxOy. A series of chain reaction between Co species and dissolved oxygen was established, with the production and transformation of SO3•-, SO52-, and subsequent active radicals SO4•- and HO•. In addition, HCO3- was found to play a key role in the reaction by complexing with Co species on the surface of the catalysts. The results provide a new promising strategy by using the Co@NC catalyst for SO32- oxidation to promote organic pollutants degradation.
Collapse
Affiliation(s)
- Xianjie Feng
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China; School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Deming Wu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xueyi Shen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yu Guo
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yangyang Lv
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Aihua Xu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaoxia Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China; School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
27
|
Li Y, Huang M, Oh WD, Wu X, Zhou T. Efficient activation of sulfite for reductive-oxidative degradation of chloramphenicol by carbon-supported cobalt ferrite catalysts. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
28
|
MnOx/g-C3N4 nanocomposites mediated sulfite activation for enhanced organic pollutants degradation under visible light irradiation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Liang Z, Qi T, Liu H, Wang L, Li Q. Zero-valent bimetallic catalyst/absorbent for simultaneous facilitation of MgSO 3 oxidation and arsenic uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157147. [PMID: 35798112 DOI: 10.1016/j.scitotenv.2022.157147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Cobalt (Co)-based catalysts can efficiently reduce the heat waste from sulfate concentration by enhancing sulfite oxidation during wet flue gas desulfurization system. However, arsenic (As) can poison such catalysts and migrate into the sulfate by-products, resulting in severe secondary pollution. In this study, a zero-valent Co/iron (Fe)-based nanoparticle (NZV-Co2Fe1) was fabricated and applied as a bifunctional catalyst/adsorbent. The catalytic stability of the Co-based catalyst was enhanced by the introduction of Fe because the poisonous effect of As was substantially suppressed because of the high adsorption capacity of Fe for As. Compared with the noncatalytic benchmark, the presence of 0.5 g/L NZV-Co2Fe1 can increase the rate of MgSO3 oxidation by approximately 12-fold even at a high concentration of As (2.5 mg/L). The Langmuir model was fitted to the As adsorption isotherms, indicating that As uptake is a single-layer adsorption process. The pseudo-second-order kinetic model indicated that As was removed through chemisorption. The oxidation pathway of As(III) involves reactive radicals (mainly OH, SO4- and SO5-) and ligand-to-metal charge transfer between SO32- and Co2+. The availability of MgSO3 improved the removal efficiency at high concentrations of As(III) (1 mg/L). These results indicate that using NZV-Co2Fe1 as a catalyst to purify the by-products of flue gas desulfurization can effectively prevent secondary pollution.
Collapse
Affiliation(s)
- Zhengwei Liang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Tieyue Qi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hui Liu
- School of Foreign Languages, North China Electric Power University, Beijing 102206, PR China
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Qiangwei Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
30
|
Preparation of FeMn-ZSM-5/MOR composite molecular sieves: combination of adsorption/oxidation and Fenton-like reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Hao Z, Hou W, Fang C, Huang Y, Liu X. Sulfite activation by cobaltosic oxide nanohydrangeas for tetracycline degradation: Performance, degradation pathways and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129618. [PMID: 35870208 DOI: 10.1016/j.jhazmat.2022.129618] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Sulfite has been used as a classic reductant for the dehalogenation and reduction of organic compounds for a long time, it is recently deemed as a promising alternative (for persulfate) to generate sulfate radical for wastewater treatment due to its low price and eco-toxicity. In contrast with the enormous work developed in the field of tetracycline (TC) degradation via PMS activization, sulfite activization could play a important role in TC degradation but there is only very few available reports in this area. Herein, the novel and efficient CoNHs nanocatalyst is designed and developed, via immobilization of hydrangea-shaped Co3O4 nanoparticles onto graphitic carbon nanosheet (GCN), for the degradation of tetracycline via sulfite activation. The detailed characterizations have confirmed that CoNHs possesses a nanohydrangea-shaped structure with high microporosity. The comparison with other supports (such as CeO2 and MoS2), CoNHs provides the highest degradation efficiency in TC degradation, due to the synergistic effect between Co3O4 and GCN. Free radical quenching experiments and EPR analysis confirm that SO4•- and O2•- are major reactive oxygen species in the CoNHs/sulfite system. This work could provide a simple, economical and durable cobalt-based catalyst for organic wastewater treatment via sulfite activation.
Collapse
Affiliation(s)
- Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002 , China
| | - Wenxin Hou
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002 , China
| | - Chen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002 , China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002 , China; College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002 , China.
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002 , China; Hubei Three Gorges Laboratory, 443007 Yichang, Hubei, China.
| |
Collapse
|
32
|
Mn2O3@Mn5O8 as an efficient catalyst for the degradation of organic contaminants in aqueous media through sulfite activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Activation of Peracetic Acid with CuFe2O4 for Rhodamine B Degradation: Activation by Cu and the Contribution of Acetylperoxyl Radicals. Molecules 2022; 27:molecules27196385. [PMID: 36234920 PMCID: PMC9571141 DOI: 10.3390/molecules27196385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Abstract
Advanced oxidation processes (AOPs) demonstrate great micropollutant degradation efficiency. In this study, CuFe2O4 was successfully used to activate peracetic acid (PAA) to remove Rhodamine B. Acetyl(per)oxyl radicals were the dominant species in this novel system. The addition of 2,4-hexadiene (2,4-HD) and Methanol (MeOH) significantly inhibited the degradation efficiency of Rhodamine B. The ≡Cu2+/≡Cu+ redox cycle dominated PAA activation, thereby producing organic radicals (R-O˙) including CH3C(O)O˙ and CH3C(O)OO˙, which accounted for the degradation of Rhodamine B. Increasing either the concentration of CuFe2O4 (0–100 mg/L) or PAA (10–100 mg/L) promoted the removal efficiency of this potent system. In addition, weakly acid to weakly alkali pH conditions (6–8) were suitable for pollutant removal. The addition of Humid acid (HA), HCO3−, and a small amount of Cl− (10–100 mmol·L−1) slightly inhibited the degradation of Rhodamine B. However, degradation was accelerated by the inclusion of high concentrations (200 mmol·L−1) of Cl−. After four iterations of catalyst recycling, the degradation efficiency remained stable and no additional functional group characteristic peaks were observed. Taking into consideration the reaction conditions, interfering substances, system stability, and pollutant-removal efficiency, the CuFe2O4/PAA system demonstrated great potential for the degradation of Rhodamine B.
Collapse
|
34
|
Zhao G, Ding J, Ren J, Zhao Q, Fan H, Wang K, Gao Q, Chen X, Long M. Treasuring industrial sulfur by-products: A review on add-value to reductive sulfide and sulfite for contaminant removal and hydrogen production. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129462. [PMID: 35792429 DOI: 10.1016/j.jhazmat.2022.129462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Reductive sulfur-containing by-products (S-BPs) released from industrial process mainly exist in the simple form of sulfide and sulfite. In this study, recent advances to remove and make full use of reductive S-BPs to achieve efficient contaminant removal and hydrogen production are critically reviewed. Sulfide, serves as both reductant and nucleophile, can form intermediates with the catalyst surface functional group through chemical interaction, efficiently promoting the catalytic reduction process to remove contaminants. Sulfite assisted catalytic process could be classified to the advanced reduction processes (ARPs) and advanced oxidation processes (AOPs), mainly depending on the presence of dissolved oxygen (DO) in the solution. During ARPs, sulfite could generate reductive active species including hydrated electron (eaq-), hydrogen radical (H·), and sulfite radical (SO3•-) under the irradiation of UV light, leading to the efficient reduction removal of a variety of contaminants. During AOPs, sulfite could first produce SO3•- under the action of the catalyst or energy, initiating a series of reactions to produce oxysulfur radicals. Various contaminants could be effectively removed under the role of these oxidizing active species. Sulfides and sulfites could also be removed along with promoting hydrogen production via photocatalytic and electrocatalytic processes. Besides, the present limitations and the prospects for future practical applications of the process with these S-BPs are proposed. Overall, this review gives a comprehensive summary and aims to provide new insights and thoughts in promoting contaminant removal and hydrogen production through taking full advantage of reductive S-BPs.
Collapse
Affiliation(s)
- Guanshu Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jiayi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Haojun Fan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingwei Gao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
35
|
Cai G, Li L, Li D, Wang Q, Zhang L, Zhang J, Zuo W, Tian Y. Rapid purification of As(III) in water using iron-manganese composite oxide coupled with sulfite: Importance of the SO 5•- radicals. WATER RESEARCH 2022; 222:118839. [PMID: 35870396 DOI: 10.1016/j.watres.2022.118839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Manganese (Mn)-containing composite metal adsorbents are very effective at removing arsenite (As(III)) from contaminated water, however, the low removal speed and oxidation efficiency have limited their further application. In this study, a nonhomogeneous catalytic oxidation-adsorption system was constructed by coupling iron-manganese composite oxide (FeMnOx) with sulfite (S(IV)) to enhance the recovery of oxidative capacity and accelerate the removal of As(III). Experimental results showed that the FeMnOx/S(IV) system decreased the As(III) concentration from 1079 to <10 µg/L within 10 min and almost completely oxidized As(III) to As(V). In contrast, FeMnOx alone removed only 82.4% of As(III) within 30 min, and 60.0% of the adsorbed As(III) was not oxidized. Meanwhile, the adsorption capacity of FeMnOx/S(IV) system for As(III) was considerably higher than that of the only-FeMnOx system (76.5 > 46.3 mg/g). The efficient and fast As(III) removal was attributed to the SO5•- radical generated by S(IV) acting as the driving force for the redox cycle between As(III) and Mn(II/III/IV). Several environmental factors (e.g., solution pH and inorganic anions) and the reusability and practicality of FeMnOx were systematically investigated, and the results further confirmed the superiority of the FeMnOx/S(IV) system in As(III) removal. In particular, the proposed FeMnOx nanocellulose aerogel effectively purified arsenic-contaminated groundwater using a fixed-bed column. Thus, FeMnOx-S(IV) coupling is very promising for the purification of arsenic-contaminated water bodies.
Collapse
Affiliation(s)
- Guiyuan Cai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang, Harbin 150090, China.
| | - Daikun Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang, Harbin 150090, China
| | - Qinyu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang, Harbin 150090, China
| | - Luyu Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang, Harbin 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang, Harbin 150090, China
| |
Collapse
|
36
|
Zheng W, Sun Y, Gu Y. Assembly of UiO-66 onto Co-doped Fe 3O 4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in-situ adsorption of released phosphate. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129058. [PMID: 35526342 DOI: 10.1016/j.jhazmat.2022.129058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Although sulfate radical-based advanced oxidation processes (SR-AOPs) have shown great potential for the efficient degradation of various organic contaminants, there is few research on the removal of organophosphorus pesticides (OPPs) through SR-AOPs. In this work, Co-doped Fe3O4 magnetic particles encapsulated by zirconium-based metal-organic frameworks (Co-Fe3O4@UiO-66) were prepared and employed to activate peroxymonosulfate (PMS) for the elimination of fenitrothion (FNT) and the simultaneous in-situ adsorption of produced phosphate. The catalyst exhibited efficient catalytic performance, achieving above 90.0% removal of FNT (10 mg/L) in the presence of PMS (1 mM) within 60 min. Moreover, the produced phosphate during the degradation process was also completely adsorbed onto the catalyst. Both sulfate and hydroxyl radicals were responsible for the degradation of FNT. The degradation products of FNT in the system were identified and the possible pathways were proposed. This study represents a promising and adoptable strategy to develop other versatile composite nanomaterials in a green manner hence broadening its environmental application range, as it can not only remove OPPs by catalytic oxidation but also immobilize degraded phosphorus by adsorption.
Collapse
Affiliation(s)
- Weisheng Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
37
|
Mahmoudi S, Fadaei S, Taheri E, Fatehizadeh A, Aminabhavi TM. Direct red 89 dye degradation by advanced oxidation process using sulfite and zero valent under ultraviolet irradiation: Toxicity assessment and adaptive neuro-fuzzy inference systems modeling. ENVIRONMENTAL RESEARCH 2022; 211:113059. [PMID: 35257689 DOI: 10.1016/j.envres.2022.113059] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Sulfate-based advanced oxidation process mediated by zero-valent iron (ZVI) and ultraviolet radiation for the decomposition of sulfite salts resulted in the formation of strong oxidizing species (sulfate and hydroxide radicals) in aqueous solution is reported. Degradation of direct red 89 (DR89) dye via UV/ZVI/sulfite process was systematically investigated to evaluate the effect of pH, ZVI dose, sulfite, initial DR89 concentration, and reaction time on DR89 degradation. The synergy factor of UV/ZVI/sulfite process was found to be 2.23-times higher than the individual processes including ZVI, sulfite and UV. By increasing the ZVI dose from 100 mg/L to 300 mg/L, dye degradation was linearly enhanced from 67.12 ± 3.36% to 82.40 ± 4.12% by the UV/ZVI/sulfite process due to enhanced ZVI corrosion and sulfite activation. The highest degradation efficiency of 99.61 ± 0.02% was observed at pH of 5.0, [ZVI]0 = 300 mg/L, and [sulfite]0 = 400 mg/L. Toxicity assessment by Lepidium sativum demonstrated that treated dye solution by UV/ZVI/sulfite was within the non-toxic range. The application of optimal adaptive neuro-fuzzy inference system (ANFIS) to predict DR89 degradation indicated high accuracy of ANFIS model (R2 = 0.97 and RMSE = 0.051) via the UV/ZVI/sulfite process. It is suggested that UV/ZVI/sulfite process is suitable for industrial wastewater treatment.
Collapse
Affiliation(s)
- Sara Mahmoudi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Fadaei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India; School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
38
|
Zhang Y, Chu W. Enhanced degradation of metronidazole by cobalt doped TiO2/sulfite process under visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Peroxymonosulfate activation by Co3O4/SnO2 for efficient degradation of ofloxacin under visible light. J Colloid Interface Sci 2022; 615:650-662. [DOI: 10.1016/j.jcis.2022.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 01/10/2023]
|
40
|
Sun T, Su Y, Song H, Lv Y. New advanced oxidation progress with chemiluminescence behavior based on NaClO triggered by WS 2 nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128329. [PMID: 35101764 DOI: 10.1016/j.jhazmat.2022.128329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
As one integral part of coping strategies for addressing water pollution, advanced oxidation progresses (AOPs) get enormous attentions in recent years. However, the complex synthesis and high cost of H2O2 and K2S2O8 hampered their developments. Herein, a novel AOP with the chemiluminescence (CL) property based on economic NaClO and WS2 nanosheets was proposed to achieve efficient decomposition of organic pollutants. In this AOP, WS2 nanosheets exhibited a dual-function feature of the catalyst and energy acceptor. It demonstrated that the reaction order of WS2 nanosheets was equal to 0.8271 and enormous singlet oxygen (1O2),·ClO and hydroxyl radical (·OH) were generated in rhodamine B (RhB) degradation process. Interestingly, a strong CL emission was observed and reflected the relative concentration of 1O2 and·OH for adjusting the oxidizing capability in WS2 nanosheets-NaClO system. Through a series of degradation tests, RhB, methylene blue (MB), p-nitrophenol and phenol were decomposed and the degradation efficiency of over 90% was achieved. Therefore, this study not only builds a chemiluminescent AOPs to eliminate organic pollutants, but also broadens the applications of WS2 nanomaterials and CL in environmental field.
Collapse
Affiliation(s)
- Tong Sun
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China; Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
41
|
Zhong J, Feng Y, Yang B, Xiong Q, Ying GG. Accelerated degradation of sulfadiazine by nitrogen-doped magnetic biochar-activated persulfate: Role of oxygen vacancy. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Li Q, Zhang M, Xu Y, Quan X, Xu Y, Liu W, Wang L. Constructing heterojunction interface of Co3O4/TiO2 for efficiently accelerating acetaminophen degradation via photocatalytic activation of sulfite. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Maiti BK. Cross‐talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health. Chemistry 2022; 28:e202104342. [DOI: 10.1002/chem.202104342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Biplab K Maiti
- Department of Chemistry National Institute of Technology Sikkim, Ravangla Campus Barfung Block, Ravangla Sub Division South Sikkim 737139 India
- Department of Chemistry Cluster University of Jammu Canal Road Jammu 180001
| |
Collapse
|
44
|
He L, Tong J, Yang Y, Wu J, Li L, Wei Z, Long W, Pang J, Shi J. Overestimate of remediation efficiency due to residual sodium persulfate in PAHs contaminated soil and a solution. J Environ Sci (China) 2022; 113:242-250. [PMID: 34963532 DOI: 10.1016/j.jes.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 06/14/2023]
Abstract
Oxidation remediation is a commonly used technology for PAHs contaminated soil presently, but the overestimate of efficiency due to ongoing remediation by residual oxidants during extraction and testing has not been paid enough attention. In this study, persulfate was activated by Fe(II) to investigate the effects of residual oxidants on PAHs removal during detection process and the elimination effects of adding Na2SO3 and extending sampling time on residual oxidants. Results verified that the residual oxidants removed PAHs in extraction process, making the results lower than the actual values: the detection recovery rate η of ∑PAHs and 3-6 ring PAHs ranged from 24.3% (25% Na2S2O8 treatment) to 87.4% (5% Na2S2O8+4/4Fe2+ treatment), 20.1%-99.0%, 28.9%-87.9%, 20.8%-89.4%, and 18.6%-76.9%, respectively. After adding Na2SO3, the accuracy of detection results increased significantly: the η of ∑PAHs and 3-6 ring PAHs increased to 64.1%-96.5%, 58.8%-95.5%, 73.8%-114.4%, 60.6%-95.6%, and 45.4%-77.1%, respectively. After 49 days of adding oxidants, residual oxidants had no considerable effect on the detection of PAHs, indicating it was appropriate to start soil remediation verification sampling49 days after the remediation was completed. The observed results will help scientific evaluation of the remediation effects of chemical oxidation on organic contaminated soil.
Collapse
Affiliation(s)
- Liping He
- Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuanqiang Yang
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd., Beijing 100015, China
| | - Jianxun Wu
- Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China
| | - Linqian Li
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd., Beijing 100015, China
| | - Zhonghua Wei
- Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China
| | - Wei Long
- Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Meng F, Yu L, Song B, Zhao Y, Zhi Z, Lin C, Song M. Insights into the mechanism of redox pairs and oxygen vacancies of Fe 2O 3@CoFe 2O 4 hybrids for efficient refractory organic pollutants degradation. CHEMOSPHERE 2022; 291:133069. [PMID: 34843835 DOI: 10.1016/j.chemosphere.2021.133069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The core-shell Fe2O3@CoFe2O4 hybrids microspheres with abundant oxygen vacancies were synthesized through in-situ ion exchange-calcination method and employed to induce peroxymonosulfate (PMS) to eliminate organic pollutants. The superior catalytic activity and stability of Fe2O3@CoFe2O4 were attributed to the synergistic effects of M2+/M3+ (M denotes Co or Fe) redox cycles. SO4·-, ·OH, O2·- and 1O2 were proved to be the main reactive oxygen species (ROS) involved in the phenol degradation process through quenching experiments and EPR measurements, while the surface-bound SO4·- played a dominant role. Trace metal ions leached during the reaction enhanced the PMS activation, and the oxygen vacancies electron transfer process played a critical role in the formation of O2·-/1O2 and the cycle of M2+/M3+ redox pairs. The formation of ROS and function of 1O2 were also revealed from bulk reaction and interface reaction. This study highlighted the simultaneous evolution of PMS reduction and oxidation to generate ROS, which provided an insight into the efficient catalytic degradation of persistent organic pollutants (POPs).
Collapse
Affiliation(s)
- Fanyue Meng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Lei Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Bing Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yan Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zejian Zhi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Chenbin Lin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
46
|
Zhang Q, Sun X, Dang Y, Zhu JJ, Zhao Y, Xu X, Zhou Y. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe 2O 4 synergistic catalysis for the efficient removal of levofloxacin. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127651. [PMID: 34772555 DOI: 10.1016/j.jhazmat.2021.127651] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
A novel electrochemically enhanced homogeneous-heterogeneous catalytic system was constructed by placing the prepared heterogeneous catalyst (CoFe2O4/NF) in parallel between the anode and the cathode for peroxymonosulfate (PMS) activation to remove levofloxacin (LVF) in this work. Over 90% of LVF could be effectively removed by the constructed system after 40 min's degradation. And the electrical energy consumption was only 2.51 kWh/m3, which was lower than 54.5% of the traditional electrochemical advanced oxidation process. Besides, the system broadened the response range of pH and overcame the inhibitory effect of alkaline conditions on degradation. These activities were mainly due to the high generation ability of free radical (SO4·-, ·OH and O2·-) and non-radical (1O2). And the SO4·- was found to be the main radical for LVF degradation. The high SO4·- generation ability was demonstrated to be resulted from the dual effects of synergy of CoFe2O4/PMS and enhancement of electrochemistry in EC/CoFe2O4/PMS system. In detail, electrochemistry could effectively promote the continuous circulation of Co2+/Co3+ and Fe2+/Fe3+ redox cycles on the surface of CoFe2O4 to enhance the activation of PMS, thereby generating SO4·-. This work can provide a promising and cost-effective approach to construct highly efficient organic pollutant degradation system.
Collapse
Affiliation(s)
- Qianyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiaoqin Sun
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yuan Zhao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaoxiang Xu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
47
|
Gao G, Zhang L, Shi Y, Yang S, Wang G, Xu H, Ding D, Chen R, Jin P, Wang XC. Mutual-activation between Zero-Valent iron and graphitic carbon for Cr(VI) Removal: Mechanism and inhibition of inherent Side-reaction. J Colloid Interface Sci 2022; 608:588-598. [PMID: 34628318 DOI: 10.1016/j.jcis.2021.09.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
The low reactivity of zero-valent iron (ZVI) usually limits its application for pollutant remediation. Therefore, a microscopic galvanic cell (mGC) with short-circuited cathode and anode was synthesized to intensify its galvanic corrosion. The prepared mGC exhibited 7.14 times higher Fe(II) release performance than ordinary nanoscale-ZVI (nZVI), rendering efficient Cr(VI) removal performance. Density functional theory (DFT) revealed mutual-activation of the cathode and anode due to close proximity, dramatically enhancing the galvanic corrosion of Fe(0) in mGC. The corrosion potential of mGC was measured as -0.77 V, which was 100 mV more negative than nZVI. The released electrons and surface-bond Fe(II) from anode in mGC was proved to be the dominant reductive species. More importantly, Cr(VI) reduction was slightly inhibited by hydroxyl radicals generated by a series of inherent side-reactions in the system, which could be well eliminated by low concentrations of 4-acetamido phenol. This study provides a promising strategy for ZVI activation, and sheds light on its environmental applications.
Collapse
Affiliation(s)
- Ge Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Lei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Yixin Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China.
| | - Gen Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Huining Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu 210095, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academic of Science, 19A Yuquan Road, Beijing 100049, China.
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shaanxi 710055, China
| |
Collapse
|
48
|
Maeda Y. Roles of Sulfites in Reverse Osmosis (RO) Plants and Adverse Effects in RO Operation. MEMBRANES 2022; 12:170. [PMID: 35207091 PMCID: PMC8874662 DOI: 10.3390/membranes12020170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
More than 60 years have passed since UCLA first announced the development of an innovative asymmetric cellulose acetate reverse osmosis (RO) membrane in 1960. This innovation opened a gate to use RO for commercial use. RO is now ubiquitous in water treatment and has been used for various applications, including seawater desalination, municipal water treatment, wastewater reuse, ultra-pure water (UPW) production, and industrial process waters, etc. RO is a highly integrated system consisting of a series of unit processes: (1) intake system, (2) pretreatment, (3) RO system, (4) post-treatment, and (5) effluent treatment and discharge system. In each step, a variety of chemicals are used. Among those, sulfites (sodium bisulfite and sodium metabisulfite) have played significant roles in RO, such as dechlorination, preservatives, shock treatment, and sanitization, etc. Sulfites especially became necessary as dechlorinating agents because polyamide hollow-fiber and aromatic thin-film composite RO membranes developed in the late 1960s and 1970s were less tolerable with residual chlorine. In this review, key applications of sulfites are explained in detail. Furthermore, as it is reported that sulfites have some adverse effects on RO membranes and processes, such phenomena will be clarified. In particular, the following two are significant concerns using sulfites: RO membrane oxidation catalyzed by heavy metals and a trigger of biofouling. This review sheds light on the mechanism of membrane oxidation and triggering biofouling by sulfites. Some countermeasures are also introduced to alleviate such problems.
Collapse
Affiliation(s)
- Yasushi Maeda
- LG Chem Japan Co., Ltd., Kyobashi Trust Tower 12F, 2-1-3 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
49
|
Cai Y, Shen S, Fan J. Enhanced degradation of tetracycline by Cu(II) complexation in the FeS/sulfite system. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126673. [PMID: 34330076 DOI: 10.1016/j.jhazmat.2021.126673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
This study applied a mineral material of FeS to activate sulfite for efficient degradation of TTC in the presence of Cu(II) based on the identified complexation mechanism through UV-Vis spectra, FTIR spectroscopy and DFT calculation. pH plays an important role in TTC degradation and the initial pH of 6 and 7 were the divide in the contributions of FeS/sulfite oxidation and complex-precipitation. TTC-Cu(II) exhibits a superior promoting effect on the TTC degradation in FeS/sulfite system due to the improvement of TTC electron transfer reactivity and Fe(II) dissolution from FeS. Moreover, the formation of Cu(I) improved the recycling of Fe(II) from Fe(III). Dissolved oxygen-dependent free radicals' generation was confirmed, and TTC degradation was mainly attributed to SO4·- and ·OH. The characterization of FeS surface through XPS, XRD, SEM-EDS, Fe(II) deactivation tests, together with the comparison of pseudo-first-order rate constants for TTC degradation by FeS and ferrous ion supported the important role of surface and dissolved Fe(II) in sulfite activation. Furthermore, reasonable degradation pathways of TTC have been proposed according to the detected products by LC-MS. This work highlights the important role of pH, DO and Cu(II) complexation in sulfite activation and TTC degradation, furnishing theoretical support for further relevant studies.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Shihao Shen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Jinhong Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
50
|
Xie J, Chen L, Luo X, Huang L, Li S, Gong X. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119887] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|